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Abstract

Purpose: To minimize line shape distortions and spectral leakage artifacts in MR spectroscopic

imaging.

Methods: A spatially and spectrally regularized non-Cartesian MRSI algorithm that uses the line

shape distortion priors, estimated from water reference data, to deconvolve the spectra is intro-

duced. Sparse spectral regularization is used to minimize noise amplification associated with

deconvolution. A spiral MRSI sequence, that heavily oversamples the central k-space regions is

used to acquire the MRSI data. The spatial regularization term uses the spatial supports of brain

and extra-cranial fat regions to recover the metabolite spectra and nuisance signals at two dif-

ferent resolutions. Specifically, the nuisance signals are recovered at the maximum resolution to

minimize spectral leakage, while the point spread functions of metabolites are controlled to obtain

acceptable signal to noise ratio.

Results: The comparisons of the algorithm against Tikhonov regularized reconstructions demon-

strates considerably reduced line shape distortions and improved metabolite maps.

Conclusion: The proposed sparsity constrained spectral deconvolution scheme is effective in min-

imizing the line shape distortions. The dual resolution reconstruction scheme is capable of mini-

mizing spectral leakage artifacts.
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1 INTRODUCTION

The spatial resolution at which robust MR spectroscopic imaging (MRSI) data can be acquired in

a clinically feasible scan time is considerably lower than other MRI methods, inspite of fast scan

MRSI sequences (1–6). Specifically, the low concentration of the metabolites introduces a strict

tradeoff between achievable spatial resolution and signal to noise ratio (SNR). The large voxel

sizes often causes several artifacts including magnetic field inhomogeneity induced line shape

distortions and spectral leakage from extra-cranial lipids and unsuppressed water. Model based

algorithms were introduced to overcome these problems by extrapolating the k-space data using

high resolution brain segmentations (e.g. to gray matter, white matter, and cerebral spinal fluid

regions) (7–10). The clinical utility of these schemes are restricted due to risk of biased recon-

structions.

Variable density spiral MRSI schemes are reported to provide a better compromise between

SNR and k-space coverage than Cartesian trajectories because they oversample k-space cen-

ter (3, 11). Current non-Cartesian reconstruction methods independently recover each temporal

frame of the spatio-temporal data using 2-D image reconstruction algorithms (3–5, 11). While

this approach is computationally efficient, this strategy makes it difficult to exploit spatial-spectral

correlations in the data and to compensate for line shape distortions. In addition, current non-

Cartesian algorithms are designed to recover the entire image with the same resolution; the direct

use of these methods in MRSI often results in undesirable tradeoffs. Specifically, recovering the

dataset at a low resolution will result in spectral leakage from nuisance signals, while high resolu-

tion recovery will yield poor signal to noise ratio (SNR).

We propose a novel iterative non-Cartesian MRSI algorithm to jointly recover all the temporal

frames from the k-t space data. The joint approach enables the deconvolution of the spectra using

the line shape estimates from water reference data, thus compensating for field inhomogeneity

induced line broadening artifacts. This spectral deconvolution strategy is similar in concept to

the ones used in the spatial compartment modeling schemes (12, 13). We will not resort to

compartment models to minimize bias. Sparse spectral regularization is used to minimize the

noise amplification associated with un-regularized deconvolution.

A spiral sequence is used to acquired the MRSI data with a matrix size of 60 × 60 × 256.

The k-space center is heavily oversampled compared to outer k-space to minimize the SNR loss

associated with extended k-space coverage. A dual resolution strategy is used to minimize the
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tradeoff in recovering the signal challenged metabolites and SNR-rich nuisance signals at the

same spatial resolution. Specifically, the nuisance signals are recovered at the highest possible

spatial resolution to minimize the spectral leakage artifacts. By contrast, the point spread functions

of the metabolites are optimized to yield acceptable SNR.

The proposed algorithm is posed as a convex optimization problem, where the criterion is the

linear combination of a data consistency term, spatial smoothness penalty, and sparsity penalty.

The optimal regularization parameters are chosen using L-surface method (14). We rely on an

iterative reweighted algorithm to solve the criterion. The water reference priors that the algorithm

relies on are (i) extracranial lipid and brain boundaries, (ii) magnetic field inhomogeneity induced

line shape distortions, and (iii) coil sensitivity maps (see Fig. 1.a). We compare the proposed

model based reconstruction scheme with (a) Tikhonov regularized reconstruction of the spiral

data, and (b) spectra obtained using the product CSI scheme. The comparisons with CSI data

demonstrate the ability of the proposed scheme to provide comparable spectral quality, despite the

significantly reduced scan time and improved spatial resolution. The comparisons with Tikhonov

reconstructions demonstrates the utility of the deconvolution scheme in minimizing line shape

distortions and noise. This work further improves upon (15), where the recovery of MRSI data from

single channel EPSI acquisition was considered. The generalization of the algorithm in (15) to the

recovery of non-Cartesian multichannel data enables us to exploit the improved SNR efficiency

of variable density spiral sequences to improve the spatial resolution, thereby further reducing

spectral leakage and line shape distortions. In addition, we have further improved and simplified

the spectral model by exploiting the spatial-spectral properties of the data.

METHODS

We propose to minimize field inhomogeneity induced spectral distortions using a sparse spectral

deconvolution algorithm. A dual resolution reconstruction strategy, where nuisance signals are

recovered at the highest possible spatial resolution, while the spatial point spread functions of the

metabolites are optimized to yield acceptable SNR, is used. The proposed reconstruction algo-

rithm rely on the following spatial and spectral priors that are estimated from the water reference

data (see Fig. 1.a):

1. the line shape distortion function α[r],
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2. the coil sensitivity estimates si[r], and

3. spatial spectral supports of the metabolite Ωm and nuisance signals Ωn (see Fig. 1.b).

Acquisition Scheme

A spin echo spiral MRSI sequence was implemented on Siemens 3T Tim Trio scanner to acquire

MRSI data with a matrix size of 60x60x256. The trajectory was computed using the expressions in

(16) with twenty-four spatial interleaves. The details of the trajectory and its plots are provided in

Fig.1.(c)-(d). The chemical shift dimension is encoded by repeatedly playing out spiral gradients,

sandwiched between flyback gradients. The duration of each spiral echo (echospace) is 1.68 ms,

resulting in a spectral bandwidth of 595 Hz (4.8 ppm). A slew rate of 80 T/m/s and a maximum

gradient amplitude of 22.4 mT/m were assumed. With a field of view of 240mm × 240mm and

a matrix size of 60 × 60, the maximum achievable in-plane spatial resolution is 4 × 4 mm2. The

reconstruction algorithm recovers the nuisance signals at this resolution, while the nominal voxel

sizes of the metabolite region are approximately 6×6 mm2 in the five average case and around 8×8

mm2 in the three average case. The spectral resolution is 2.32 Hz. The heavy oversampling at the

center, offered by the spiral trajectory (≈8 fold), ensures that most of the scan time is devoted to

acquiring the lower k-space samples (3, 11), thus providing better SNR/scan time compared to a

Cartesian scheme with similar resolution. Six to eight fat saturation bands were used to suppress

extra-cranial lipids. The first repetition of the sequence is used to acquire water reference data.

System Model

The spatial spectral MRSI signal, denoted by ρ(x, f), is assumed to be zero outside the spatial-

spectral region corresponding to the head, indicated by Ω = Ωm
⋃

Ωn. This includes all pixels

within the head region and all chemical shift frequencies (see Fig. 1.b). The spectral support

of the metabolites are fixed as shown in Fig. 1; it includes the entire range of chemical shifts,

excluding a 100 Hz band around the water frequency. The spatial supports are estimated from

water and fat images, obtained by spectral integration of water reference data in a 1 ppm range.

These images are thresholded to obtain the head and fat regions. A two pixel border around the

head is added to the fat region to minimize the risk of fat leakage.
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The measured MRSI signal from the ith coil is modeled as

mi [k, t] =
∑

(r,f)∈Ω

si(r)ρ(r, f) exp−α[r]t︸ ︷︷ ︸
lineshape distortion

exp−j(2πkT r−ft)︸ ︷︷ ︸
k-space encoding

(1)

Here, r denotes the spatial location and f is the chemical shift frequency. si[r] is the sensitivity of

the ith coil. Here,

α[r] = j4ω0[r] +
1

T ∗2 [r]
, (2)

where 4ω0 = γ4B0 is the field inhomogeneity induced frequency shift, while the decay term
1
T ∗
2

captures the intra-voxel dephasing effects. The linear measurement model [1] is compactly

expressed as m = A(ρ), where A is termed as the system model.

Reconstruction Algorithm

The dual resolution spectral deconvolution algorithm to recover the MRSI data is formulated as

the optimization problem:

ρ∗[r, f ] = arg min
ρ
‖A(ρ)−m‖2︸ ︷︷ ︸

data consistency

+λ1

∑
(r,f)∈Ωm

|4ρ(r, f)|2

︸ ︷︷ ︸
spatial regularization

+ λ2

∑
(r,f)∈Ωm

|ρ(r, f)|

︸ ︷︷ ︸
spectral regularization

(3)

The first term in [3] is the data-consistency term, while the second term is the Tikhonov smooth-

ness penalty of ρ restricted to the brain region Ωm. Here, 4ρ are the spatial finite differences of

ρ, specified by:

4ρ =

 (∂xρ, ∂yρ) if r ∈ Ωm

0 else .
(4)

Here, ∂xρ = ρ(r + [1, 0], f) − ρ(r, f) and ∂yρ = ρ(r + [0, 1], f) − ρ(r, f). The restriction of the

spatial regularization to the metabolite region guarantees the narrowest possible point spread

function for the fat and water signals, thus minimizing the risk of spectral leakage. By contrast, the

point-spread functions in the brain region are optimized to ensure robust metabolite estimates.

Since the line-shape distortions are incorporated in the system model A, the optimization prob-

lem [3] involves the deconvolution of these distortions. The spectral regularization penalty is used

to minimize the noise amplification associated with deconvolution. This penalty is also restricted

to Ωm to minimize leakage from nuisance signals. We solve [3] using an iterative reweighting al-

gorithm, described in detail in (15). Our current MATLAB implementation of the algorithm takes

roughly fifteen minutes/slice on a quad core linux machine with NVDIA Tesla graphical processing
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unit. We use spatial regularization for all the reconstructions (including Tikhonov reconstructions),

while spectral regularization is only used with the proposed method. We determine the optimal

parameters using the L-surface method (14).

Experiments and comparisons

The proposed scheme is compared against (a) Tikhonov regularized reconstruction, which does

not use line shape priors and spectral regularization, and (b) spectra obtained using the product

CSI scheme on a spectroscopy phantom and human brain. Experimental data was acquired from

five normal human subjects on Siemens Trio 3T scanners at University of Rochester (UR) and

University of Iowa (UI). The results from two of these scans are shown in the paper. The studies

were approved by the research subjects review boards at both institutions and informed consents

were obtained. The 12 channel head array was used with a field of view of 240x240 mm2. The

first scan (TR=2s, TE=40ms, #averages=5, slice thickness=10mm,#slices=2) is used to compare

against Tikhonov reconstruction. The total scan time for this acquisition was 9.6 minutes (4.8

minutes/slice), including the acquisition of the water reference data. Similar parameters were

used in the comparison against CSI (except TR=1.5s); the total scan time for this acquisition was

7.2 minutes (3.6 minutes/slice).

Since the Tikhonov scheme does not use any spectral regularization, it is equivalent to recov-

ering each temporal frame independently; this approach is similar to most of the current MRSI

algorithms (3–6, 11, 17). The smoothness regularization parameter in Tikhonov scheme was set

using L-curve analysis as λ = 3 × 10−3. The Tikhonov reconstructed spectra were shifted to the

correct locations using the field inhomogeneity estimates obtained from water reference data. The

metabolite maps of N-acetyl aspartate (NAA), creatine (Cr), and choline (Cho) were recovered

from the estimated spectra by integrating five spectral frames (equivalent to 11.6 Hz).

The CSI data from the GE spectroscopy phantom was acquired with 32x32 matrix, TR=1.5

seconds, TE=40ms. The entire phantom was included in the region of interest and the acquisi-

tion time was approximately 20 minutes. The in-vivo CSI data was acquired with a 24x24 matrix,

TR=1.5 seconds, TE=40ms in approximately 10 minutes. Here, the ROI was restricted to a rectan-

gular region within the brain. These comparisons are challenging due to the discrepancy between

the two acquisition schemes. Since the CSI sequence relies on PRESS excitation, it suffers from

spatial mismatch due to chemical shift (18). In addition, the spatial resolution of both schemes

are drastically different. To match up the two datasets, we multiplied the recovered spiral MRSI by
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a mask corresponding to the VOI derived from CSI acquisitions, followed by spatial smoothing to

match the spatial resolution.

RESULTS

Selection of optimal regularization parameters

The L-surface analysis yielded the optimal regularization parameters λ1 = 2× 10−4; λ2 = 1× 10−5

for the dataset with five signal averages. Since it is difficult to display the entire L-surface, we show

the corresponding L-curves in Fig. 2.a. These curves are generated by varying one parameter,

while setting the other one to the optimal value obtained from the L-surface analysis. The Choline

maps and the spectra for different parameter choices are shown. We observe that the optimal λ1

provides a good compromise between over-smoothing and noise suppression, while the selection

of λ2 gives a good tradeoff between suppression of small spectral details and noise suppression.

We observe that the parameters does not change considerably from scan to scan. The second

dataset that was also acquired with five averages is reconstructed using the above parameters. We

repeated the L-surface analysis for three and one averages, respectively. The optimal parameters

in both of these cases were λ1 = 4 × 10−4; λ2 = 1 × 10−5. The higher spatial regularization

(λ1) compared to five average setting results in larger voxel dimensions (see below); more spatial

smoothing is required to obtain reliable data when the measurements are more noisy.

To further characterize the reconstructions, we consider the recovery of a numerical phantom

from its measurements in Fig. 2. (b)-(e). The numerical phantom have point spectra on two differ-

ent spectral frames (100 and 110), at locations specified by the dots in Fig. 2.(b) and Fig. 2.(e).

The 100th frame of the recovered data set with the proposed algorithm using the optimal parame-

ters and Tikhonov scheme are shown in (d) and (e). We observe that the point spectra in the lipid

region are recovered exactly since no regularization is applied in this region. In contrast, the point

objects are recovered as broad blobs in the metabolite regions due to spatial regularization. The

full width at half maximum of these blobs was observed to be approximately 1.5 pixels (6 mm). The

spectral deconvolution scheme is capable of minimizing the cross talk in the spectra (see residual

signal from 110th frame in Tikhonov scheme).
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Comparison with Tikhonov regularized reconstructions

The comparison of the proposed reconstruction scheme with Tikhonov regularized least square

algorithm on spiral MRSI data is shown in Fig.3. Since the proposed scheme uses the line shape

priors to deconvolve the spectra, it is capable of reducing field inhomogeneity induced intra-voxel

line broadening. The improvement in lineshapes also translates to improved metabolite maps

(see top rows of Fig.3). The improvement is more pronounced with metabolites with compara-

tively smaller peaks (Choline); the vulnerablity to noise and baseline fluctuations increases with

decreased peak heights. The proposed algorithm only relies on the masks of the brain regions

and line shapes from the water reference data. Hence, the image contrast in the reconstructions

are entirely from the measured MRSI data.

The robustness of the algorithms to noise is studied by recovering the MRSI data from three

and one averages, respectively. The results are shown in Fig. 4. The scan times per slice for

three and one average, along with the water reference dataset, are 3.2 minutes and 1.6 minutes,

respectively. It is seen that the spectra obtained using the proposed scheme with three averages

are more-or-less comparable to the case with five averages. Since λ1 is set to 4e−4, the full width

at half maximum of the spatial point spread functions in this case is approximately 2 pixels (8 mm).

Thus the price to pay for reduced scan time is decreased spatial resolution.

Comparison with CSI data

The comparison of the proposed scheme with CSI data are shown in Fig. 5. We used the same

shim setting for both the scans to make the two experiments comparable.The spectra obtained by

both schemes are comparable in most regions of the phantom; the CSI spectra are corrupted by

spectral leakage and lineshape distortions in the bottom regions, while the proposed scheme is

able to recover reliable spectra, thanks to higher k-space coverage, dual resolution reconstruction

strategy, and spectral deconvolution. In the in-vivo experiment, the optimization of the shim setting

to the CSI acquisition resulted in large field inhomogeneity in other brain regions (e.g. top of

the ROI in Fig. 5.d-f), resulting in line-shape distortions. We observe that the amplitudes do not

match up due to chemical shifts as well as differences in excitation profiles. However, significant

similarities between the spectral shapes obtained by both schemes can be observed.
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DISCUSSION

The proposed iterative reconstruction algorithm relies on line shape priors, spatial-spectral infor-

mation about the metabolite and extra-cranial fat regions, and spectral sparsity, to minimize line

shape distortions. Since the proposed scheme uses a dual resolution strategy, it can reduce spec-

tral leakage without compromising the SNR of the metabolites. While the proposed scheme uses

the same priors as the MIDAS framework (19), there are fundamental differences. MIDAS is de-

signed for Cartesian acquisitions; its extension of this framework to non-Cartesian acquisitions is

not straightforward. Additionally, the proposed iterative algorithm can account for the priors dur-

ing the reconstruction process rather than post-reconstruction, asx in (19). The comparisons of

the proposed scheme using in vivo data shows that the proposed reconstruction scheme can re-

duce field inhomogeneity induced spectral distortions, and spectral leakage, when compared with

Tikhonov reconstruction. The reduction of distortions due to extended k-space coverage more

than compensate for the associated SNR loss, which is consistent with the observation in (20).

In comparison to (20), we further minimize the SNR loss using variable density trajectories and

extended the k-space coverage.
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Figure Legends

Figure 1: Main aspects of the proposed scheme. (a) Illustration of the data-processing pipeline.

The reconstruction algorithm relies on (i) line-shapes, (ii) spatial-spectral supports, and (iii) coil

sensitivity functions, which are estimated from water reference data. (b) spatial spectral supports

of the metabolite (Ωm) and nuisance signals (Ωn), which are shown in gray and white colors,

respectively. Specifically, the slice of the support function corresponding to the NAA frequency is

shown on left, while the x-f plot along the red line shown in the right. The regularization terms are

only applied to Ωm, while the signal is restricted to Ω = Ωm
⋃

Ωn. The spiral trajectory is illustrated

in (c) and (d); we plot kx.F vs ky.F , where F is the field of view. The chemical shift dimension is

encoded by repeatedly playing out spiral gradients, sandwiched between flyback gradients. Four

of the 24 spatial interleaves are shown in different colors.

Figure 2: Choice of regularization parameters: We determine the optimal regularization param-

eters (λ1 = 2e−4;λ2 = 1e−5) using the L-surface approach (14). We plot the L-curve by setting

λ2 = 1e−5 in the top-left figure; we change λ1 and plot the data consistency error against the

smoothness penalty. The corresponding Choline images are also shown. Similarly, the L-curve

corresponding to λ1 = 2e−4, is shown in top right. Note that the data consistency error is only

1.2% of the variance of the measured data, which confirms that the regularization is moderate and

does not over smooth/bias the reconstructions. In the bottom row, we consider the recovery of a

numerical phantom from it sensitivity weighted spiral data, generated using the model in [1]. The

anatomy and line shape priors are assumed from slice 2 of the dataset in Fig. 4. The numerical

phantom has point spectra, in frames 100 and 110, shown on points indicated in (b) and (c) . The

signal intensity is zero at all other points. The signal was recovered using the proposed scheme

with optimal parameters and standard Tikhonov regularization (λ1 = 3e − 3;λ2 = 0). The peak

integral plots of the reconstructions are shown.

Figure 3: Comparison of the proposed reconstructions with Tikhonov regularized reconstructions.

The two columns corresponds to data from from first and second slices, respectively. The metabo-

lite maps are shown in the first row. The spectra at points indicated by the red dots on the water

image and spatial masks (in the fourth row) are shown in the second and third rows, respectively.

The line shapes estimated from the water reference data is shown in the bottom row.
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Figure 4: Robustness of the algorithm to measurement noise. We study the performance of the

algorithm when the number of averages are low. The optimal regularization parameters were

determined using the L surface method to be λ1 = 4e−4 and λ2 = 1e−5 in both cases. The

equivalent acquisition times are 3.2 minutes/slice and 1.6 minutes/slice, respectively, including the

time to acquire the water reference data.

Figure 5: Comparison of the proposed scheme with chemical shift imaging. The top row corre-

sponds to the data acquired from a GE spectroscopic phantom, while the bottom row is acquired

from a human volunteer. The PRESS box spanned the entire phantom, while it was restricted to a

rectangular window in the in-vivo experiment. We added a vitamin E pill at the bottom for localiza-

tion in the phantom experiment, which was outside of the PRESS box (see blob in the image). The

NAA maps estimated by the proposed scheme, after smoothing to match the resolution with CSI

data, is shown in (c)&(f), respectively. The spectra at the points indicated by the dots are shown

in (a)&(d) and (b)&(e), respectively. It is seen that the bottom row of the CSI data (32x32 matrix)

is corrupted by spectral leakage and field map distortions, even though the PRESS box excluded

the pill. The proposed scheme is able to recover reliable spectra in these regions, thanks to the

better k-space coverage, the dual resolution reconstruction strategy, and spectral deconvolution.

As explained in the text, the in-vivo comparisons are challenging due to a variety of technical rea-

sons. The SNR and line widths of the proposed spectra resemble the CSI spectra in the bottom

regions of the PRESS box; the top regions are corrupted by large field inhomogeneity variations

due to shim settings (see text).
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Figure 1: Main aspects of the proposed scheme. (a) Illustration of the data-processing pipeline.

The reconstruction algorithm relies on (i) line-shapes, (ii) spatial-spectral supports, and (iii) coil

sensitivity functions, which are estimated from water reference data. (b) spatial spectral supports

of the metabolite (Ωm) and nuisance signals (Ωn), which are shown in gray and white colors,

respectively. Specifically, the slice of the support function corresponding to the NAA frequency is

shown on left, while the x-f plot along the red line shown in the right. The regularization terms are

only applied to Ωm, while the signal is restricted to Ω = Ωm
⋃

Ωn. The spiral trajectory is illustrated

in (c) and (d); we plot kx.F vs ky.F , where F is the field of view. The chemical shift dimension is

encoded by repeatedly playing out spiral gradients, sandwiched between flyback gradients. Four

of the 24 spatial interleaves are shown in different colors.
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Figure 2: Choice of regularization parameters: We determine the optimal regularization param-

eters (λ1 = 2e−4;λ2 = 1e−5) using the L-surface approach (14). We plot the L-curve by setting

λ2 = 1e−5 in the top-left figure; we change λ1 and plot the data consistency error against the

smoothness penalty. The corresponding Choline images are also shown. Similarly, the L-curve

corresponding to λ1 = 2e−4, is shown in top right. Note that the data consistency error is only

1.2% of the variance of the measured data, which confirms that the regularization is moderate and

does not over smooth/bias the reconstructions. In the bottom row, we consider the recovery of a

numerical phantom from it sensitivity weighted spiral data, generated using the model in [1]. The

anatomy and line shape priors are assumed from slice 2 of the dataset in Fig. 4. The numerical

phantom has point spectra, in frames 100 and 110, shown on points indicated in (b) and (c) . The

signal intensity is zero at all other points. The signal was recovered using the proposed scheme

with optimal parameters and standard Tikhonov regularization (λ1 = 3e − 3;λ2 = 0). The peak

integral plots of the reconstructions are shown.



Figure 3: Comparison of the proposed reconstructions with Tikhonov regularized reconstructions.

The two columns corresponds to data from from first and second slices, respectively. The metabo-

lite maps are shown in the first row. The spectra at points indicated by the red dots on the water

image and spatial masks (in the fourth row) are shown in the second and third rows, respectively.

The line shapes estimated from the water reference data is shown in the bottom row.



Figure 4: Robustness of the algorithm to measurement noise. We study the performance of the

algorithm when the number of averages are low. The optimal regularization parameters were

determined using the L surface method to be λ1 = 4e−4 and λ2 = 1e−5 in both cases. The

equivalent acquisition times are 3.2 minutes/slice and 1.6 minutes/slice, respectively, including the

time to acquire the water reference data.



Figure 5: Comparison of the proposed scheme with chemical shift imaging. The top row corre-

sponds to the data acquired from a GE spectroscopic phantom, while the bottom row is acquired

from a human volunteer. The PRESS box spanned the entire phantom, while it was restricted to a

rectangular window in the in-vivo experiment. We added a vitamin E pill at the bottom for localiza-

tion in the phantom experiment, which was outside of the PRESS box (see blob in the image). The

NAA maps estimated by the proposed scheme, after smoothing to match the resolution with CSI

data, is shown in (c)&(f), respectively. The spectra at the points indicated by the dots are shown

in (a)&(d) and (b)&(e), respectively. It is seen that the bottom row of the CSI data (32x32 matrix)

is corrupted by spectral leakage and field map distortions, even though the PRESS box excluded

the pill. The proposed scheme is able to recover reliable spectra in these regions, thanks to the

better k-space coverage, the dual resolution reconstruction strategy, and spectral deconvolution.

As explained in the text, the in-vivo comparisons are challenging due to a variety of technical rea-

sons. The SNR and line widths of the proposed spectra resemble the CSI spectra in the bottom

regions of the PRESS box; the top regions are corrupted by large field inhomogeneity variations

due to shim settings (see text).


