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Abstract. Landmark-based thin-plate spline image registration is one
of the most commonly used methods for non-rigid medical image regis-
tration and anatomical shape analysis. It is well known that this method
does not produce a unique correspondence between two images away
from the landmark locations because interchanging the role of source
and target landmarks does not produce forward and reverse transfor-
mations that are inverses of each other. In this paper, we present two
new image registration algorithms that minimize the thin-plate spline
bending energy and the inverse consistency error—the error between the
forward and the inverse of the reverse transformation. The landmark-
based consistent thin-plate spline algorithm registers images given a set
of corresponding landmarks while the intensity-based consistent thin-
plate spline algorithm uses both corresponding landmarks and image
intensities. Results are presented that demonstrate that using landmark
and intensity information to jointly estimate the forward and reverse
transformations provides better correspondence than using landmarks
or intensity alone.

1 Introduction

There are many image registration algorithms based on matching corresponding
landmarks in two images [7]. The thin-plate spline image (TPS) registration tech-
nique pioneered by Fred Bookstein [1,4,2] is the most commonly used landmark
driven image registration algorithm. Generalizations of this procedure include
Krieging methods [11,10] that use regularization models other than the thin-
plate spline (TPS) model, anisotropic landmark interactions [12], and directed
landmarks [3].

The TPS algorithm (see Section 2.2) defines a unique smooth registration
from a template image to a target image based on registering corresponding
landmarks. Correspondence away from the landmark points is defined by in-
terpolating the transformation with a TPS model. Although TPS interpolation
produces a smooth transformation from one image to another, it does not de-
fine a unique correspondence between the two images except at the landmark
points. This can be seen by comparing the transformation generated by matching
a set of source landmarks to a set of target landmarks with the transformation
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generated by matching the target landmarks to the template landmarks. If the
correspondence is unique then the forward and reverse transformations will be
inverses of one another (see Fig. 1). This is not the case as shown by the examples
in Section 3. In this paper, the idea of consistent image registration [5,9,6] was
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Fig. 1. Consistent image registration is based on the principle that the map-
pings h from T to S and g from S to T define a consistent point-by-point corre-
spondence between the coordinate systems of T and S. Consistency is enforced
mathematically by jointly estimating h and g while constraining h and g to be
inverse mappings of one another.

combined with the thin-plate spline algorithm to overcome the problem that
the forward and reverse transformations generated by the TPS algorithm are
not inverses of one another. In the consistent image registration approach, the
forward and reverse transformations between two images are jointly estimated
subject to the constraints that they minimize the TPS bending energy and that
they are inverses of one another. The merger of these two approaches produced a
landmark-based consistent TPS (CL-TPS) and a landmark and intensity-based
consistent TPS (CLI-TPS) image registration algorithms. The CL-TPS algo-
rithm (see Section 2.3) provides a means to estimate a consistent pair of forward
and reverse transformations given a set of corresponding points. The CLI-TPS
algorithm (see Section 2.4) combines both landmark and intensity information
to estimate a consistent pair of forward and reverse transformations.
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2 Methods

2.1 Notation

Figure 1 shows two MRI images with corresponding landmarks that define the
notation used throughout the paper. Assume that the template T (y) and target
S(x) images are defined on the continuous domain Ω = [0, 1)2 and were con-
structed from N1×N2 pixel images using bilinear interpolation. Let qi ∈ Ω, and
pi ∈ Ω, for i = 1, . . . ,M , define corresponding landmarks in the template T and
target S images, respectively. The forward transformation h : Ω → Ω is defined
as the mapping that transforms T into the shape of S and the reverse transfor-
mation g : Ω → Ω is defined as the mapping that transforms S into the shape
of T . The forward transformation h(x) = x+u(x) defines the mapping from the
coordinate system of the template to the target and the reverse transformation
g(y) = y + w(y) defines the mapping from the coordinate system of the target
image to the template for x, y ∈ Ω1. The inverse of the forward transformation
is defined as h−1(y) = y + ũ(y) and the reverse transformation is defined as
g−1(x) = x+ w̃(x).

2.2 Landmark-Based, Thin-Plate Spline Image Registration with
Cyclic Boundary Conditions

The landmark-based, TPS image registration algorithm [1,4,2] registers a tem-
plate image with a target image by matching corresponding landmarks identified
in both images. Registration at non-landmark points is accomplished by inter-
polation such that the overall transformation smoothly maps the template into
the shape of the target image.

In general, the landmark image registration problem can be thought of as a
Dirichlet problem [10] and can be stated mathematically as finding the displace-
ment field u that minimizes the cost function

C =
∫

Ω

||Lu(x)||2dx (1)

subject to the constraints that u(pi) = qi − pi for i = 1, . . . ,M . The operator
L denotes a symmetric linear differential operator [8] and is used to interpolate
u away from the corresponding landmarks. When L = ∇2, the problem reduces
to the TPS image registration problem given by

C=
∫

Ω

||∇2u(x)||2dx=
2∑

i=1

∫
Ω

(
∂2ui(x)
∂2x1

)2

+ 2
(
∂2ui(x)
∂x1∂x2

)
+

(
∂2ui(x)
∂2x2

)2

dx1dx2

(2)

subject to the constraints that u(pi) = qi − pi for i = 1, . . . ,M .

1 The mappings h and g are Eulerian coordinate system transformations
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It is well known [1,4,2] that the TPS displacement field u(x) that minimizes
the bending energy defined by Eq. 2 has the form

u(x) =
M∑
i=1

ξiφ(x − pi) +Ax+ b. (3)

where φ(r) = r2 log r and ξi are 2 × 1 weighting vectors. The 2 × 2 matrix
A = [a1, a2] and the 2× 1 vector b define the affine transformation where a1 and
a2 are 2× 1 vectors.

The unknown parametersW = [ξ1, . . . , ξM , a1, a2, b]T are determined by sub-
stituting the landmark constrains into Eq. 3 and solving the resulting equations.
Let φi,j = φ(|pi − qj |) build the matrix

K =
[
Φ Λ
ΛT O

]
where Φ =



φ1,1 φ1,2 . . . φ1,M

φ2,1 φ2,2 . . . φ2,M

...
...

. . .
...

φM,1 φM,2 . . . φM,M


 , Λ =



p1,1 p1,2 1
p2,1 p2,2 1
...

...
...

pM,1 pM,2 1


 ,

(4)

and O is a 3×3 matrix of zeros. Also, define the (M +3)×2 matrix of landmark
displacements as D = [d1, . . . , dM , 0, 0, 0]T where di = qi − pi for i = 1, . . . ,M .
The equations formed by substituting the landmark constrains into Eq. 3 can
be written in matrix form as D = KW . The solution W to this matrix equation
is determined by least squares estimation since the matrix K is not guaranteed
to be full rank.

The TPS interpolant φ(r) = r2 log r is derived assuming infinite boundary
conditions, i.e., Ω is assumed to be the whole plane R2 in Eq. 2. A TPS transfor-
mation is truncated at the image boundary when it is applied to an image. This
presents a mismatch in boundary conditions at the image edges when comparing
forward and reverse transformations between two images. It also implies that a
TPS transformation is not an one-to-one and onto mapping between two image
spaces. To overcome this problem and to match the cyclic boundary conditions
assumed by the intensity-based consistent image registration algorithm [5,6], we
use the following procedure to approximate cyclic boundary conditions for the
TPS algorithm.

Figure 2 illustrates the concept of cyclic boundary conditions for the land-
mark TPS registration problem. Cyclic boundary conditions implies a toroidal
coordinate system such that the left-right and top-bottom boundaries of the do-
main Ω are mapped together. Modifying the boundary conditions in this manner
causes an infinite number of interactions between landmarks for a given finite
set of landmark points. Panel (b) shows two such interactions between landmark
points p1 and p2; one within the domain Ω and another between adjacent do-
mains. It is not practical to solve Eq. 4 with the resulting infinite dimensional
matrix, so the cyclic boundary conditions are approximated by replicating the
landmark locations in the eight adjacent domains as shown in panel (b) of Fig. 2.
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This provides a good approximation to cyclic boundary conditions since the the
kernel function, φ(r) = r2 log r, causes interactions between landmarks to de-
crease rapidly as the distance between landmarks increases. In our tests, there
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p
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p
3
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2

d3
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d2 d1

Fig. 2. Diagrams describing the coordinate system and points used to ensure
that the resulting displacement field demonstrates continuous cyclic boundary
conditions. The left panel is a depiction of the toroidal coordinate system. The
right panel shows the layout of the point used to solve the TPS with approximate
circular boundaries.

were significant differences between the transformations found using infinite and
cyclic boundary conditions but there was nearly no difference in terms of the
magnitude of the fiducial landmark errors. The major differences between the
two sets of boundary conditions was in the location of the maximum inverse
consistency error. The maximum inverse consistency error was located on the
image boundaries in the case of infinite boundary conditions while it was away
from the boundaries for the case of cyclic boundary conditions (see Fig. 4).

2.3 Landmark Consistent Thin-Plate Spline Registration

The CL-TPS image registration is solved by minimizing the cost function given
by

C = ρ
∫

Ω

||Lu(x)||2 + ||Lw(x)||2dx + χ
∫

Ω

||u(x) − w̃(x)||2 + ||w(x) − ũ(x)||2dx

+
M∑
i=1

ζi||pi + u(pi)− qi||2 + ζi||qi + w(qi)− pi||2. (5)

The first integral of the cost function defines the bending energy of the TPS for
the displacement fields u and w associated with the forward and reverse trans-
formations, respectively. The second integral is called the inverse consistency
constraint (ICC) and is used to enforce that the forward and reverse transfor-
mations are inverses of one another. The third term of the cost function defines
the correspondence between the normalized landmarks and is minimized when
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pi + u(pi) = qi and qi + w(qi) = pi for i = 1, . . . ,M . The constants ρ, χ, and ζi
define the relative importance of each term of the cost function.

Equation 5 must be minimized numerically since the inverse consistency con-
straint is a function of the inverse-forward h−1(x) = x+ ũ(x) and inverse-reverse
g−1(x) = x + w̃(x) transformations. To do this, Eq. 5 is discretized. Define the
landmark locations p̄i = [N1pi,1, N2pi,2]

T and q̄i = [N1qi,1, N2qi,2]
T to be the

landmark coordinates in the space of the original N1 × N2 pixel images. Let
Ωd = {(n1, n2)|0 ≤ n1 < N1; 0 ≤ n2 < N2; and n1, n2 are integers} represent
a discrete lattice of indexes associated with the pixel coordinates of the discrete
images T and S. Let Ω′

d = Ωd\{p̄1, . . . , p̄M} and Ω′′
d = Ωd\{q̄1, . . . , q̄M} rep-

resent the points in Ωd not including the target and template landmark points,
respectively. The discrete version of Eq. 5 is given by

C =
ρ

N1N2

∑
n∈Ω′

d

||Lud[n]||2 + ρ

N1N2

∑
n∈Ω′′

d

||Lwd[n]||2

+
χ

N1N2

∑
n∈Ωd

||ud[n]− w̃d[n]||2 + ||wd[n]− ũd[n]||2

+
M∑
i=1

ζi||pi + ud[p̄i]− qi||2 + ζi||qi + wd[q̄i]− pi||2 (6)

where hd[n] = h( n
N ) =

n
N + u( n

N ) =
n
N + ud[n] is the discrete forward trans-

formation and gd[n] = g( n
N ) =

n
N + w( n

N ) =
n
N + wd[n] is the discrete reverse

transformation. The notation n
N is defined as the 2× 1 column vector [ n1

N1
, n2

N2
]T

for n ∈ Ωd.
The last term of Eq. 6 places constraints on the displacement fields u and

w at the landmark locations. This term effectively produces a soft constraint at
the landmarks so that there does not have to be exact correspondence. The first
two summations of Eq. 6 places constraints on the displacement fields u and w
at each point of the discretized domain Ωd except at the landmark locations.
These terms penalize large derivatives of the displacement fields at all of the
non-landmark points which effectively interpolates a smooth displacement field
between the landmark points.

The discrete displacement fields are defined to have the form

ud[n] =
∑

k∈Ωd

µ[k]ej<n,θ[k]> and wd[n] =
∑

k∈Ωd

η[k]ej<n,θ[k]> (7)

for n ∈ Ωd where the basis coefficients µ[k] and η[k] are (2× 1) complex-valued
vectors and θ[k] = [2πk1

N1
, 2πk2

N2
]T . The basis coefficients have the property that

they have complex conjugate symmetry, i.e., µ[k] = µ∗[N−k] and η[k] = η∗[N−
k]. The notation < ·, · > denotes the dot product of two vectors such that
< n, θ[k] >= 2πk1n1

N1
+ 2πk2n2

N2
.
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The forward and reverse Fourier series parameterized displacement fields are
initialized with the TPS solution found by Eq. 3 using

µ[k] =
∑

n∈Ωd

ud[n]e−j<n,θ[k]> and η[k] =
∑

n∈Ωd

wd[n]e−j<n,θ[k]> (8)

where ud[n] = u( n
N ) and wd[n] = w( n

N ) are given by Eq. 3 for the forward and
reverse transformations, respectively.

The minimizer of Eq. 5 is determined by gradient descent.

2.4 Intensity-Based Consistent Thin-Plate Spline Registration with
Landmark Thin-Plate Spline Initialization

The landmark and intensity-based consistent registration algorithm generalizes
the consistent image registration presented in [5,9,6] to include landmark con-
straints. It is based on minimizing the cost function given by

C = σ
∫

Ω

|T (h(x))− S(x)|2 + |S(g(x)) − T (x)|2dx (9)

+ ρ
∫

Ω

||Lu(x)||2 + ||Lw(x)||2dx + χ
∫

Ω

||u(x) − w̃(x)||2 + ||w(x) − ũ(x)||2dx

subject to the constraints that u(pi) = qi − pi and w(qi) = pi − qi for i =
1, . . . ,M . The intensities of T and S are assumed to be scaled between 0 and
1. The first integral of the cost function defines the cumulative squared error
similarity cost between the transformed template T (h(x)) and target image S(x)
and between the transformed target S(g(y)) and the template image T (y). To
use this similarity function, the images T and S must correspond to the same
imaging modality and they may require pre-processing to equalize the intensities
of the image. This term defines the correspondence between the template and
target images as the forward and reverse transformations h and g, respectively,
that minimized the squared error intensity differences between the images. The
second integral is used to regularize the forward and reverse displacement fields
u and w, respectively. This term is minimized for TPS transformations. The
third integral is called the inverse consistency constraint and is minimized when
the forward and reverse transformations h and g, respectively, are inverses of
each other. The last term is the landmark constraint that keeps the landmarks
aligned. The constants σ, ρ, χ, ζi define the relative importance of each term of
the cost function.

As in the previous section, the cost function in Eq. 10 must be discretized
in order to numerically minimize it. The forward and reverse transformations h
and g and their associated displacement fields u and w are parameterized by the
discrete Fourier series defined by Eq. 7. The basis coefficients µ[k] and η[k] of
the forward and reverse displacement fields are initialized with the result of the
CL-TPS algorithm. The discretized version of Eq. 10 is then minimized using
gradient descent as described in [5,6].
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3 Results

3.1 Landmark Registration

The eight corresponding landmarks shown in Fig. 3 will be used to demonstrate
the landmark-based consistent TPS (CL-TPS) algorithm. In this example, the
four inner landmarks correspond to the four outer landmarks and the four corner
landmarks in both images correspond to each other. The forward transformation
h is defined as the transformation, in Eulerian coordinates, that maps the four
inner points to the four outer points causing an expansion of the grid in the
center of the image. The reverse transformation g maps the outer points to the
inner points causing a contraction of the grid in the center of the image.

Forward Trans. h(x)

(66,34)

(66,66)

(34,34)

(34,66)

(76,24)

(76,76)

(24,24)

(24,76)

Reverse Trans. g(y)

(66,34)

(66,66)

(34,34)

(34,66)

(76,24)

(76,76)

(24,24)

(24,76)

Forward Trans. Reverse Trans.

Fig. 3. The location of local displacements at the landmarks points for the
forward, and reverse transformations of images with 100×100 pixels. Application
of the TPS deformation fields to uniformly spaced grids for the forward and
reverse transformations.

The top row of Fig. 4 shows the locations and magnitudes of the inverse
errors after application of TPS interpolation to the landmarks in the forward
and reverse directions. In these images, B and D point to landmark locations
in the forward and reverse transformations respectively, B′ and D′ point to lo-
cations adjacent to landmarks, and A and C point to non-landmark locations.
The inverse consistency errors associated with each of these points is listed in
tables to the right of the images. The inverse consistency error at the landmark
points is nominal both with and without enforcing the inverse consistency con-
straint (ICC). The bottom row of Fig. 4 shows that the ICC reduces the inverse
consistency error uniformly across the displacement fields. The ICC has the least
effect on inverse consistency errors at points in the neighborhood of landmarks.

A pair of transformations are point-wise consistent if the mapping of a point
through the composite function h(h−1(xi)) maps xi to itself. Any deviation from
this identity mapping is a point-wise consistent error. By applying this composite
mapping to a uniformly spaced grid one can visualize the magnitude, location,
and direction of the point-wise inconsistencies as is shown in Fig. 5. The left
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Inv. Consistency Err. Inv. Consistency Err. Inv. Consistency Err.
||h(x) − g−1(x)|| ||g(y) − h−1(y)||

A

B C

D
5.0

0.00

Label Point Pixel Err.
A (10,50) 5.0
B (24,76) 0.008
B′ (24,77) 0.27
C (20,40) 3.9
D (34,66) 0.008
D′ (34,67) 0.33

A

B C

D
0.01

0.00

Label Point Pixel Err.
A (10,50) 0.003
B (24,76) 0.003
B′ (24,77) 0.014
C (20,40) 0.005
D (34,66) 0.001
D′ (34,67) 0.018

Fig. 4. The left and center panels are the inverse errors due to the forward
and reverse transformation, respectively. The right panels are tables listing the
fiducial errors associated with selected image points. The top row and bottom
rows are the inverse consistency errors associated with TPS interpolation and
CL-TPS, respectively.

panel shows that there is a considerable amount of inverse error in the TPS
interpolant. The right panel shows that application of the inverse consistency
constraint has reduced the point-wise consistency error considerably.

Table 1 reports that the CL-TPS algorithm reduced the maximum and av-
erage inverse consistency error by a factor of 277 and 740 times, respectively, as
compared to the TPS algorithm. The trade-off for this gain was that the average
fiducial error increases by a factor of 2, but this is still small relative to the
pixel size. The Jacobian error calculated as 1

2 |min{Jac(h)}−1/max{Jac(g)}|+
1
2 |min{Jac(g)}− 1/max{Jac(h)}| provides an indirect measure of the inconsis-
tency between the forward and reverse transformations. The Jacobian error is
zero if the forward and reverse transformations are inverses of one another, but
the converse is not true. Notice that the Jacobian error was five times smaller
for the CL-TPS algorithm compared to the TPS algorithm.

3.2 Landmark and Intensity Registration

In this section we investigate the use of landmark registration on intensity-based
images. Corresponding 64 × 80 isotropic 4 millimeter pixel 2D slices from a set
of MRI acquired brains were used in this experiment. A set of 41 corresponding
landmarks were manually defined as shown in Fig. 1.
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Concat. of forward & reverse Concat. of forward & reverse
TPS transformations CL-TPS transformations

applied to grid applied to grid

Fig. 5. Deformed grids showing the error between the forward and reverse trans-
formations estimated with the landmark-based TPS algorithm(left panel) and
the CL-TPS algorithm(right panel). The grids were deformed by the transforma-
tion constructed by composing the forward and reverse transformations together,
i.e., g(h(x)). Ideally, the composition of the forward and reverse transformations
is the identity mapping which produces no distortion of the grid as in the right
panel.

In the first of four experiments the set of landmark points are used to perform
the landmark TPS registration as in the in the previous section 3.1. The next
experiment used the CL-TPS algorithm to register the two images. The third
experiment is initialized with the results from the CL-TPS, but adds the image
intensity as a driving force for the CLI-TPS registration. In each of the consistent
registrations the ICC, landmark, TPS, and similarity constraints are imposed by
iterative estimation of the Fourier series parameters for a total of 2000 iterations.
In practice only the lowest 1

8 harmonics, 8 and 10 harmonics in x and y directions
respectively, of the Fourier series parameters are estimated.

The final experiment is an CI-TPS registration, and uses no landmark infor-
mation in the estimation of the transformation parameters. It should be noted

Table 1. Comparison between Thin-plate spline image registration with and
without the inverse consistency constraint (ICC). The table columns are the
Experiment, (ICC), transformation Direction (TD), average fiducial error (AFE)
in pixels, maximum inverse error (MIE) in pixels, average inverse error (AIE) in
pixels, minimum jacobian value (MJ), inverse of the maximum jacobian value
(IJ), and the jacobian error (JE).

Experiment ICC TD AFE MIE AIE MJ IJ JE

Landmark TPS No Forward 0.00004 5.0 2.2 0.25 0.43 0.13
Reverse 0.00004 4.3 2.0 0.24 0.32

CL-TPS Yes Forward 0.0008 0.012 0.0031 0.29 0.33 0.025
Reverse 0.0008 0.011 0.0027 0.28 0.29
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that for this experiment, estimation of the Fourier parameters is limited to the
first 2 harmonics initially, and is incremented to include additional harmonics
after every 250 iterations. This has the effect of doing a global registration first
and progressively becoming more local with each harmonic parameter added
to the estimation. This approach allows for a much faster convergence of the
parameters. It should also be observed that this approach stagnated in a local
minima after 7 harmonics are estimated, and that the estimation of additional
parameters had only marginal effects on the results.

The results were computed on a 667MHz, 21264 alpha processor. The land-
mark-based TPS registration took about 4 seconds to compute, the CL-TPS and
CLI-TPS registrations took approximately 12 minutes to compute, and the CI-
TPS registration took less than 3 minutes to compute. Figure 6 is a comparison

Fig. 6. Comparison of deformed images to originals when TPS initialization,
inverse consistency, landmark, and similarity constraints are imposed. The left
panels are the original images, the center panels are the deformed images, and
the right panels are the absolute difference images between the original and
deformed images.

of deformed images to originals from the CL-TPS and CLI-TPS registration. The
left panels are the original images, the center panels are the deformed images,
and the right panels are the absolute difference images between the original and
deformed images. These images demonstrate that the deformed images closely
match the appearance of the original images. From Table 2 it can be seen that
the two consistent intensity-based registrations obtain almost identical average
intensity both with and without the landmark constraints. The deformed and
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absolute difference images for the consistent intensity-based registration are in-
distinguishable from those in Fig. 6.

CL-TPS CLI-TPS
For. Tns. Jac. Rev. Tns. Jac. For. Tns. Jac. Rev. Tns. Jac.

0.56 1.7 0.56 1.7 0.44 2.1 0.44 2.1

Fig. 7. Jacobian images that show locations of deformation for both CL-TPS(left
two panels) and CLI-TPS(right two panels). Bright pixels represent expansion,
and dark pixels represent contractions.

The image intensity difference between the original and deformed images for
the intensity-based consistent TPS registrations with and without the landmark
constraints are similar, but the transformations used in attaining the deformed
images have different properties. Figure 7 are images displaying the Jacobian
values at each pixel location for the landmark-based consistent TPS with and
without the intensity constraints. The magnitude of local displacement is en-
coded such that bright pixels represent expansion, and dark pixels represent
contractions. Notice that combining the intensity information with the landmark
information provides additional local deformation as compared to just using the
landmark information alone.

The inverse error images for the intensity-based consistent TPS registrations
with and without the landmark constraints are shown in Fig. 8. Notice that the
inverse consistency error is distributed uniformly across the image domain in
both cases. However, the magnitude of the inverse consistency error is one third
as large in the landmark constrained case.

Table 2 is a summary of representative statistics that can be taken from each
of the experiments. From this table, the TPS and CL-TPS show that the ad-
dition of ICC can improve the inverse consistency of the transformations with
only a small degradation of the fiducial landmark matching. It should be noted
that the inverse consistency error in the TPS initialization tends to be be larger
as one moves away from landmarks and that inverse consistency error associ-
ated with the TPS interpolation can be decreased by defining more points of
correspondence manually. The CLI-TPS uses intensity information to refine the
transformation resulting from the CL-TPS. Table 2 demonstrates that the CI-
TPS registration has the smallest average intensity difference, but the largest
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CLI-TPS Inv. Consistency Error CI-TPS Inv. Consistency Error
||h(x) − g−1(x)|| ||g(y) − h−1(y)|| ||h(x) − g−1(x)|| ||g(y) − h−1(y)||

0.0mm 0.84mm0.0mm 0.84mm0.0mm 3.0mm0.0mm 3.0mm

Fig. 8. Images that display the magnitude of inverse consistency errors for both
CLI-TPS(left two panels) and CI-TPS(right two panels).

fiducial landmark errors. The CLI-TPS has marginally larger average intensity
difference, but much smaller fiducial landmark errors. It should be noted that the
large number of landmarks used in the CLI-TPS registration limits the effect of
the intensity driving force in neighborhoods of the landmarks. In practice, when
the the landmark points are more sparse the intensity driving force plays a more
important role.

4 Summary and Conclusions

This work presented two new image registration algorithms based on thin-plate
spline regularization: landmark-based, consistent thin-plate spline (TPS) image
registration and landmark and intensity-based consistent TPS image registra-
tion. It was shown that the inverse consistency error between the forward and
reverse transformations generated from the traditional TPS algorithm could be
minimized using the landmark-based, consistent TPS algorithm. Inverse consis-
tency error images showed that the largest error occurred away from the land-
mark points for the traditional TPS algorithm and near the landmark points for
the consistent TPS algorithm. The average inverse consistency error was reduced
by 100 times in the inner-to-outer dots example and greater than 15 times in
the MRI brain example. The maximum inverse consistency error was reduced by
almost 500 times for the inner-to-outer dots example but only 10 times for the
MRI brain example. The Jacobian error was reduced from 0.13 to 0.025 for the
inner-to-outer dots example and from 0.1 to 0.0 for the MRI brain example. The
trade-off between better inverse consistency was that the fiducial error increased
by over ten times in both examples. Using landmark and intensity information
with the MRI brain example gave a better correspondence between the images
then just using the landmark information as shown by a decrease in the average
intensity difference. It was shown that using landmark and intensity information
gave a better registration of the MRI brain images than just using the inten-
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Table 2. Comparison between registering two 64× 80 pixel MRI images with
41 landmarks, as shown in Fig. 1, using Landmark-based TPS, CL-TPS, CLI-
TPS, and CI-TPS registration algorithms. The table columns are the 2D MRI
Experiment, landmark initialization(LI), inverse consistence constraint (ICC),
similarity constraint (SC). transformation Direction (TD), average fiducial error
(AFE) in pixels, maximum inverse error (MIE) in pixels, average inverse error
(AIE) in pixels, average intensity difference (AID), minimum jacobian value
(MJ), inverse of the maximum jacobian value (IJ), and the jacobian error (JE).

2D MRI Exp. LI ICC SC TD AFE MIE AID AIE MJ IJ JE

Landmark TPS Yes No No Forward 0.060 9.2 1.1 0.014 0.41 0.67 0.1
Reverse 0.060 7.2 1.2 0.012 0.61 0.55

CL-TPS Yes Yes No Forward 1.3 0.48 0.066 0.011 0.56 0.66 0.0
Reverse 1.4 0.56 0.062 0.0096 0.66 0.56

CLI-TPS Yes Yes Yes Forward 1.4 0.72 0.10 0.0081 0.44 0.66 0.25
Reverse 1.5 0.84 0.10 0.0067 0.65 0.48

CI-TPS No Yes Yes Forward 3.3 2.4 0.33 0.0049 0.34 0.56 0.125
Reverse 3.6 3.0 0.31 0.0049 0.47 0.48

sity information for the following measures: the average fiducial error, Jacobian
error, maximum inverse error, and average inverse error.
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