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Abstract 

The paper presents a discrete method for the dynamic analysis of biomechanical systems. The 

method works directly on a point cloud representation of a material domain. An elastic body is 

represented by a set of interacting particles, and the dynamic behavior is described by 

Hamilton’s equations. A first order symplectic integrator, which also conserves the total linear 

and angular momentum, is utilized for numerical integration. The discrete formulation and 

integration method are presented in detail. Numerical examples are presented to show the 

numerical properties and demonstrate the method. 

 

Keywords: Point-cloud method; image-based analysis; Hamiltonian system; symplectic 

integration; moving least square approximation. 

 

1.  INTRODUCTION 

 

The finite element method (FEM) is undoubtedly the most commonly used method for solving 

partial differential equations arising in engineering analysis. Utilities of FEM in biomechanical 

systems and biomedical applications are common. A salient feature of FEM is that it divides a 

material domain into discrete elements (meshing). Nowadays, meshing a regular geometry is a 

routine task, and a variety of mesh generation programs are either freely or commercially 

available. However, generating a high quality, analysis-ready FEM mesh for biological structures 

still presents considerable challenges. Biological objects often have intricate geometric features 

that require local mesh refinements, which in turn require user’s interference. So far, mesh 
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generation for biological systems is semi-automatic at the best, and remains as the most of the 

time consuming step in the process of FEM analysis.   

 

Motivated by the need of alleviating the burden of mesh generation in biomechanical analysis, 

the authors’ group has been developing methods that interface directly with point cloud 

representations of continuum bodies [1, 2, 3, 4]. In contrast mesh generation, a point cloud can 

be readily extracted from medical images, and the process of which can be made fully or nearly 

fully automatic. In [1, 2], we proposed a discrete method of analysis that essentially treats a 

continuum material body as a set of interacting points. The underlying motivation is akin to that 

of meshfree methods [5, 6]; however, our method is a further simplification as it eliminates 

continuous approximation of the primary variables. The method utilizes a generalized finite 

difference to compute the pointwise gradient or strain, which is subsequently employed into a 

weak form to derive the discrete governing equations. As demonstrated in [1, 2], the method 

possesses the same accuracy and convergence rate of the low order finite elements, and is 

locking-free for nearly incompressible materials. However, implementations in [1, 2], and 

particularly in [4], are still mesh-based; a Voronoi tessellation or a simplex mesh is required to 

partition the domain and determine the so-called point volume which is needed in the discrete 

weak form. 

 

In this paper, we advance the discrete method in two directions. First, we introduce a moving 

least square (MLS) algorithm for computing the pointwise strain; with the technique, the need 

for tessellation is circumvented. Second, we introduce a Hamiltonian formulation for the 

dynamic analysis of the ensuing discrete system. The overall goal is to develop a fully automated 

procedure that pipelines from image segmentation to analysis with no or minimum user 

interference. Since the discrete model obtained from medical images are usually large, we intend 

to use only low order explicit methods for numerical integration. To this end, the dynamics of 

discrete system is formulated by first order differential equations (Hamiltonian system). The 

elastic potential is still computed from continuum constitutive equations, and thus enables a 

direct application of standard tissue constitutive equations. The kinetic energy comprises of 

pointwise contributions from the point velocity and mass (the mass of a small material volume 

represented by a point). For regular grids, as ones derived from medical images, the point 
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volume can be readily inferred from the pixel dimension. To achieve long-term stability in 

numerical integration, we use symplectic integrators, in particular a first order symplectic 

integrator. Interested readers are referred to [7,8] and references therein for in-depth coverage on 

symplectic flow in Hamiltonian systems and symplectic integration in engineering analysis.  

 

The paper starts with the introduction of a MLS approximation for computing the gradient of a 

function over an arbitrary grid. This gradient operator is utilized to compute the deformation 

gradient (or strain) of a displacement field. The Hamiltonian representation is introduced in 

Section 4. The symplectic integrator we utilize turns out to identically conserve the total linear 

momentum and angular momentum, and these conserving properties are also discussed. A 

method of point cloud segmentation is introduced in Section 5. Some quasi-static benchmark 

tests are conducted to demonstrate the properties of the method. An example of heartvalve 

dynamic analysis is contained in Section 6. 

 

2.  MLS APPROXIMATION OF GRADIENT  

 

Consider a material body represented by a set of discrete points. Let xI denote the coordinate of 

the point I, assume that each point is associated with a set of neighboring points and let NI be the 

set of neighbors of the point I. Introduce the notations IJIJ uuu   and IJIJ xxR  . We 

seek a vector gI that approximates the gradient of a continuous function u(x) at the point I. The 

vector is determined by a local least square problem that minimizes the function 

                      
 INJ

IJIJIIJ uwJ 2)( Rg                      (1) 

where IJw are weights, 0IJw . The extreme of J is given by 
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Let us assume that the point I has at least three neighbors not coplanar with xI and among these 

three, no two of them are co-linear with xI. A point satisfying this requirement is called a (well-

connected) regular point, otherwise a hanging point. In this work we assume that all points are 

regular. For a regular point, the matrix 



INJ

IJIJIJw RR  is invertible. It follows from (2) that   
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Introducing the vector interpolants 
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we can write the discrete gradient as 

            



INJ

IJIJII uu*u )()( h Rg                    (5) 

We can also write (5) in a homogenized form. To this end, let 

                



INJ

IJII
** RR                                                              (6) 

and expand the neighbor set NI to include the point I itself, namely }{INN II  . With these 

definitions we write 

                        



IJ

JIJI u*u
N

R)( h                                                          (7) 

2.1 Properties of the gradient operator 

1. The interpolants satisfy the relation 

                                                                



INJ

IJIJ
* IRR                                                       (8) 

Proof: 
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This property ensures that the discrete gradient is linearly exact, as shown below. 

 

2. Linear consistency. The gradient operator can exactly reproduce the homogeneous gradient of 

any linear function. 

Proof. Consider a linear function  zαyαxααu lin
3210   where 3210 α,α,α,α are arbitrary 

constants. For this function 

                               
lin

IJ321IJ

IJ3IJ2IJ1IJ
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
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                           (10) 
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where  zyx e,e,e are the basis vectors. Substituting this result into (5) yields 

                  linlin

Nj
IJ

*
IJ

Nj

lin
IJ

*
IJ

linh uuuu
II














  RRRR)(                   (11) 

Here the equality (8) is used in the last step.   

3. The discrete gradient is first order accurate in the sense that 

                                                  )Ο()()( III
h huu  x                                              (12) 

where hI is the characteristic length of the cell I, say ||)IJINJI (||maxh R . 

Proof. Let us assume that the function u(x, y, z) admits the Taylor series expansion at xI, so that 

  )Ο()()Ο()()()( 2
IIIJ

2
IIJz,IJy,IJx,IJ huhzzuyyuxxuuu  xR        (13) 

Substituting the Taylor expansion into Eq. (5), we find 

  )Ο()()]Ο()([)( II
INJ

2
IIIJIJI

h hu  hu*u 


 xxRR                   (14) 

The first derivative is exactly preserved due to the linear exactness. 

 

2.2 Least square gradient on point cloud 

The least square gradient (7) applies to an arbitrary point cloud as long as the neighbor set of 

each point can be properly defined. In an arbitrary point cloud, the identification of neighbors is 

a nontrivial task. However, for medical images there is a straightforward way to assign 

neighbors, as images have an underlying grid structure. For simplicity, let us assume that we 

work directly on the pixel resolution. Each point in this case is the geometric center of a pixel 

(see [4]). Assume further that the pixels that belong to the material body of interested have been 

segmented out. We can define the neighbors of a point as those of the adjacent pixels. Depending 

on how many adjacent pixels exist, there are four topological cases ranging from three to six 

neighbors. These cases are depicted in Fig. 1.  

 

Note that it is permissible to include some diagonal points in the neighbor set. In this way, a fully 

surrounded point can have a minimum of six to a maximum of twenty-six neighbors. We 

conducted numerical tests to evaluate the accuracy and convergence rate of different neighboring 

schemes (see Section 6.1). It was found that the definition above provided a reasonable trade-off 
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between accuracy and computation cost. For this reason the diagonal points are not included in 

the neighbor set in this study.  

 

It is a good place to remark on the weights IJw . It is possible to assign weights based on 

distance. In fact, one could use a distance criterion to identify the neighbor set. Here, as we have 

defined the neighbor set by other means, and within the set the distances do not vary greatly, the 

use of variable weights does not have significant advantage. For computational simplicity, a 

uniform weight 1IJw  is employed.   

 

For each of the four topological cases, the least square gradient works out to be: 

           zyx)( eee
d

uu

h

uu

h

uu
u 1-kj,i1,kj,i,kj,i,kj,1,ik1,-ji,kj,i,

I
h








                        (15a) 

          zyx)( eee
2d

uu

h

uu

h

uu
u 1-kj,i1,1kj,i,kj,i,kj,1,ik1,-ji,kj,i,

I
h








                       (15b) 

        zyx)( eee
2d

uu

2h

uu

h

uu
u 1-kj,i1,1kj,i,kj,1,-ikj,1,ik1,-ji,kj,i,

I
h








                       (15c) 

     zyx)( eee
2d

uu

2h

uu

2h

uu
u 1kj,i1,1kj,i,k1,ji,k1,ji,kj,1,ikj,1,i

I
h  







                     (15d) 

Here, h is the pixel width and d is the distance between slices. Notably, for some cases the 

gradient notably does not depend on the function value at xI,J,K.. 

 

In the kinetic formulation later, each point represents a small material volume. For each of the 

four cases, the “point volume” is depicted by the shaped parallelepiped in Fig.1. Notably, for a 

fully surrounded point (case (d)), the point volume equals to the pixel volume, V*. We write  

                                                          *VVI                                                                        (16) 

Other cases can be readily determined.  

 

2.3 Zero energy modes 

Weak form formulations based on discrete gradient are prone to having spurious singular or low 

energy modes arising from improper approximation of the gradient. The nature of this kind of 

instability has been clearly delineated in [3]. The authors introduced a stabilization scheme [3], 
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which utilizes the so-called sub-cell gradient and eliminates the low energy modes by penalizing 

the difference between the point strain and the sub-cell strains. The scheme is shown to be 

effective in stabilizing the discrete method.  

 

For image-based application considered here, a possible remedy is to use the sub-cell strain 

directly. A sub-cell is 1/8 of a regular cell containing 4-node, as the one in Fig. 1a. A regular 7-

node cell contains 8 sub-cells, each having a volume of 8/*V . In the stabilized formulation, the 

nodal gradient at xI,J,K will be computed using Eqn. (15a).  In this way, the nodal gradient will 

have different values depending in which sub-cell the point lies in, but the other aspects of the 

formulation remain intact. This strategy can be readily implemented. For this work, however, the 

simulations were conducted using the formulation (i.e. Eqn. (15)) without stabilization treatment.     

 

3.  APPROXIMATION OF DEFORMATION GRADIENT 

 

Consider the finite strain deformation of a material domain. To be consistent with the convention 

in finite elasticity, from this point on we use x to denote the current position of a material point, 

the dependent variable. The referential position (independent variable) is denoted by X. The 

gradient operators are defined with respect to X, e.g. IJIJ XXR  . In the discrete setting, the 

deformation map )(: Xx   is defined by pointwise values of displacement. The discrete 

deformation gradient at point I is given by 

                                    



INJ

IJIJI
hh

I
*Grad: RxxF )()(                                    (17a) 

Or, in the homogeneous form  

 



INJ

IJJ
h
I

*RxF                                                  (17b) 

Due the identity (8), the discrete gradient in Eq. (17) exactly preserves any homogeneous 

gradient, including as a special case the rigid body rotation. In fact, if IIJ
c

IJ NJ  RFxx  

for a constant but otherwise arbitrary cF , we have 

                           cc)( FRRFRRFF 









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
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 
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**
IJIJ

INJ

IJIJ
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This property is critical for the conserving properties of numerical integrator introduced later. In 

addition, the discrete gradient is properly invariant under superposed rigid body motions. 

Consider the motion  

                               )() ,()( ttχt aXQx                                              (19) 

which differs from the motion ),(χ tXx  by a rigid body motion. In the continuum case, the 

deformation gradient follows QFF  . This relation is preserved in the discrete setting, as  

                                        h
I

INJ

IJIJ
h
I

* QFRxxF 


  )()(                       (20) 

The implication of this property will be discussed below. 

 

We can proceed to define other finite strains measures on the basis of (17). For example, 

                                                                ,)()( h
I

Th
I

h
I FFC                                              (21) 

Geometric quantities like this will be used in constitutive equations. The spatial gradient of a 

Lagrangian function )(Xff   can be deduced with the aid of the chain rule, 

                                                    I
hTh

II
h fGradf )()()(  F                                          (22) 

It follows that 

                               ,)()( 



INJ

IJIJI
h *fff r  where  **

IJ
Th

IIJ RFr  )(                      (23) 

This relation is critical in bridging the Lagrangian and Euler descriptions. 

 

4. POINT CLOUD AS A HAMILTONIAN SYSTEM 

 

Describing a point cloud of an elastic body as a Hamiltonian system enables us to draw upon a 

rich set of analytical and numerical tools for analysis. The Hamilton’s approach, as is well 

known, solves a system of two first-order ODEs (Hamiltonian system) instead of the one second-

order ODE (Newtonian system). In this formulation, many properties of the system, particularly 

conservation laws, can be easily revealed. Analytical solutions for Hamilton's equations are 

exception rather than the rule. This means that there are very few integrable Hamiltonian 

systems, and generally one utilizes numerical methods to solve the equations. In this work, we 

focus on symplectic integrators. Symplectic integrators were historically developed and used in 
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molecular dynamics and celestial mechanics, but the application to mechanical systems is 

becoming popular recently [8]. The symplectic integrator preserves the sum of the projected 2-

areas in the phase space [8] and this feature is believed to help the long-term stability of the 

numerical integration. 

 

4.1 Hamiltonian 

Let the material domain be described by n points; each point represents a small material volume 

IV  with the understanding that the volumes are non-overlapping and VV
n

I
I 

1

where V is the 

volume of the continuum body. The position vectors in the current configuration are denoted by 

],,,[ n21 xxxx  . Let Im  be the mass of the point I, the linear momentum of this point is 

III m xp  . The total kinetic energy of the discrete system is 

                                         



n 2

21I I

I

m

p
T                                                             (24) 

The elastic potential of the system comprises of pointwise contributions from each material 

volume. Let w  denote the material’s strain energy density (per unit reference volume) which 

depends on the deformation gradient, and assume that each material volume undergoes a uniform 

deformation given by the pointwise deformation gradient, the pointwise strain energy is 

                                                 )( h
III wVw F                                                           (25) 

The sum of the pointwise energy sums gives the total elastic potential 

                                                         



n

I

h
III wVW

1

)(F                                                    (26) 

where h
iF  is the point-wise deformation gradient computed according to equation (17). Upon 

using the discrete gradient, the elastic potential reduces to a function of x. We write  

                                                  )(xWW                                                             (27) 

At the absence of external forces, the Hamiltonian is  

                                       )()()( xppx, WTH                                                    (28) 
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where ],,,[ n21 pppp  . If external forces exist and are conservative, the potential of which 

will be added to H.   

 

Let   in R2n be the phase space domain endowed with the canonical symplectic 

structure ii dΣdω px  . The dynamics of the system is governed by 

                                                       
x

px,
p

p

px,
x










)H(
         ,

)H(                                      (29) 

The derivative of H to x proceeds as follows. Introduce 
I

I

)H(

x

px,
f




 . By chain rule, 

I

h

hI

W

x

F

F
f








 . The functions that contain xI are Iw  and IJ  , NJw  . Recalling the expression 

(17b), we find  

                                   *w
V*w

V IIh
I

IJI
NJ

h
J

JI

I

R
F

R
F

f







 


                            (30) 

The derivative 
F
w

gives the first Poila-Kirchhoff stress τ . In term of the expanded point set IN , 

we write   

                              *V JI
NJ

JJI

I

Rτf 


                                                    (31) 

The computation can be implemented in exactly the same manner as the finite element method. 

At the “element” level, the “element nodal force” *τV IJII R  for each “node” in the “point element” 

is computed. Subsequently, the element forces are assembled over all “elements” to yield the 

global force vector.  

 

Linear elasticity 

For small strain case, the discrete strain at point I is 

                            )]()[(
2

1
)( IJIJ

INJ

IJIJI
h
s

h
I

**u uuRRuu 


ε                      (32) 
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where III  : X-x u   is the nodal displacement. The energy density is quadratic in h
Iε , written as 

h
I

h
IIw Dεε 

2

1
. The total elastic energy of the system is  

                          



n

1I

h
I

h
I

I

2

V
W εε D                                                   (33) 

Again the computation follows exactly that of the finite element method. Introduce the point-

wise Cauchy stress  

                                   h
II εσ D                                                             (34) 

A straight forward computation shows 

                           *V JI
NJ

JJI

I

Rf 


 σ                                                   (35) 

4.2 Integration Method 

A variety of numerical methods can be used to integrate the Hamiltonian system (Eqn. (29)). Our 

priority in selecting integration method is placed on algorithmic simplicity and capability to 

handle large system. Since a pixel resolution point cloud normally contains a large number of 

points, we prefer explicit methods in order to avoid the computation of stiffness matrix. Further, 

we would like to use only first order methods.  Based on the reported properties of various first 

order algorithms for Hamiltonian systems, we selected the following one-step explicit symplectic 

scheme [9]: 

           )1(

1-        ,  Δ


 



kx

pppMxx
W

tt (k)1)(k(k)(k)1)(k                         (36) 

where the subscript (k) indicates the time step. Here M is the diagonal mass matrix consisting of 

the pointwise mass. In computation the time integration amounts to conducting two explicit 

updates in one time step: 

1. Given )(kx  and )(kp , update the nodal position using Eqn. (36)1. 

2. Compute 
x

W
at )1(  kxx , and update the linear momentum using Eqn. (36)2. 

The time step has to meet the condition: 

                                              
c

h
t Δ                                                            (37) 
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Where, h  is the minimum of space resolution, c is a speed of sound for the considering material. 

For hyperelastic solids, the speed of sound is inferred from the ground state elasticity constants. 

4.3 Conservation properties of the integrator 

The integration algorithm (36), albeit very simple, has the following conservation properties: 

1. Conserves the total linear momentum at the absence of external forces; 

2. Conserves the total angular  momentum at the absence of external forces; 

3. Conserves the canonical 2-form: ii dΣdω px  .  

Proof: 

1. The total linear momentum P in the system is 
n

I
IpP . From (36), 

1)(k

n

I I
(k)1)(k

W
t



  



x

PP                                                   (38) 

Since the elastic potential initially depends on the deformation gradient F and the latter is 

algorithmically invariant under a rigid body translation axx  II  (Section 3), the total energy 

W, eventually a function of nodal positions, possesses the property )()( xax WW  . Here ax   

means applying the translation a to every members of x. Taking the derivative of )( ax W  with 

respect toa and evaluating the derivative at 0a  , we find  

                                      









n

0

)(

I I

WW

xa

ax
0

a

                                            (39) 

Upon recalling (38), Eqn (39) concludes (k)1)(k PP  . 

 

2. The total angular momentum is  
n

I
II pxL . From (38), after a straight forward 

computation, 

                                            
1)(kI I

W
t



 










 
n

I(k)1)(k )Δ
x

xLL                                (40) 

The energy density w  satisfies the standard invariance requirement )()( FQF ww   for any 

rotation tensor Q . This condition is preserved numerically since the discrete deformation 

gradient satisfies the invariance property (20). Together, they indicate that )()W( xQx W  for 
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any rotation tensor Q . Consider a one-parameter family of rotation tensor )(εQ with 

IQ )0( and let T

εd

d
Q

Q
Ω   be the (skew-symmetric) spin tensor. Taking the derivative of 

))(( xQ W  with respect to with respect to   and evaluating the derivative at 0ε ,  

                           


















 



n

I I
II

n

I I

WWW

x
xωΩx

x

xQ
)(

))((
0

0


                           (41) 

where ω  is the axial vector of Ω . Since the above equation holds for an arbitrary vector ω , we 

proved that 0
W






n

I I
I x

x , which in turn concludes (k)1)(k LL  . 

3. The fact that (36) is symplectic has been established in [9].  

This explicit symplectic integrator is known has a good long-time stability [9].   

 

4.4 Extension to non-Hamiltonian system 

 

Although the integration method is developed in the context of Hamiltonian systems, it is 

straightforward to extend the method to systems containing non-conservative forces, in particular 

damping. Consider the case of linear damping for which the pointwise damping force is give by 

IIIIII mcc pvf )/( . We can also write the damping force globally as 

pCMf 1
                                                                     

(42)  

At the presence of this force, Eqn (36)2 is modified as 

)1(
1

)1(

   



 




 k
k

(k)1)(k t
W

t pCM
x

pp                                           (43) 

Thus, 

  



















)1(

11-

k
(k)1)(k

W
tt

x
pCMIp                                       (44)   

The algorithm becomes semi-implicit. The update for the position vector x remains explicit but 

the solution for the momentum becomes implicit. Nevertheless, the computation remains simple 

as both C and M are diagonal. A numerical example of damped system is provided in Section 

6.2.  
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5. DERIVATION OF POINT CLOUD FOR IMAGES 

 

We employed a simple gray-scale based binary segmentation method to extract points that are 

believed to belong to the interested material domain. The images were processed using the 

automated binary segmenting/morphologic techniques integrated in MATLAB [10]. Using these 

functions the images were transformed to binary analogues, where “1” – means tissue cell, “0” – 

nothing (Fig. 2).  Each point represents the small volume of material in the corresponding pixel 

(or voxel in 3D). The set of segmented points forms a point cloud representation of the material 

domain of interest. An examples of segmentation is presented in Fig. 2. 

 

5.1 Point connectivity  

For a given point, the neighbors are the adjacent points shown in Fig. 1. These are the points that 

energetically interacting with the given point. A simple search algorithm is used to identify the 

neighbors. The cross-layer neighbors “i,j,k-1”, “i,j,k” and “i,j,k+1” are detected first followed by 

the same-layer neighbors. A total of four topological cases can be identified in this manner. The 

morphological operations of binary images “spur” and “fill” exclude other singular records. The 

physical spacing of between points are computed from the image resolution.  

 

5.2 Discrete surface 

Despite the discrete nature of the model, we still need to construct the boundary surface for the 

purpose of applying traction boundary tractions (pressures for example). The boundary surface is 

formulated using polygons connecting the boundary nodes on two neighboring layers, (k, k+1). 

A scheme was implemented to produce triangle, quadrilateral and mixed polygons (Fig. 3 c, d) 

depending on the relative position of the opposite nodes. Polygons are recorded as a counter-

clockwise sequence of vertexes. This method produces a pixel-resolution boundary surface. The 

surface is non-smooth and is not suited for contact analysis, but suffices for applying pressure 

load.   

 

6.  NUMERICAL RESULTS 

 

6.1 Evaluation of MLS approximation 
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6.1.1 Patch test. The least square formulation can identically pass the patch test on a uniform 

point cloud. To illustrate that, we considered a straight rectangle elastic beam of dimensions 

600×50×100 (Fig. 4a). The beam is linear elastic with 0.3 ,1000  E , which is subjected to a 

uniform axial traction of 1.03 s  on one end, and the other end is constrained against the axial 

displacement. Other constraints just enough to eliminates lateral rigid body motion and axial 

rotation are applied. Static equilibrium is governed by the equation 
xx 





 extW

 where ext is 

the potential of the external force. For linear elasticity the equation reduces to a linear system of 

equations of nodal displacements. The axial stress is found to be uniform and exactly equals to 

0.1. The stress contour is plotted in Fig. 4b.  

 

6.1.2 Accuracy and convergence. We compared the performance of the standard 7-node cell 

with two variations that include some diagonal neighbors. The physical problem, material 

parameters, and results are presented on Table 1. Although not plotted, all three schemes exhibit 

roughly the same rate of convergence. The 15-node cell appears to have the best accuracy; 

however, considering the computation cost (the 7-node cell and its topological variants are least 

expensive because closed-form formulae are available), the 7-node cell provides a reasonable 

trade-off between accuracy and efficiency. If the accuracy is of primary concern, the 15-node 

cell is recommended.   

6.2 Cantilever beam 

As a testing problem for dynamic analysis we consider the deformation of 3D rubber cantilever 

beam (Fig. 5) of sizes 600×50×100 mm made of neo-Hookean hyperelastic material for which 

the energy function is given in Eqn. (45).   

21)) et0.5K(log(d3)) 2log(det0.5G(  FFIW                     (45) 

Here I is a first invariant of deformation tensor FFC T . The material parameters are G=3.35E6 

Pa, K = 1.12E8 Pa.  The beam is loaded by impulse tip force F (Fig. 6c), and fixed on the other 

end, 

                0 zyx uuu      at   0x                                         (46) 

The beam point-cloud model contains 165 points. The integration time step Δt = 1e-5 s. The 

transient response of a tip node A simulated by FEM code (FEAP) and the explicit discrete point 



16 
 

cloud method (EDPCM) in time interval s plotted in Fig. 6. The results compare reasonably well 

with the finite element prediction. Figs. 7 and 8 show the time-history of the beam’s total energy 

and motion of node A in phase surface, correspondently. The observable jitter in the total energy 

is typical of symplectic integration, but the mean energy is notably stable over the integration 

period (2×106 steps). The phase-plane trajectory in Fig. 8 also indicates that the numerical 

response is asymptotically stable.   

 

Fig. 9 shows the response at the presence of viscous force with a pointwise damping coefficients 

of c = 0.02. The response was computed using formulae (36)1 and (44). The solution was 

compared with FEM results and a good agreement was found. 

  

6.3 An artificial aortic heart valve 

An image based point cloud model organization technology was used to simulate dynamics of 

artificial aortic heart valve (Fig.10). An isotropic nonlinear neo-Hookean hyperelastic model (45) 

had been used with material property: G=0.93E6 Pa, K=9.06E6 Pa. These properties are inferred 

from the material model used in [11]. The pressure difference of acting on both side of valve is 

applied on the inner surface of valve (Fig. 11). The simulation was performed over the time 

interval t= [0, 0.15] sec, corresponding to open phase of cardio circle.   The point-model consists 

of 161574 points. A small time step, Δt = 1e-7 sec, was used. The results of EDPCM, implicit 

FEM (NASTRAN) are compared (Fig. 12, 13). By a visual inspection, the displacement 

predictions compare very well. The stress contours have different color schemes, but a close look 

at the values indicates that the two sets of results are in reasonably good agreement. For example, 

in the fully open position the stress in the belly region in both models falls into the range of 

7.0E3 – 6.0E4 Pa. The patterns of distribution are also similar to each other.  

7. CONCLUDING REMARKS 

We introduced a point cloud method for image-based dynamic analysis in biological systems. 

The method takes as the geometric input a point cloud derived from medical images, and 

describes the cloud as a discrete Hamiltonian system. Information necessary to formulate the 

discrete system is readily available from the images. Continuum constitutive equations normally 

used in FEM analysis are directly applied. We suggested an explicit integration scheme using a 
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symplectic momentum conserving integrator. This integrator, being explicit, can readily handle 

large systems and appears to have a good long-term stability. 

 

The proposed method has the following attributes: 

 The entire process can be carried out with minimal user interference, or even fully 

automatically;  

 The formulation is very simple and can be easily implemented. It bypasses continuum 

approximation of the displacement field and thus greatly simplifies the computation.  

 Low computer memory requirement. Medium to relatively large problem (500K-1M 

degree-of-freedoms) can be readily solved in common desktop computers. 

A major limitation of the method is the CPU time. The discrete model generally contains a large 

number degree of freedoms (>106) and the time step is typically very small. This leads to long 

CPU times. Nevertheless, the computation structure is inherently parallel and a significant speed-

up in expected in a parallel platform.  
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Fig.1.  Schematics of neighbor sets and point volume for four topological cases 
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Fig. 2. Illustration of image segmentation 
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Fig. 3. Connectivity in point-cloud model for a – 2D, b -3D case. 
Surface polygons:   c - triangle, d- quadrilateral, e- mixed 
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Fig.4. Patch test 



23 
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.  3D finite element (a) and point cloud (b) models of a cantilever 
beam loaded by a tip force 
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Fig. 6.  The displacement of point A for time t=[0, 20]sec simulated by FEM and  EDPCM 
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Fig. 7.  Energy changes in time interval t=[0, 20] s; 
T – Kinetic energy, U- Potential energy, E- Total energy 
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Fig. 8.   The X-Z plane motion of point A, phase space trajectory 
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Fig.9.  The displacement of point A for time t=[0, 20]sec simulated by FEM and EDPCM for Non-
Hamiltonian system with damping  ratio c = 0.02  
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Fig. 10. Tri-leaflet polymeric aortic heart valve 
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Fig. 11. Pressure profile 
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Fig.12. Deformation of an aortic artificial heart valve.  Simulation performed by  a- EDPCM ,  b -  FEM 
(NASTRAN). The configuration  at  t=0.15 s  corresponds to the fully opened position. 
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Fig. 13. Von Mises stress. Upper row: EDPCM; Lower row: FEM (NASTRAN) 
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Table 1. Accuracy and convergence rate for various neighbor sets 

 

 

 

 

 

 

 

 

 

 

 

 

P=0.1 H,  

Lxhxb=600x50x100 mm 

E=3.35MPa 

Deflection UA  (mm) 

 

 

 

 

   

Number of nodes in directions 

of legth (L) x thickness (h) x 

width (b) 

21x3x5=315  1.29  2.49  4.74 

21x5x5=525  1.72  2.16  2.52 

21x7x5=735  1.84  2.09  2.24 

Analytical   UA=PL
3/3EI 2.06 


