

title

	Genetic Programming Overview					
	Representation	Tree structures				
	Recombination	Exchange of subtrees				
	Mutation	Random change in trees				
	Parent selection	Fitness proportional				
	Survivor selection	Generational replacement				
The University of Iowa Intelligent Systems Laboratory						

Genetic Operators						
• Mutation	Before	111	1111			
	After	111	0111			
	Mutated gene					
Mutation usually happens with probability p _m for each gene						
Crossover						
The University of Iowa			Intelligent	Systems Laboratory		

Genetic Programming: Fitness Function

- Fitness function is a metric
- Fitness function is problem specific
- Fitness function provides feedback to the algorithm which individuals should reproduce
- Fitness function measures how well a program has learned to predict outputs from inputs

The University of Iowa

Intelligent Systems Laboratory

Genetic Programming: Fitness

Types of fitness functions:

- raw fitness: not transformed
- standardized fitness: zero fitness value is always assigned to the fittest individual
- normalized fitness: all values are between 0 and 1

The University of Iowa

Intelligent Systems Laboratory

- Selection probability is assigned to an individual as a function of its rank
- Linear and exponential ranking functions are most often used

fm The University of Iowa

Intelligent Systems Laboratory

AND

NOT

d1

Genetic Programming: Fuzzy Rule-Based System Design

- Coding
 - each individual represents a single model, an array of floating-point numbers

References

- Cox, E. (2005), *Fuzzy Modeling and Genetic Algorithms* for Data Mining and Exploration, Morgan Kaufmann, New York, NY.
- Banzhaf, W., P. Nordin, R.E. Keller, and Frank D. Framcone (1998), *Genetic Programming*, Morgan Kaufmann, San Francisco, CA.
- Koza, J. R. *et al.* (2003), *Genetic Programming IV*, Kluwer, Norwell, MA.

The University of Iowa

Intelligent Systems Laboratory