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Abstract

Knowledge of elastic properties of cerebral aneurysm is crucial for under-

standing the biomechanical behavior of the lesion. However, characterizing

tissue properties using in vivo motion data presents a tremendous challenge.

Aside from the limitation of data accuracy, a pressing issue is that the in

vivo motion does not expose the stress-free geometry. This is compounded by

the nonlinearity, anisotropy, and heterogeneity of the tissue behavior. This

article introduces a method for identifying the heterogeneous properties of

aneurysm wall tissue under unknown stress-free configuration. In the proposed

approach, an accessible configuration is taken as the reference; the unknown

stress-free configuration is represented locally by a metric tensor describing

the pre-strain from the stress-free configuration to the reference configuration.

Material parameters are identified together with the metric tensor point-wisely.
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The paradigm is tested numerically using a forward-inverse analysis loop. An

image-derived sac is considered. The aneurysm tissue is modeled as an eight-

ply laminate whose constitutive behavior is described by an anisotropic hy-

perelastic strain-energy function containing four material parameters. The

parameters are assumed to vary continuously in two assigned patterns to rep-

resent two types of material heterogeneity. Nine configurations between the

diastolic and systolic pressures are generated by forward quasi-static finite ele-

ment analyses. These configurations are fed to the inverse analysis to delineate

the material parameters and the metric tensor. The recovered and the assigned

distributions are in good agreement. A forward verification is conducted by

comparing the displacement solutions obtained from the recovered and the as-

signed material parameters at a different pressure. The nodal displacements

are found in excellent agreement.

Keywords: Cerebral aneurysms; tissue property; pointwise identification

method; in vivo identification

1 Introduction

Cerebral aneurysms (CAs) are thin-walled dilatations of the intracranial arterial

wall that usually develop in or near the circle of Willis. They may remain stable

or may suddenly rupture. Rupture of CAs is the leading cause of subarachnoid

hemorrhage [1]. At present, rupture risk assessment is based primarily on size and

shape [2, 3, 4, 5, 6, 7, 8, 9], although mechanical factors such as stress and strain have

also been submitted as indicators [10, 11, 12, 13]. It has been suggested that changes

in the wall properties can contribute to the assessment of pathological development

[14, 15] and thus, the tissue property could be an important biomarker. Needless to
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say, knowledge of tissue properties is fundamental for biomechanical analysis.

Characterizing CA tissues in vivo faces some tremendous challenges. Due to the

requirement of non-invasiveness and the lack of control over the deformation and

load, the characterization must rely on the wall motion and blood pressure data ob-

tained from diagnosis. Unfortunately, it is generally agreed that current diagnostic

tools are unable to accurately resolve the wall motion. A recent study by Balocco

et al. concluded that the spatial resolution of medical images is insufficient to sup-

port in vivo tissue property identification using a reverse finite element optimization

method [16]. Even if imaging technology would eventually provide sufficiently accu-

rate motion data, as is expected to happen in future, there are other obstacles that

can hamper the analysis. First, the visible pulsation, which corresponds to the mo-

tion between the diastolic and the systolic pressures, does not expose the stress-free

geometry of the lesion. This is a fundamental issue facing the inverse characterization

of vascular tissues. Secondly, aneurysm tissues are generally nonlinear, anisotropic,

and heterogeneous. Describing the property distribution requires a large number of

parameters. The traditional inverse approach which simultaneously estimates all pa-

rameters can easily lead to lack of robustness related to the presence of local minima

and prohibitively expensive computations.

The pointwise identification method (PWIM) [17, 18] developed recently by the

present authors offers an alternative for characterizing heterogeneous thin materials.

The method exploits the property of static determinacy of curved (deep) membrane

structures to compute the wall stress without invoking the material properties in

question. Stress distributions are computed using the inverse elastostatic method [19,

20, 21, 22, 13], which directly takes a deformed state as input. The method utilizes an

auxiliary material model, but the resulting stress is expected to depend minimally on

the model. Compared to traditional approaches, a distinct feature of PWIM is that it
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circumvents global optimization problems. The optimization problem is formulated

at each material point using pointwise stress-strain data, and solved individually.

In this way, the optimization problem is not tied to the meshsize, but only the

constitutive law. The method was tested on a cerebral aneurysm model and was

found effective in characterizing complicated nonlinear anisotropic materials [23].

However, in [23] the stress-free configuration was assumed to be known, mimicking

a typical in vitro setting.

The purpose of this paper is to advance PWIM to consider unknown stress-free

configuration and test the feasibility of simultaneously identifying material parame-

ters and geometry. This study is an indispensable step towards in vivo application.

Although in vivo identification is currently impractical due to the limitation of image

resolution, preparatory studies like this help to resolve other technical issues and to

understand the potential of in vivo identification. The fact that the vascular stress-

free configuration is unknown in vivo presents no real challenge to stress analysis.

Stress analysis can be conducted using the inverse elastostatic method [19, 20] which

formulates the equilibrium problem directly on a deformed configuration. Recently,

some research groups, including the authors’, have applied the concept to vascular

problems [21, 13, 22, 24, 25, 26, 27]. For cerebral aneurysms and thin-walled saccular

structures alike, the inverse method has an additional advantage that it can sharply

capitalize on the static determinacy of the system and enables stress analysis with-

out using the realistic material constitutive equation [13, 25]. This is significant for

patient-specific studies because truly patient-specific material parameters are rarely

available. In contrast, the lack of knowledge of the stress-free configuration is a

serious issue for tissue characterization, as the strain is unknown without a refer-

ence. Characterizing tissue properties without knowing the stress-free configuration

requires a simultaneous estimation of elastic parameters and geometry. To the best
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knowledge of the authors, there are no successful case studies of this type reported

in the literature.

In [17], the authors proposed the idea of presenting unknown stress-free geometry

by local parameters and identifying them simultaneously with the material constants

within the pointwise framework. The unknown stress-free geometry is treated locally

as an initial strain, and represented by a metric tensor referred to as the reference

metric. The premise is that the reference metric, which plays a different role than

elasticity constants in a constitutive description, can be distinguished from elasticity

constants and identified simultaneously with the latter if the acquired stress-stain

data sufficiently expose the constitutive behavior. Theoretical underpinnings of the

metric-based constitutive formulation for pre-strained hyperelastic solids were dis-

cussed in [28]. For a membrane structure, the reference metric is a 2D tensor having

three components. Hence, within the framework of PWIM, considering the unknown

geometry amounts to adding three more parameters in the local optimization prob-

lem, which should not significantly increase the level of numerical difficulty. In

this paper, we evaluate this approach numerically using a forward-inverse loop on

an image-based aneurysm. To emulate in vivo conditions, only the motion data

between the diastolic and the systolic pressures are made available to the inverse

analysis. The aneurysm tissue is described by a nonlinear anisotropic constitutive

equation with spatially varying elastic properties and symmetry axes.

The remainder of this paper is organized as follows. Section 2 discusses the kine-

matic description used in this study, with a particular emphasis on the representation

of stress-free configuration. This representation is later utilized in the tissue consti-

tutive model to establish stress functions containing unknown initial strains. Section

3 documents the numerical study, providing a detailed description of the material

model, computation procedure, and algorithmic settings. Section 4 presents numer-
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ical results. Discussions on the methodology and results are contained in Section

5.

2 Membrane kinematics

We utilize the standard convected coordinate description to formulate the kinemat-

ics of a curved membrane. The membrane surface is parameterized by curvilinear

coordinates (ξ1, ξ2) for which a pair of coordinates P = (ξ1, ξ2) represents a material

point throughout the motion. Since the stress-free configuration is in general not

known, we take an accessible configuration C ∈ R
3 as the reference, and denote the

position of a material point by X = X(P ). The position of the same material point

in the current configuration is denoted by x = x(P ). The surface coordinates induce

a set of convected basis vectors gα = ∂x
∂ξα

(α = 1, 2) that propagate through all con-

figurations, starting from the reference one where the bases are denoted as Gα = ∂X
∂ξα

.

The surface deformation gradient, understood as a linear mapping between tangent

spaces in the reference and the current configurations at a material point, is

F = gα ⊗Gα. (1)

Here Gα are the reciprocal (contravariant) bases, Gα ·Gβ = δαβ , G
α ·A = 0 where

A is the surface normal at X(P ). The summation convention applies to repeated

indices. The Cauchy-Green deformation tensor follows as

C = FTF = gαβG
α ⊗Gβ , gαβ = gα · gβ. (2)

From a geometric perspective, C can be regarded as a metric tensor (the pullback

of the Euclidean metric) that describes the current geometry of the membrane. In

fact, the fundamental form

ds2 = dX ·CdX (3)
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gives the current length of the line element dX in C . Since the reference configuration

is pre-strained, the Euclidean metric does not describe the natural (i.e., stress-free)

geometry. We assume that there is a reference metric tensor G at every point in C

that defines the natural geometry. Having this metric tensor, the undistorted length

of a line element dX is given by

dS2
0 = dX ·GdX. (4)

By assumption, the tensor G is positive definite. It admits the following component

form in the surface coordinate system:

G = GαβG
α ⊗Gβ . (5)

Note that both C and G are tensors in the reference configuration. They define

bilinear forms that take two tangent vectors in C to generate a scalar. Although not

necessary for the ensuing development, the metric G is assumed to vary smoothly

over the domain.

The following thought-experiment may shed light on the nature of G. If an

infinitesimally small material element is cut out from the membrane and the external

load releases, the element will relax to a stress-free state which we refer to as a local

stress-free configuration. Let K−1 be the linear mapping that maps the infinitesimal

element from its reference state in C to its local stress-free configuration. K−1 is

determined if mappings on two linearly independent tangent vectors are known. If

(G1dξ
1,G2dξ

2) are images of line elements (G1dξ
1,G2dξ

2), respectively, then

K−1 = Gα ⊗Gα. (6)

The relaxed line element is K−1dX = G1dξ
1 + G2dξ

2. Its length is given by

dS2
0 =

(

K−1dX) · (K−1dX
)

= dX ·
(

K−TK−1
)

dX. (7)
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Motivated by this computation, we can make the connection that

G = K−TK−1, Gαβ = Gα · Gβ. (8)

Remarks

1. The concept of local stress-free configuration appears to be first proposed by

Noll [29], who noted that configurations should be understood in a local sense,

as the stress at a point depends only on the local motion in the vicinity of

the point. In this sense, it is meaningful to identify a zero-stress configuration

for each infinitesimal element individually. Here, K−1 defines a local stress-free

configuration. During a regular motion, the stress should depend on FK where

F is the deformation gradient relative to the chosen reference configuration. In

this way, the natural geometry enters the constitutive description through the

local mapping K. This framework has been adapted in various constitutive

theories, for example finite plasticity [30, 31], tissue growth [32, 33], residual

stress [34, 35], and initial strains [36, 37, 38]. St̊alhand et al. [36, 37, 38] used

this description to formulate aorta inverse problems. However, as a general

framework for parameter identification, this approach has a limitation related

to the rotational indeterminacy of the local stress-free configuration. If K−1

brings a material element to a local stress-free configuration, so does QK−1

for a rotation tensor Q because a superposed rotation does not change the

zero stress. If K−1 is to be determined inversely, the rotational indeterminacy

will render the problem ill-posed. In contrast, the rotational indeterminacy is

completely eliminated in the metric-based description.

2. If the membrane has a global stress-free configuration C0 in which positions of
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material points are given by X0(P ), G takes the form

Gαβ =
∂X0

∂ξα
· ∂X0

∂ξβ
. (9)

In this case, G is derived from a global motion and is said to be compatible.

In general, we do not require G to be compatible. An implication of this

assumption is that the structure may not have a global stress-free configuration.

This feature is in fact desirable for vascular analysis as vascular organs are in

general residually stressed.

Returning to kinematics, the change of geometry from the local stress-free config-

uration to the deformed state is completely determined by the pair of metric tensors

C and G. In particular, the stretch of a line element dX = NdS in C is given by

λ2 =
NαgαβN

β

N δGδγNγ
. (10)

Here Nα is the components of N in the convected basis system, N = NαGα. The

invariant I1, traditionally defined as tr (C) where C is the Cauchy-Green deformation

tensor relative to the stress-free configuration, becomes

I1 = tr (CG
−1). (11)

If we introduce the contravariant components G
αβ of G, defined by G

αβ
Gβγ = δαγ ,

then

I1 = gαβG
αβ . (12)

This invariant characterizes the average square stretch of all line elements emanating

from a point. The invariant I2, defined as the square area stretch for a material

element, takes the form

I2 = det(CG
−1) =

det[gαβ]

det[Gδγ ]
. (13)
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Any constitutive equations represented as functions of I1, I2, and line stretches can

be readily expressed as functions of C, G, and fiber direction N. More details of

this constitutive setting can be found in [28].

3 Numerical experiments

3.1 Material model

We utilized the aneurysmal tissue model proposed by Kroon and Holzapfel [39] to

describe the constitutive behavior. The model was employed by the same authors

recently in an inverse analysis of cerebral aneurysms [40]. Cerebral aneurysm wall

consists of primarily 7-8 layers of type I and III collagen fibers with varying orienta-

tions that form two-dimensional networks [41]. At the continuum level, the tissue is

described by a single strain energy function that takes into account collectively the

property and microstructure of its constituents. In particular to Kroon-Holzapfel

model, the energy function assumes the form

w =

8
∑

I=1

kI
8a

(

exp[a(λ2
I − 1)2]− 1

)

, (14)

where, λI is the fiber stretch of the I-th fiber, kI defines the fiber stiffness, and a is

a dimensionless parameter. The energy function does not contain the usual isotropic

term, reflecting the fact that aneurysmal tissues are depleted of elastin content. It is

important to note that the energy function (14) is defined with respect to the natural

state. The stretches λI are those measured from the local stress-free configuration.

The energy function (14) is a surface density (strain energy per unit undeformed

surface area); it is related to an underlying 3D energy function W via w = HW

where H is the undeformed wall thickness. Variables k1 through k8 are effective

stiffness parameters, which are the product of 3D elasticity constants with the wall
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thickness having the dimension of force per unit length. The stress function derived

from this energy function is introduced later in Section 3.5.

In the current study, the angular distribution of fibers in the stress-free state was

assumed to be uniform at every material point. Fiber angles φI with respect to the

principal fiber directions were assigned according to

φI =
I − 1

8
π, I = 1, 2, ..., 8. (15)

The principal fiber directions, i.e., η1 and η2 in Figure 1, are aligned with the first and

fifth fibers, respectively. These two directions define local orthotropic material axes.

In the convected basis system {G1,G2}, the material axes are uniquely parameterized

by the angle θ that η1 makes relative to G1, see Figure 1.

It was further assumed that the fiber stiffness parameters kI are symmetrically

distributed with respect to the material axes. If we let k1 be the fiber stiffness in the

first principal direction and k5 be the second (transverse) stiffness, the others take

the value

kI =
5− I

4
k1 +

I − 1

4
k5, I = 2, 3, 4;

kI =
9− I

4
k5 +

I − 5

4
k1, I = 6, 7, 8.

(16)

At the ground state (i.e., no distortion), the stiffness parameters in the material axes

work out to be

E1 := D1111 =

8
∑

I=1

kI cos
4 φI , E2 := D2222 =

8
∑

I=1

kI sin
4 φI , (17)

where φI = {0, π
8
, 2π

8
, · · · , 7π

8
}. Equations (17) and (16) give a linear relation between

(E1, E2) and (k1, k5):






E1

E2






=







1
4
(8 +

√
2) 1

4
(4−

√
2)

1
4
(4−

√
2) 1

4
(8 +

√
2)













k1

k5






. (18)

Hence, once E1 and E2 are given, the stiffness parameter for each fiber family is

completely determined.
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3.2 Generation of deformation data

Finite element simulations were conducted on an image based aneurysm sac to gen-

erate a series of deformed configurations. The wall tissue was modeled by Kroon-

Holzapfel model introduced above. We studied two cases of property distribution.

In Case I, the stiffness parameters were assumed to decrease linearly with respect to

the height from the neck, viz.

Ei = Efundus
i +

Eneck
i − Efundus

i

Zneck − Zfundus
(Z − Zfundus), i = 1, 2. (19)

Here Z is the “Z” coordinate of any point on the sac, Zfundus and Zneck are the “Z”

coordinates at the fundus and neck, respectively. Similarly, Efundus
i and Eneck

i are

respectively the elasticity parameters at the fundus and neck; they were set to

Efundus
1 = 0.45 N/mm, Eneck

1 = 1.15 N/mm,

Efundus
2 = 0.35 N/mm, Eneck

2 = 0.85 N/mm.

(20)

In Case II, the stiffness parameters were uniform in the dome region, Efundus
1 =

0.8 N/mm and Efundus
2 = 0.6 N/mm, with a smooth linear transition to those at

the neck (Eneck
1 = 1.16 N/mm and Eneck

2 = 0.88 N/mm) according to Equation

(19). This distribution was motivated by inflammatory conditions. Before rupture,

inflammatory cell infiltration and smooth muscle cell proliferation increase in CA

walls [42]. Proteases derived from inflammatory cells associated with atherosclerosis

may compromise the structural integrity of the aneurysm and degrade the tissue

stiffness [43]. The parameter a=20 was assumed to be uniformly distributed over

the entire aneurysm sac. The reference distributions of the elastic parameters, E1

and E2, for Case I and Case II are shown in Figure 2.

In both cases, the principal symmetry axis η1 was assumed to be parallel to the

basal (x-y) plane and tangent to the aneurysm surface at every point. The other
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axis, η2, was point-wisely perpendicular to the first one (see Figure 3). The angle θ

therefore varied from point to point.

For each case, a total of 9 loaded configurations were obtained in the pressure

range of 80 to 160 mmHg at an interval of 10 mmHg. The imaged geometry was

assumed to be the stress-free configuration; this configuration was later blinded to

the stress analysis and inverse identification. The simulation was conducted using

the forward nonlinear membrane finite element in FEAP, a nonlinear finite element

program [44]. The finite element mesh consisted of 885 quadrilateral membrane

elements and 916 nodes. Clamped boundary condition was applied at the neck of

the aneurysm. This is not the realistic boundary condition in vivo, but was used for

demonstrative purpose.

3.3 Strain acquisition

To mimic the in vivo setting we assumed that the stress-free configuration was un-

available. The diastolic configuration C1 (at 80 mmHg pressure) was chosen as the

reference, and deformation tensors relative to this configuration were computed. The

finite element parametric coordinates are used as the convected surface coordinates.

From the finite element geometry, the convected basis vectors in each deformed con-

figurations are determined according to

(i)gα =
Nel
∑

I=1

∂ΨI

∂ξα
(i)xI , 1 ≤ i ≤ N, (21)

with the understanding that Gα = (1)gα. Here N is the number of loaded con-

figuration, ΨI are element interpolation functions, and Nel is the total number of

nodes per element. The left superscript indicates the load state. Components of the

Cauchy-Green deformation tensor are computed by

(i)gαβ =

Nel
∑

I=1

Nel
∑

I=J

∂ΨI

∂ξα
∂ΨJ

∂ξβ
(i)xI · (i)xJ , (22)
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and thus

(i)C = (i)gαβG
α ⊗Gβ, 1 < i ≤ N. (23)

Tensors (i)C describe strains relative to C1. At every point in C1, there is a reference

tensor G representing the pre-strain from the stress-free configuration to C1. Strain

invariants should be computed according to (10), (12), and (13).

3.4 Inverse stress analysis

The stress distribution in each deformed state was computed individually using the

inverse method described in [13]. Note that this analysis needs neither the stress-free

configuration nor the material model in question. An auxiliary neo-Hookean model

is employed to compute the stress, the strain energy function of which takes the form

w =
ν1
2
(I1 − 2 log J − 2) +

ν2
4
(I1 − 2)2 . (24)

Similar to the elastic parameters Ei, the parameters ν1 and ν2 here are also effective

elastic parameters which are multiplications of 3D elasticity constants with the wall

thickness. Parametric values ν1 = ν2 = 5.0 N/mm were used.

In the inverse stress analysis, clamped boundary conditions were applied on the

sac boundary in each deformed state. This constraint again is not realistic, but

was employed to facilitate the stress computation because it is difficult to define

the realistic boundary condition. Due to the presence of displacement constraints,

the stress solution is expected to be influenced by the auxiliary material model.

But owing to the static determinacy of the system, the influence is expected to

occur only in a boundary layer, outside which the solution should approach the

static asymptote. In this study, the boundary layer was identified by examining the

sensitivity of the inverse stress solution to the material parameters of the auxiliary

model. Stress distributions were computed with ν1 and ν2 increased by a hundred
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times, and compared with the original ones.

3.5 Stress function

Let σ be the Cauchy stress in the membrane. As a thin membrane is in general in the

plane stress condition, the Cauchy stress has only in-plane components and hence

we can write it in the convected system as σ = σαβgα ⊗ gβ . Assuming the Cauchy

stress is uniform over the thickness, a straightforward computation shows that the

stress power in an infinitesimal element is 1
2
σαβ ġαβ hda [45, 46]; here h is the current

thickness and da is the surface area of the infinitesimal element. By definition of

elasticity, we have 1
2
σαβ ġαβ hda = ẇ dA where dA is the undistorted surface area.

Introduce the tension tensor t = hσ, noticing da/dA = J =
√
I2 and ẇ = ∂w

∂gαβ
· ġαβ ,

the equality above implies Jtαβ = 2 ∂w
∂gαβ

, and hence

tαβ =
2

J

∂w

∂gαβ
. (25)

The tension t is the stress resultant over the current thickness; for convenience it is

still referred to as the stress hereafter.

Recall that we have chosen the diastolic configuration as the reference. Let NI

be the tangent vector of the I-th fiber at a point in this configuration. Relative to

the convected basis we write

NI = Nα
I Gα. (26)

Under a regular deformation, the tangent vector transforms to nI = FNI in the

current configuration. Note that neither NI nor nI is necessarily a unit vector.

Noticing FGα = gα, we find

nI = Nα
I gα. (27)

That is, the components of the vector remain invariant in the convected system.

Therefore, if the components are specified in one configuration, they are known in all
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configurations. In particular, in the (local) natural configuration the fiber tangent

must have the form

N I = Nα
I Gα. (28)

In terms of reference quantities, the fiber stretch is given by

λ2
I =

Nα
I gαβN

β
I

N δ
IGδγN

γ
I

. (29)

Invoking the stress formula (25), specializing it to the energy function (14), noticing

∂λ2

I

∂gαβ
= (N δ

IGδγN
γ
I )

−1Nα
I N

β
I and J =

√

det[gαβ ]

det[Gδγ ]
, we find

tαβ =
8

∑

I=1

kI
2

√

det[Gαβ]

det[gδγ ]
exp

[

a(λ2
I − 1)2

]

(λ2
I − 1)

(

N δ
IGδγN

γ
I

)−1
Nα

I N
β
I . (30)

Since the stretch (29) is invariant under the scaling transformation N 7→ aN for

any nonzero a, the fiber tangent can be characterized by one parameter. We can

introduce

cos θI =
N1

I
√

(N1
I )

2 + (N2
I )

2
. (31)

Note that if in a configuration g1 and g2 are orthonormal at a point, then θ is indeed

the angle that the fiber I makes with respect to g1 at that point. In this work, the

basis vectors {G1, G2} in the imaged configuration are constructed to be orthonormal

everywhere. Thus, θI are the fiber angles in this configuration. If we set θ1 = θ,

angles of other fibers follow as θI = θ + I−1
8
π, I = 1, 2, · · · , 8, see Figure 1. In this

way, the fiber angles are completely parameterized by the parameter θ. Altogether,

the Cauchy stress is a function of gαβ, Gαβ , the material parameters (E1, E2, a), and

the angle θ.

3.6 Parameter identification

At this point we obtained, at each Gauss point, the Cauchy stress tαβ and the relative

deformation tensor gαβ for each of the pressurized states. The next step was to fit
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the pointwise data to the stress function (30). We denote the stress in the i-th

configuration by

(i)tαβ = tαβ(E1, E2, a, θ,
(i)gδγ ,Gδγ). (32)

Let (i)t̂αβ be the “experimental” stress computed from the inverse analysis. The

objective function is defined pointwisely, as

Φ =

N
∑

i=1

(

(i)tαβ − (i)t̂αβ
)

(i)gαγ
(i)gβδ

(

(i)tδγ − (i)t̂
δγ
)

, (33)

where N is the total number of loaded configurations. In tensor notation, Φ =

∑N

i=1 ‖ (i)t− (i)t̂‖2.

The regression problem is formulated as

minimize Φ (E1, E2, a, θ,G11,G22,G12)

subject to G11 > 0, G22 > 0, G11G22 −G
2
12 > 0,

l ≤ [E1, E2, a, θ,G11,G22,G12] ≤ u,

E1 ≥ E2.

(34)

Here, l and u are the lower and upper bounds of the vector of regression variables

[E1, E2, a, θ,G11,G22,G12]. For both cases, l = [0.0, 0.0, 15.0,−π, 0.9, 0.9,−0.05] and

u = [1.5, 1.4, 25.0, π, 1.05, 1.05, 0.05]. The constraint, E1 ≥ E2, ensures that the angle

between the first principal material axis and the local base vector G1 be identified,

assuming the fibers in the first principal material axis is stiffer than those in the

second one. The nonlinear regression was conducted by a gradient-based, sequential

quadratic programming (SQP) algorithm, SNOPT [47].
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4 Results

4.1 In vivo relative deformation

Figure 4 shows the distribution of the maximum relative principal stretch ratio, λ1,

from the diastolic (80 mmHg) to the systolic (160 mmHg) state for the two cases.

For both cases, λ1 ranged from 1.006 to 1.024. Case II, however, underwent smaller

deformation in the dome region than Case I due to relatively stiffer material property.

In general, in the regions where the surface curvature was relatively smaller, or in

other words flatter, the aneurysm wall was more prone to deformation; therefore

higher stretch ratio, λ1 ≈ 1.024, was reached for Case I, and λ1 ≈ 1.023 took

place for Case II. These regions are represented by the red zones in the contour

plots. On the contrary, the regions with initial larger surface curvature underwent

less deformation. This phenomenon was especially prominent near the sac tip; e.g.,

λ1 ≤ 1.018 occurs for Case I whereas λ1 ≤ 1.012 took place for Case II. Again, Case

II had smaller deformation than Case I. In the most part of the aneurysm sack, i.e.,

the belly region, medium deformation took place, with λ1 ≈ 1.02.

4.2 Stress distribution, static determinacy, and boundary

layer

We demonstrate the static determinacy of membrane wall stress using Case I. Case

II had similar results, so they are not presented here. In a numerical study, the

static determinacy of this system can be examined by comparing the stress solutions

from the forward analysis (by the reference Kroon-Holzapfel model) and those from

the inverse analysis (by the auxiliary neo-Hookean model). In real applications, the

“exact stress” is not available and for this reason, we assessed the static determinacy

indirectly by examining the stress sensitivity to the auxiliary model. The material
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parameters ν1 and ν2 were both increased to a hundred times, i.e., ν1 = ν2 = 500

N/mm. The absolute percentage differences of the first principal stress relative to

that of the baseline model in three loaded configurations (p=80, 120, and 160 mmHg,

respectively) are shown in Figure 5. Overall, the difference was very small, less than

0.05% in most part of the sac. Near the boundary, however, the difference was

elevated, especially at higher pressure (see Figure 5(c)). There was approximately

five-fold reduction in the stress difference over the four layers of elements near the

boundary at 160 mmHg. Based on this observation, we submitted that the stress

solution four layers of element above the clamped boundary is a good approximation

of the “static stress”. The four layers of elements were considered as the boundary

layer where the inverse stress solution was deemed inaccurate. This region was

excluded in parameter identification.

For the interest of demonstrating the static determinacy, the inverse stress solu-

tion was also compared with the forward solution in the same three loaded config-

urations. Figure 6 shows the deformed geometries and the distributions of the first

Cauchy principal stress computed from forward FE analyses (first row) and finite el-

ement inverse elastostatics method (second row) by the baseline neo-Hookean model.

Clearly, the inverse method re-established the wall stress distribution with a good

accuracy, although a totally different material model was utilized in the computation.

The third row shows the absolute percentage difference of the first principal stress

between the inverse and forward solutions. As can be seen from the contour plots,

the differences were less than 1% in the most part of the sac. However, within four

layers of elements near the clamped boundary, the difference was relatively more sub-

stantial; it ranged from 1% to 5%. Over four layers of elements above the boundary,

the difference decreased to under 1%, indicating that the inverse solution approached

the static asymptote.
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4.3 Parameter identification

Parameter identification was conducted at all Gauss points in the identification zone

(the cap region excluding the boundary layer). After the parameters were identified

at all Gauss points, they were projected to the nodes by a least-square algorithm.

Figure 7 (a), (b), and (c) show respectively the distribution of the identified elas-

tic parameters E1, E2, and a for Case I. Qualitatively judged from the distribution

contour, the linear dependence of the identified E1 and E2 over the height was re-

covered. The homogeneous distribution of a was also identified successfully in the

most part of the identification zone. The deviations from the reference value were

computed at each node. Take Ei for example, the deviation was quantified by the

relative error Error(Ei) =
∣

∣

∣

(

Ei − Ẽi

)

/Ẽi

∣

∣

∣
× 100%, (i = 1, 2), where Ẽi are the

reference parameters. Figure 7 (d), (e), and (f) show the distribution of the relative

errors of E1, E2, and a, respectively, in the identification zone. The errors were less

than 2%, 3% and 4% for E1, E2 and a, respectively, in the most part of the cap.

Relatively higher identification error in a (≥ 10%) were found to occur at the regions

where the in vivo deformation was relatively smaller, e.g., near the sac tip. The

scatter dot plots of the distribution of identification error, Figure 7 (g), (h), and (i),

clearly show that very small error occurred in a large portion of the identification

region, and relatively larger error occurred only at some scattered points. The mean,

standard deviation, minimum and maximum of the identification error over the iden-

tification zone are listed in Table 1. The mean error for the three parameters was

1.47%, 1.97%, and 2.73%, respectively.

Figure 8 demonstrates the comparison between the identified (red solid line) and

true (blue dashed line) first principal direction, which corresponds to the direction of

the first collagen fiber, at Gauss points. Overall, the fiber directions were accurately

identified in most part of the sac, except for some scattered points.
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Table 1: Mean, standard deviation, minimum and maximum of the identification

error of the elastic parameters, the stress-free metric tensor components and norm

in the cap region of the aneurysm sac for Case I.

Error(E1) Error(E2) Error(a) Error(G11) Error(G22) Error(G)

Mean (%) 1.47 1.97 2.73 0.09 0.08 0.14

SD (%) 1.34 1.32 3.33 0.09 0.06 0.07

Min (%) 8.45E-4 7.22E-3 7.08E-3 5.93E-4 8.16E-4 0.02

Max (%) 14.94 7.17 21.67 1.14 0.58 0.87

Similar results were observed for Case II. The identified distribution, distribution

of identification error, and scatter dot plot of identification error are shown in Figure

9. The mean, standard deviation, minimum and maximum of the identification error

over the identification zone are listed in Table 2. The mean error for the three

parameters was 1.18%, 1.79%, and 3.88%, respectively. It is worth noting that the

identification of parameter a for Case II was less accurate near the sac tip due to

relatively smaller deformation.

Since the stress-free configuration was specified in the forward analysis, the ana-

lytical values of G can be computed at every Gauss point using Equation (9). The

last three columns of Table 1 list the identification errors inG. The mean errors in the

diagonal components were below 0.1% percent. The shear component G12 was close

to zero throughout the domain and therefore could have large but inconsequential er-

ror. For this reason the percentage error norm Error(G) = ‖G−G
Identified‖
‖G‖

×100% was

computed instead. The percentage error norm remained small (< 0.87%) throughout

the identification zone, indicating an overall good fit. Similar results for Case II are

listed in the last three columns of Table 2.
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Table 2: Mean, standard deviation, minimum and maximum of the identification

error of the elastic parameters, the stress-free metric tensor components and norm

in the cap region of the aneurysm sac for Case II.

Error(E1) Error(E2) Error(a) Error(G11) Error(G22) Error(G)

Mean (%) 1.18 1.79 3.88 0.07 0.05 0.09

SD (%) 1.02 1.29 5.06 0.06 0.04 0.04

Min (%) 1.37E-3 1.09E-3 0.02 1.81E-4 6.59E-5 0.01

Max (%) 6.29 9.61 25.0 0.34 0.21 0.29

4.4 Predictability of the identified elastic parameters

We evaluated the predictability of the identified elastic parameters by conducting two

forward finite element simulations at an elevated pressure (p = 170 mmHg) which

was not used in the regression. We only presented the result for Case I since Case

II had similar result. As mentioned above, the boundary layer was excluded in the

parameter identification process. To facilitate the analysis, the material parameters

in the boundary layer were assigned to the reference distribution in both analyses.

Figure 10(a) shows the comparison between the predicted deformed configuration

from the reference material (solid surface) and that from the identified one (mesh).

Evidently, the two deformed configurations matched extremely well. Figure 10(b)

shows the node-wise percentage difference, defined as ‖d− d̃‖/‖d̃‖× 100%, where d̃

and d stand for, respectively, the nodal displacements computed from the reference

and the identified materials. The deviation was less than 0.2% in the most part of

the aneurysm sac. There were several nodes near the fundus where relatively larger

deviation occurred, but the value was still low. The maximum difference was around

1.0%.
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5 Discussion

We utilized simulated quasi-static deformations to inversely identify tissue elasticity

parameters and the stress-free configuration of a cerebral aneurysm. The numerical

model took into account some essential features of CAs, including fully nonlinear

anisotropic constitutive behavior, convex but otherwise arbitrary geometry, and spa-

tially varying material properties. The inverse analysis employed only deformations

between the diastolic and systolic pressures without the access to the stress-free

configuration. The visible strain was below 3%, consistent with the physiological

strain range reported in the literature. The study indicated that, even under these

conditions, the heterogeneous elasticity parameters and the reference metric can be

recovered with reasonable accuracy. The mean errors of stiffness parameters E1 and

E2 were less than 2% for the two cases of heterogeneity. The exponent a, which is an

indicator of nonlinearity, was less accurate, but the mean error was still reasonably

small (2.73% for Case I and 3.88% for Case II). The mean errors of the diagonal

elements as well as the percentage error norm of G were on the order of 0.1%.

Identifying the stress-free geometry is a challenging task in inverse analysis. There

seems to have two possible ways; one is to consider the geometry globally, the other

locally. The present work follows the second route; the stress-free geometry is param-

eterized by a reference metric that represents the pre-strain from the local stress-free

configuration to the chosen reference configuration. This scheme fits well the point-

wise identification framework, as it entails only three additional parameters in the

local optimization problem. However, it remains to assess whether the identified

reference metric can represent the stress-free configuration in a meaningful way. In

this work, we evaluated the metric identification by comparing with their theoretical

values point-wisely. In real application, there is no analytical metric to compare with

and hence the verification must be conducted alternatively. A possible way is to con-
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struct a global stress-free configuration from the identified metric field and verify the

geometric result (together with material parameters) through forward analyses. If

the identified metric corresponds to a tensor field G derived from a global stress-free

configuration for which the material point position is X0(P ), then, in theory

Gαβ :=
∂X0

∂ξα
· ∂X0

∂ξβ
= G

Identified
αβ . (35)

The problem of recovering X0 can be formulated using the least square method

minimizing the functional J =
∫

B
‖G−G

Identified‖2 dV , which gives the weak form

∫

B

δG ·
[

G−G
Identified

]

dV = 0, (36)

subject to the boundary condition that X0 = 0 along the clamped edge. The compu-

tation can be carried out in the finite element framework by introducing a surrogate

elasticity model with the stress function S = µ(G−G
identified), and solving for the

nodal values of X0 in exactly the same manner as solving a finite strain problem

with prescribed initial strains. Note that this procedure is in fact a method for con-

structing a global stress-free configuration from a given metric field. In this study,

we did not conduct this computation because we had the luxury of having the ana-

lytical metric data. Judged from quality of the metric fit, if we would perform this

computation the recovered stress-free configuration is expected to match well the

prescribed one.

The identification accuracy correlated closely with the magnitude of in vivo de-

formation, especially for parameter a. As shown by Figure 4 and Figures 7 and 9, the

identification error was generally smaller in the region where the in vivo deformation

was larger. This is expected, because the nonlinear behavior is better exposed at a

wider strain range. In order to further elucidate such a phenomenon, we increased

the in vivo deformation by enlarging the pressure range to 50-200 mmHg for Case I.

The distribution of the maximum principal stretch ratio is shown in Figure 11. The
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maximum principal stretch ratio near the sac tip increased from 1.018 to 1.03 (the

maximum stretch over the entire sac is 1.047). The identification results presented

significant improvement. Figure 12 shows the distribution and scatter dot plots of

the identification errors. The mean identification errors for the three parameters

decreased to 1.13%, 1.82%, and 0.53%, respectively. The identification accuracy of

parameter a presented the most substantial improvement since it dictates the shape

of the stress-strain curve; therefore, the wider the strain range undergone, the more

accurately it can be identified. For example, the identification error decreased from

larger than 10% to less than 2%. Regardless of the pressure range, if the visible

strain range is further reduced, the quality of the identification result is expected to

degrade.

Clamped boundary condition was used in this study. This constraint is not real-

istic for in vivo condition, and induces a boundary effect that needs to be carefully

addressed. In the simulation, we identified the boundary layer numerically by com-

paring the stress variations under the change of material parameters of the auxiliary

model. In essence, we are using stress insensitivity to assess static determinacy; the

former is a necessary condition for the later. The boundary layer was subsequently

excluded in the inverse analysis. As reported above, the identification results outside

the boundary layer appear to be accurate. In real applications, it is difficult to define

the realistic boundary conditions. The study suggests that, as a practical strategy,

clamped boundary condition may be used as long as the boundary effect is properly

considered.

There are some limitations in this study. First, although the sac is image-based,

the geometry appears to be more regular than that of realistic aneurysms. As the sac

is convex, it is described as an elastic membrane. Real aneurysms contain undulated

surface features, for which an appropriate description should be a shell structure.
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The method of stress analysis hinges critically on the property static determinacy,

which would be compromised if significant bending and transverse shear are neces-

sary for equilibrium. Nevertheless, our pervious study indicated that, even for shell

structure having concave surface features, there exist regions where the membrane

response dominates and in such regions, the in-plane stress appears to remain stati-

cally determined [25]. We submit that the proposed method can also be applied to

some shell structures, at lease regionally. Second, we did not investigate the effect

of numerical noise. Adding noises to the displacement data can help to understand

the robustness of the method. These limitations will be addressed in a future study.

The proposed method is not directly applicable to clinical study yet. A major

stumbling block, as alluded in the introduction, is the limitation of image resolution.

In a carefully designed study, Balocco et al. [16] examined the feasibility of cerebral

aneurysm in vivo identification using simulated image data. They incorporated re-

alistic geometries but linear elastic constitutive equations with regional properties.

They found that the minimum spatial resolution necessary for inversely resolving the

material elasticity is 0.1mm, and therefore concluded that image-based identification

at the current resolution is infeasible. However, they used a traditional optimization

approach that optimizes the parameters altogether by minimizing the difference of

nodal displacements. It is known that elasticity parameters have a global influence

on displacement in elasticity problems, and thus, displacement-based optimization

cannot sharply characterize heterogeneous distributions. In this regard, there is a

room to improve their inverse analysis, and possibly lower the resolution requirement

although the outcome is unlikely to change the conclusion. In the present study, the

displacement in high strain regions was on the order of hundreds of microns. Sup-

pose ten loaded configurations are to be obtained for parameter identification, the

required resolution should be around tens of microns. The current diagnostic imag-
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ing is unlikely to meet this requirement. Also, the present study did not consider

numerical noises, the presence of which is expected to further raise the resolution

requirement. Nevertheless, the value of this study lies in that it clearly demonstrated

the potential of the proposed method, setting aside image issues.

Imaging technologies and registration methods are rapidly advancing. Hayakawa

et al. [48] utilized electrocardiographic (ECG)-gated multislice CT angiography im-

aged aneurysm wall motion in four dimensions by adding the dimension of time to

3D images. Yaghmai et al. [49] reported four-dimensional (4D) imaging of aneurysm

phantom pulsatility with the dynamic multiscan method and showed improvement

in image quality compared with ECG-gated imaging. These studies showed the dy-

namic imaging can capture the local pulsation of CAs. Recent studies by Zhang

et al. [50, 51] quantified the dynamic motion by recovering dynamic 3D vascular

morphology from a single 3D rotational X-ray angiography acquisition. The dy-

namic morphology corresponding to a canonical cardiac cycle was represented via

a 4D B-spline based spatiotemporal deformation, which was estimated by simulta-

neously matching the forward projections of a sequence of the temporally deformed

3D reference volume to the entire 2D measured projection sequence. The technique

was validated using digital and physical phantoms of pulsating cerebral aneurysms.

The registration error was reported to within 10% of the pulsation range. Oubel et

al. [52] reported a method of 2D wall motion estimation which combines non-rigid

registration with signal processing techniques to measure pulsation in patients from

high frame rate digital subtraction angiography. They have obtained waveforms

with magnitude in the range of 0-0.3 mm. Recently, high resolution (0.035 mm)

imaging modalities such as Region of Interest rotational micro-angio fluoroscopy [53]

and microscope-integrated fluorescence angiography [54] offer promise of significantly

richer wall motion data that this method could leverage. Hopefully, the advance of
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imaging technologies and registration methods will eventually reach a resolution suf-

ficient for the proposed application.

In summary, this article proposed a method for characterizing aneurysm tissues

at the presence of unknown stress-free configuration and tested the feasibility nu-

merically. The uniqueness of the method is the simultaneous identification of nonlin-

ear parameters, collagen fiber orientation, and the reference metric using pointwise

stress-strain data. Although not directly applicable to clinical studies yet, the work

addressed an important issue facing the future development of in vivo identification

technology. Future studies include investigating the influence of concave surface fea-

tures, examining the robustness of the method at the presence of numerical noise, and

eventually incorporating real image data. Research along this direction is underway

in the authors’ group.
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Figure 1: Schematic representation of local fiber distribution in the stress-free state,

with respect to a local basis G1 − G2 (Adapted from [39, 40]).
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Figure 2: The reference distributions of the elastic parameters E1 and E2. Upper

row: Case I; Lower row: Case II.

Figure 3: Distribution of the first principal direction η1 (red lines) and the second

principal direction η2 (blue lines), which correspond to the first and fifth collagen

fiber directions, respectively.
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Figure 4: Distribution of the relative maximum stretch ratio from 80 mmHg to 160

mmHg: (a) Case I; (b) Case II.
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Figure 5: Absolute relative percentage difference of the first principal stress at var-

iously pressures after increasing the baseline material parameters in the modified

neo-Hookean model by 100 times, i.e., ν1 = ν2 = 500 N/mm.
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Figure 6: Three of the seventeen loaded configurations and the distribution of the

first principal stress computed from forward FE analyses (first row) and finite element

inverse elastostatics method (second row). Third row: Absolute relative percentage

difference of the first principal stress between the inverse and forward solutions.
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Figure 7: Identification results for Case I. First row: The identified distributions;

Second row: Distribution of the identification errors; Third row: Scatter dot plots of

the identification errors. The total number of dots at particular y is the occurrence

of that value. The horizontal line indicates the mean.
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Figure 8: Comparison between the identified (red solid lines) and true (blue dashed

lines) first principal direction η1, which correspond to the first collagen fiber direc-

tion. The fiber directions are plotted at the Gauss points (orange dots).
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Figure 9: Identification results for Case II. First row: The identified distributions;

Second row: Distribution of the identification errors; Third row: Scatter dot plots of

the identification errors.
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Figure 10: Predictability of the identified elastic property distribution for Case I: (a)

Predicted loaded configurations from the reference material (solid surface) and the

identified material (mesh) at 170 mmHg; (b) Percentage deviation in nodal displace-

ment.
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Figure 11: Distribution of the relative maximum stretch ratio from 50 mmHg to 200

mmHg for Case I with a widened pressure range.
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Figure 12: Identification results for Case I with larger in vivo deformation. Upper

row: Distribution of the identification errors; Lower row: Scatter dot plots of the

identification errors.

44


