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Introduction

• Learning

• Search Strategies

• Genetic Algorithms
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• Genetic Programming

Types of Learning

• Supervised: Training examples with 
known inputs and outputs

U i d N ifi d
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• Unsupervised: No outputs are specified

• Reinforcement: Falls between the 
previous two types; A notion for the output 
quality is fed back to the learning algorithm 

Search Strategies in Learning 
Systems

• Blind (uninformed) search, e.g., 
tree search
- breadth-first-search strategy
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breadth first search strategy
- depth-first-search strategy

• Hill climbing, 
e.g., simulated annealing

• Beam search: limited number 
of solutions at each vertex
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Genetic Programming Overview

Representation Tree structures

Recombination Exchange of subtrees
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g

Mutation Random change in trees

Parent selection Fitness proportional

Survivor selection Generational replacement

Genetic Algorithm: Basic Terms

POPULATION – a set of individuals which evolve according to 
rules of selection and genetic operators

FITNESS – a measure of ‘goodness’ assigned to each individual
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SELECTION – a process of choosing high fitness individuals

GENETIC OPERATORS – used to perturb high fitness 
individuals

Genetic Operators
• Mutation

1  1  1  1  1  1  1Before

1  1  1  0  1  1  1After
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Mutation usually happens with probability pm for 
each gene

• Crossover

Mutated gene

Crossover Types

• Single-point crossover

• Double-point crossover

• Uniform crossover
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• Uniform crossover

• Weighted (arithmetic) crossover

• Analytical crossover
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Single-Point Crossover

ab            cdef pq            rstu

Chromosome 1 Chromosome 2

Parents
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ab            rstu pq           cdef Children

Double-Point Crossover

ab         cdef       g pq          rstu       v

Chromosome 1 Chromosome 2

Parents
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ab          rstu       g pq         cdef       v Children

Uniform Crossover 

a bc   d ef     g p qr    s tu    v

Chromosome 1 Chromosome 2

Parents
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The uniform crossover works on individual locus rather 
than segments of a chromosome. The probability of selecting 
a locus for exchange is called the mixing rate.
A mixing rate of 0.5 implies that each locus in the chromosome
has an equal chance of being selected for replacement.

Childrenp bc    s ef     v a qr    d tu    g

Weighted (Arithmetic) Crossover (a)

• Weighted (arithmetic) crossover modifies rather 
than exchanges genetic material. It works at the 
chromosome level rather than individual loci. 
Weight w is selected before each crossover and 
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We g s se ec ed be o e e c c ossove d
then loci are randomly selected and exchanged.

• The expressions (1) and (2) represent the 
crossover process.
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Weighted (Arithmetic) Crossover (b)

c1 = wp1 + (1 – w)p2 (1)

c2 = wp2 + (1 – w)p1 (2)

where:

w = weight in [0 1]
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w = weight in [0, 1]

c1 = child 1

c2 = child 2

p1 = parent 1

p2 = parent 2

Analytical Crossover
Analytical crossover works at a chromosome level. It 

considers the best and the worst fitness of the two selected 
parents (see (3) - (4))

c1 = pb + s(pb – pw) (3)
c2 = pb (4)
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where:
s = scaling factor in [0, 1]
c1 = child 1
c2 = child 2
pb = parent with the best fitness
pw = parent with the worst fitness

Genetic 
Algorithm: 

Process
• Coding

– population size

• Evaluation
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Evaluation
• Selection
• Crossover

– probability of crossover

• Mutation
– probability of mutation

• Number of generations

Genetic Algorithm
t = 0
Initialize P(t) to random individuals from the set {1,0} 
WHILE termination condition is false

Select individuals for re-production based on fitness
Those not selected die
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Those not selected die
Apply genetic operators to produce offspring
Produce P(t+1) by adding offspring population to parent 
population

END
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Genetic Algorithm

• Some solutions are difficult to represent as binary 
strings.

• Computation time can be excessive
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• Computation time can be excessive.

• Computation not accurately reflect evolution.

• Relatively new concept.

Genetic Algorithm

Representation

Binary genome
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0 1 0 0 1 1 1

y g

Fixed size

Genetic Programming

Representation:
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No constraints on the representation

Genetic Algorithm: Steps
Create random initial populationn

Evaluate
population
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E.g., Crossover,
mutation

Select
individuals

for variation

Vary

Insert into
population
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Genetic 
Programming: 

Steps

Create random initial population

Evaluate
population

Vary
Insert into
population
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Evaluate
population

Select

Genetic Programming:
Population

Population: a set of individuals composed 
recursively from two sets:
– Set of  Nfunc functions

• arithmetic operations (+ - * )
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arithmetic operations (+, , , …)

• mathematical functions (sin, cos, exp, …)

• Boolean operations (AND, OR, NOT)

• subroutines or other domain-specific functions

– Set of  Nterm terminals
• variable atoms (inputs, sensor information, state variables)

• constant atoms (numbers)

Comment: Analogy to Machine Learning

• A feature (input) in the training data set 
becomes part of the terminal set in GP 
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Thus, the features of the learning domain become the 
primitives used by GP to build a program structures

Genetic Programming:
Population

The function set:
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The terminal set:

},,{ NOTORANDF 

}1,0{ ddT 
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Genetic Programming:
Population

The even-2-parity function

- Graph representation OR

AND AND
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- S-expression; LISP representation

NOT NOTd0 d1

d0 d1

))d1)(NOTd0)(NOT(ANDd1)d0(AND(OR

Genetic Programming:
Population

Methods of generating initial population:

– Full: functions are chosen until the node reaches the 
maximum depth therefore each branch of the tree
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maximum depth, therefore each branch of the tree 
has the same depth = max depth

– Grow: nodes are randomly selected from the 
function and terminal sets

– Ramped half-and-half

Generating Initial Population

Ramped half-and-half method: enhances 
population diversity

Assume the maximum depth parameter = 6
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• The population is divided equally among individuals 
to be initialized with trees having depths 2, 3, 4, 5, and 6

• For each depth group, half of the trees are initialized with full 
method and half with grow method 

Genetic Programming:
Fitness Function

• Fitness function is a metric

• Fitness function is problem specific
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p p

• Fitness function provides feedback to the 

algorithm which individuals should reproduce

• Fitness function measures how well a program has 

learned to predict outputs from inputs
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Fitness Function

fp = pi - oi
All i
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All i

pi = (predicted) output from the GP program

oi = (actual) output from the training set

Genetic Programming:
Fitness

Types of fitness functions:
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– raw fitness: not transformed

– standardized fitness: zero fitness value is always 
assigned to the fittest individual

– normalized fitness: all values are between 0 and 1

Genetic Programming:
Selection

Methods of selection:
fitness proportional selection
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– fitness-proportional selection

– truncation selection

– ranking selection

– tournament selection

Fitness Proportional Selection

Probability of the individual i to be given a chance 
passing offspring to the next generation pi
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fi = fitness of individual i

All i
pi = fi / fi
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Truncation Selection

  parents are allowed to breed  offspring, 

out of which the fittest are used as parents for 

Known also as (, ) selection
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 p
the next generation

 selection is also used, where offspring and 
parents participate in the selection

Ranking Selection

• Selection probability is assigned to an 
individual as a function of its rank
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• Linear and exponential ranking functions 
are most often used

Tournament Selection

• Selection based on a competition within 

a subset of the population
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• Tournament = a number of individuals

is selected randomly

Genetic Programming:
Genetic Operators

CROSSOVER

OR

ANDNOT

OR

OR AND

Two individuals
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AND

d0 d1d1

NOT

NOT NOTd0

d1 d0 d1

NOT

)d1)d0(AND                  (OR  d1)(NOT     

)                                             ) d0) (NOT d1 (OR (OR )d1)(NOT d0)(NOT (AND
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Genetic Programming:
Genetic Operators

CROSSOVER

OR

ANDAND

OR

OR NOT

Two individuals
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AND

d0 d1

d1

NOT

d0

NOT

AND OR NOT

d0

d1

d1NOT

 d1)(NOT      )                  ) d0) (NOT d1 (OR  (OR

) d1) d0 (AND                                                   (OR ) d1) (NOT  d0) (NOT (AND

Comment: Generalized Crossovers

• “Intelligent” crossover: Selection of a 
crossover point that is less destructive to the 
offspring
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offspring

• Crossover operator that learns

• Heuristic guided crossover

• Context sensitive crossover 

Genetic Programming:
Genetic Operators

MUTATION: within one individual

OR

NOTAND

OR

NOTAND
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NOT

d0d1d0

AND

) d0) (NOT  d1)        (AND (OR  d0 

NOT

d0d1

d0

AND

NOT

  d0) (NOT )d0)(NOT  d1)                 (AND (OR

Genetic Programming:
Parameters

• Major parameters
– population size
– number of generations

• Minor parameters
b bilit f

The University of Iowa Intelligent Systems Laboratory

– probability of crossover
– selection of crossover points
– size of S-expressions
– probability of mutation

• Different ways of executing the runs
– initial population
– selection method
– elitist strategy
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Genetic Programming 

• Representation of the problem 

- coding of individuals in the population

• Fitness function
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• Fitness function 

- evaluation of individuals in their 
capability to solve the problem

Genetic Programming:  Fuzzy Rule-
Based System Design

• Coding 
- each individual represents a single model, an 

array of floating-point numbers
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# rules

# variables
Parameters

of linguistic labels
IF part

Parameters of linguistic labels
or  output functions

THEN part
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