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An efficient meshless method for fracture analysis of cracks

B. N. Rao, S. Rahman

Abstract This paper presents an efficient meshless meth-
od for analyzing linear-elastic cracked structures subject to
single- or mixed-mode loading conditions. The method
involves an element-free Galerkin formulation in con-
junction with an exact implementation of essential
boundary conditions and a new weight function. The
proposed method eliminates the shortcomings of Lagrange
multipliers typically used in element-free Galerkin for-
mulations. Numerical examples show that the proposed
method yields accurate estimates of stress-intensity factors
and near-tip stress field in two-dimensional cracked
structures. Since the method is meshless and no element
connectivity data are needed, the burdensome remeshing
required by finite element method (FEM) is avoided. By
sidestepping remeshing requirement, crack-propagation
analysis can be dramatically simplified. Example problems
on mixed-mode condition are presented to simulate crack
propagation. The predicted crack trajectories by the pro-
posed meshless method are in excellent agreement with
the FEM or the experimental data.

1

Introduction

For many structures, crack propagation is an important
failure mechanism requiring accurate numerical models to
implement simulations essential for failure prediction. To
perform numerical simulation, the computational methods
must be applied to determine fracture response and reli-
ability of cracked structures. A current popular method is
the finite element method (FEM), which has been exten-
sively used for fracture analysis of cracks. Although a
significant amount of the research in FEM is useful, the
method has serious limitations in solving solid mechanics
problems characterized by a continuous change in geom-
etry of the domain under analysis. Crack propagation is a
prime example in which the use of FEM requires a large
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number of remeshings of the finite element model to
represent arbitrary and complex paths. The underlying
structures of FEM and similar methods, which rely on a
mesh, is quite cumbersome in treating cracks that are not
coincident with the original mesh geometry. Consequently,
the only viable option for dealing with moving cracks
using the FEM is to remesh during each discrete step of
model evolution so that mesh lines remain coincident with
cracks throughout the analysis. This creates numerical
difficulties, often leading to degradation of solution accu-
racy, complexity in computer programming, and a com-
putationally intensive environment.

In recent years, a class of meshfree or meshless meth-
ods, such as smooth particle hydrodynamics [1-3], diffuse
element method [4], element-free Galerkin method
(EFGM) [5-7], h-p clouds [8], partition of unity [9], re-
producing kernel particle method [10-11], meshless local
Petrov-Galerkin method [12], and local boundary integral
equation method [13], appear to demonstrate significant
potential for the moving boundary problem typified by
growing cracks. Fundamental to all meshless methods, a
structured mesh is not used, since only a scattered set of
nodal points is required in the domain of interest. This
feature presents significant implications for modeling
fracture propagation, because the domain of interest is
completely discretized by a set of nodes. Since no element
connectivity data are needed, the burdensome remeshing
required by FEM is avoided. A growing crack can be
modeled by simply extending the free surfaces, which
correspond to the crack. By sidestepping remeshing re-
quirements, crack-propagation analysis can be dramati-
cally simplified.

For fracture analysis of cracks, the EFGM is the first
meshless method introduced by Belytschko and his co-
workers [5-7]. In the original EFGM [5-7], the meshless
shape functions do not represent interpolation functions.
Hence, the essential boundary conditions cannot be im-
posed exactly due to loss of Kronecker-delta properties.
Initially, Belytschko et al. [5] employed the general Lag-
range multipliers approach to impose the boundary con-
ditions. This requires solution of the Lagrange multipliers
in addition to the discrete field variables. This leads to a
larger size of the system matrix, loss of the bandedness of
the system matrix, and an awkward linear equation
structure. The matrix, which has to be inverted, possesses
zeroes in the diagonal elements and thus may require
special solvers that cannot utilize the positive-definiteness
of the system matrix. Subsequently, Lu et al. [6] proposed
a modified variational principle in which Lagrange



multipliers are replaced by their physical meaning.
Although this leads to banded set of equations, (but not
necessarily positive-definite matrices), the results are not as
accurate when compared with those by the Lagrange mul-
tipliers approach. Another approach proposed by Krongauz
and Belytschko [14] is to necklace the EFGM domain with
the FEM domain and apply the boundary conditions to the
finite element nodes. This coupling technique dramatically
simplifies the enforcement of boundary conditions, but
compromises the salient features of EFGM. In a recent
work, Kaljevic and Saigal [15] introduced a singular weight
function into the moving least-squares approximation to
reproduce the Kronecker-delta properties. This technique
thus allows the enforcement of essential boundary condi-
tions more efficiently. For applications other than fracture,
methods based on penalty functions [16] and alternative
definitions of discrete norm [17] have also been reported.
Indeed, there is a considerable interest in exploring
methods to improve the imposition of essential boundary
conditions in EFGM or other meshless methods.

This paper presents an efficient formulation of the
EFGM for fracture analysis of cracks in homogenous,
isotropic, linear-elastic two-dimensional solids. The pro-
posed method involves enforcement of essential boundary
conditions by a transformation method and a new weight
function. Both single- (mode I) and mixed-mode (modes I
and II) problems can be solved by this method. A number
of examples are presented to evaluate the accuracy of
stress-intensity factors (SIFs) calculated by this method.
Furthermore, this method was applied to model crack
propagation under mixed-mode loading condition. Com-
parisons were made between the crack trajectories pre-
dicted by the proposed meshless method with the FEM and
the experiment.

2

Moving least-squares approximation

Consider a function, u(x) over a domain, Q C RK where
K =1,2,0r 3. Let Q, C Q denote a sub-domain describing
the nelghborhood of a point, x € RX located in Q. Ac-
cording to the moving least-squares (MLS) [18], the ap-
proximation, u"(x) of u(x) is

W) = 3 pix)aix) = p'(0alx) W

where p'(x) = {p1(x), p2(x), . ..
complete basis functions of order m and a(x) = {a;(x)
ay(x),...,a,(x)} is a vector of unknown parameters

that depend on x. The basis functions should satisfy the
following properties: (1) pi(x) =1, (2) pi(x) € C5(Q),
i=1,2,...,m where C°(Q) is a set of functions that have
contlnuous derlvatlves up to order s on Q, and (3)
pi(x),i=1,2,...,m constitute a linearly independent set.
For example, in two dimensions (K = 2) with x;- and
x,-coordinates

,Pm(x)} is a vector of

PT(X) = {17x17x2}a m=3 (2)
and
pr(x) = {l,xl,xz,xf,xlxz,xg}, m==6 (3)

representing linear and quadratic basis functions, respec-
tively. These basis functions are not required to be poly-
nomials as shown in Egs. (2) and (3). When solving
problems involving cracks, a convenient way of capturing
1/4/r stress-singularity in linear-elastic fracture mechanics
(LEFM) is by using [19]
pT(x):{l,xl,xz,\/?}, m=4 (4)
or
P (x) ={1, 31, %2, v/7 cos(60/2), \/7sin(0/2),
Vrsin(0/2) sin 0, /r cos(0/2) sin 0}, m =7
()
where r and 6 are polar coordinates with the crack tip
as the origin. Equations (4) and (5) represent radially
(partially) enriched and fully enriched basis functions,
respectively.

In Eq. (1), the coefficient vector, a(x) is determined by
minimizing a weighted discrete ¥, norm, defined as

=3 wi

= [Pa(x) —

"(xr)a(x) — di]’

d]"W[Pa(x) — d] (6)

where x; denotes the coordinates of node I,

d' = {d,,d,,...,d,} with d; representing the nodal
parameter (not the nodal values of u"(x)) for node I,
W = diag[w, (x), w2(x), ..., wy(x)] with w;(x) denoting
the weight function associated with node I such that
wi(x) > 0 for all x in the support Q, of w;(x) and zero
otherwise, n is the number of nodes in Q, for which
wy(x) > 0, and

p'(x1)

p'(x2)
P= . e (R xR") . (7)

p' (%)
The stationarity of J(x) with respect to a(x) yields
A(x)a(x) = C(x)d (8)
where

Z wi(x)p(x)p’ (x;) = PTWP (9)

C(x) = [wi(x)p(x1); .., wa(X)P(x,)] = PTW (10)

Solving a(x) from Eq. (8) and then substituting it in
Eq. (1) gives

ul'(x) = En:cl)l(x)dl = ®"(x)d (11)
where
(DT(X) = {D;(x), Dy(x),...,D,(x)}

=p (XA (x)C(x)

is a vector with its Ith component

(12)

399



400

Z pi(x

representing the shape function of the MLS approximation
corresponding to node I. The partial derivatives of ®;(x)
can be obtained as follows:

Ori(x Z{PJ! ICJH‘PJ( A7'CH+A” IC) }

(14)

)CX)]; (13)

where
Al =—-AT'AA7 (15)
in which () ;= 9()/0x;.

Note, the MLS shape function, ®;(x) strongly depends
on the type of basis functions used. For problem involving
cracks, the enriched basis functions, given by Egs. (4) or
(5), are required to produce stress singularity at the crack
tip. However, this singularity field is only local to the crack
tip. Therefore, it is unnecessary to use enriched basis for
the entire domain. In that case, a hybrid approach in-
volving enriched basis close to the crack tip and regular
basis far away from the crack tip can be used. For example,
if ®7(x) and ®7(x) denote two resulting shape functions
using regular (e.g., Egs. (2) or (3)) and enriched (e.g.,
Egs. (4) or (5)) basis functions, respectively, the effective
shape function due to coupling can be expressed by [19]

®;(x) = RO} (x) + (1 — R)D}(x) (16)

where R is an appropriate ramp functions that is equal to
unity on the enriched boundary of the coupling region and
zero on the regular side of the coupling region.

3

Weight function

An important ingredient of EFGM or other meshless
methods is the weight function, w(x). The choice of the
weight function can affect the MLS approximation of
u"(x). In this work, a new weight function based on the
Student’s t-distribution is proposed. It is given by

(1+/32(z 2, ))7
1- (1+[iz)

0, 21 > Zmr
(17)

where f is the parameter controlling the shape of the
weight function, z; = ||x — x;|| is the distance from a
sampling point, x to a node xj, z,,; is the domain of
influence of node I such that

((1+5)/2) (1+ﬂ2)—((1+/i)/2)

((1+8)/2) 9

21 < Zmy

(18)
in which z is a the characteristic nodal spacing distance
which is chosen such that the node I has enough number
of neighbors sufficient for regularity of A(x) in Eq. (9)
(which is used to determine the MLS approximation), and
Zmax 1 a scaling parameter. Note, the ¢-distribution used in
Eq. (17) represents the probability density function of a
standard Gaussian random variable divided by the square

Zml = ZmaxZcl

root of a y* random variable with f8 degrees of freedom
[20].

The smoothness of the shape functions, ®;(x) is gov-
erned by the smoothness of the weight function and basis
functions. If p;(x) € C*(Q) and w;(x) € C"(Q), then it can
be shown that ®;(x) € C™("9)(Q). To avoid poorly
formed shape functions, wy(x) should be unity at the
center and zero along the boundary of €,. Also, appro-
priate values of f§ depending on the basis function should
be selected.

To avoid any discontinuities in the shape functions due
to the presence of cracks, a diffraction method [19, 21] can
be used to modify z; in the weight function. According to
this method, when the line joining the node x; to the
sampling point x intersects the crack segment and the
crack tip is within the domain of influence of the node x,
zr is modified as [19]

where s = [l — x[|, $(%) = [Jx = e[|, so(x) = [|}x — %],
x and x, are the coordinates of the sampling point and
crack tip, respectively, and 1 < /1 < 2 is a parameter for
adjusting the distance of the support on the opposite
side of the crack.

(19)

Variational formulation and discretization

For small displacements in two-dimensional, homoge-
neous, isotropic, and linear-elastic solids, the equilibrium
equations and boundary conditions are

V.eo+b=0inQ (20)
and

6-n=t on I, (natural boundary conditions)
u=u on [, (essential boundary conditions)

(21)
respectively, where ¢ = De is the stress vector, D is the
material property matrix, € = V;u is the strain vector, u is
the displacement vector, b is the body force vector, t and u
are the vectors of prescribed surface tractions and dis-
placements, respectively, n is a unit normal to domain, €,
I'; and I';, are the portions of boundary, I" where tractions
and displacements are prescribed, respectively,

= {0/0x;,0/0x,} is the vector of gradient operators,
and V,u is the symmetric part of Vu. The variational or
weak form of Egs. (20) and (21) is

/cTae dQ — /bTéu dQ - /tTau dr — 6w, =0
Iy
(22)

where 6 denotes the variation operator and d W, represents
a term to enforce the essential boundary conditions. The
explicit form of this term depends on the method by which
the essential boundary conditions are imposed [7]. In this
study, W, is defined as



We =Y £ (x)[ux) - u(x)] (23)

X]Eru

where f*(x;) is the vector of reaction forces at the con-
strained node J € I',,. Hence,

SWy =Y " (x))[u(xy) — u(x)] + £ (x7)du(x))
X]EFu
(24)
Consider a single boundary constraint, #;(x;) = gi(xy)
applied at node J in the direction of x; coordinate. Then,

the variational form given by Egs. (22) and (24) can be
expressed by

/ﬂk@+ﬁ@%@ﬁ:/ﬁh&h/?hﬂﬂ
Q Q I

(25)
Ofi(xy) [ui(xy) — &i(xy)] = 0 (26)
where f;(x;) and u;(x;) are the ith component of f(x;) and

u(xy), respectively. From Eq. (11), the MLS approximation
of u;(x;) is

N
ul'(x)) = Z‘DI(XJ)d} =®;d (27)
I=1
where
T { {(Dl (X]),O,(Dz(X]),O, .. .,(DN(X]),O}, wheni=1
a {07®1(XI)707(D2(X])7'-'aO,(DN(X])}v when i =2
(28)
dy
di
d
d={ 4 (29)
dy
dy

is the vector of nodal parameters or generalized dis-
placements, and N is the total number of nodal points in
Q. Using Egs. (27)-(29) into the discretization of Egs. (25)
and (26) gives [5-7]

k @ d } { fext }
]
T = 30
{(D} 0 ]{fi(X]) gi(x7) (30)
where
kii ki kin
k k k

k=| . 7 M e 2RV x®Y) (31)
kni kye knn

is the stiffness matrix with

kU = /B}FDB] dQ e g(?]%z X 5}%2)
Q

(32)

representing the contributions of Jth node at node I,

fi,xt
ext
fext — 2 c %ZN (33)
£
is the force vector with
£ = / ob"dQ - / QT dl e R, (34)
Q T,
(DI,I 0
Bj=| 0 @, (35)
O, Dpy
and
1 v O
Lslv 1 0|, for plane stress
00
_ 2
D= 1—v v 0
T +v>1(3172v) v 1—v 0 |, forplane strain
o o

(36)

is the elasticity matrix with E and v representing the elastic
modulus and Poissons ratio, respectively.

In order to perform numerical integration in Eqs. (32)
and (34), a background mesh is needed. This background
mesh can be independent of the arrangement of meshless
nodes. However, the nodes of the background mesh may
coincide with the meshless nodes. Standard Gaussian
quadrature was used to evaluate the integrals for assem-
bling the stiffness matrix and the force vector. In general, a
3 X 3 quadrature is adequate, except in the cells sur-
rounding the surrounding the crack tip where a 6 x 6
quadrature may be required [5].

5
Essential boundary conditions
Lack of Kronecker delta properties in the meshless shape
functions, @; poses some difficulties in imposing essential
boundary conditions in EFGM. In this work, a full trans-
formation method [22, 23], was used for fracture-me-
chanics applications.

Consider the transformation,

d=Ad

where,

(37)

c §R2N

[=¥93
I
<

(38)

is the nodal displacement vector, and
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F o T

(Dl
o

T
D,
0 | € (RN x RN (39)
oy

2T
L Dy

is the transformation matrix. Multiplying the first set
of matrix equation in Eq. (30) by AT, one obtains

A—Tk Ii —T gext
Sl e
o o] lfilx) 8i(xy)
where
0
0
1;' = A*T(I)}' =<1« [20—-1)+ithrow . (41)
0
0
Let,
k;
k = = ATk (42)
Iy
f-ext _ Afoext (43)

where 1A<1T = {lA(ilalA(izw--ylA(i(ZN)}) i=1,2,...,2N. Equa-

tion (40) can be re-written as

_R;f 0_ Iext
lA(szq 0 ;ewxfl —[2(J—1)+i]th row
lA(};,I 1 { d } ;\e/lxt
Ky, o Ui(x) oxt
lA(gN 0 ;ei(,t

;T
| @ 0] gi(x;) ) < (2N + 1)th row

(44)

where M = (2] — 1) + i. Exchanging the Mth and the last
row of Eq. (44) leads to

Fext

(kI 0] !
K., 0 | < 20— 1) +ilth row
@ 0 { d }_ &%)
Kol L) S T
- X
IfZN 0 e
kT 1 rext
- M - iy — (2N +1)th row
(45)
which can be uncoupled as
Kd = F (46)
kyd +fi(x) = fi (47)
where
k;
o | - es
oA D! — [2(J — 1) + i|]th row
K= ./k) = RTJ (48)
M+1
oy |
and
rext
1
o
M-1
N i\X — 1
F:Jt/}(fe"t): gegt]) —[2(J—1) +i]th row (49)
M+1
Aex.t
2N

are the modified stiffness matrix and force vectors re-
spectively. Using Eq. (46), the generalized displacement
vector, d can be solved efficiently without needing any
Lagrange multipliers. _

In Eqgs. (48) and (49), .#; is a matrix operator that
replaces the [2(J — 1) + i]th row of k by (I)}'T and A"} is
another matrix operator that replaces the [2(J — 1) + i]th
row of ' by g;(x;), due to the application of a single
boundary constraint at node J. For multiple boundary
constraints, similar operations can be repeated. Suppose,
there are N, number of essential boundary conditions at
nodes, J1, J2, . . ., Jn, applied in the directions, i, i, . . . , in,,
respectively. Hence, the resulting modified stiffness matrix
and force vector are



k= [[4400

and
Nc

F= ][],

I=1

respectively.

6
Computational fracture mechanics

6.1

Calculation of stress-intensity factors

Consider a structure with a rectilinear crack of length, 2a
that is subjected to external stresses. Let K and Kj; be the
stress-intensity factors (SIFs) for mode-I and mode-II,
respectively. These SIFs can be evaluated using the inter-
action integral [24] converted into a domain form [25, 26].
For example,

El

Ki=5 M (52)
where
E plane stress
/ 9
E= { £+, plane strain (53)

is the effective elastic modulus, and M(?) is the interac-

tion integral. It includes the terms from the actual mixed
mode state for the given boundary conditions (superscript
1) and the super- 1mposed near-tip mode I auxiliary state
(superscript 2). M("?) is given by

(1)
M(Lz):/lcgjl)@ui JgC) ou; ~

0q
witds | L da
0x; Y 0x; Y 0x;

A

(54)

where c;; and u; are the components of stress tensor and
displacement vector, respectively, W(1?) is the mutual
strain energy from the two states and ¢ is a weight function
chosen such that it has a value of unity at the crack tip,
zero along the boundary of the domain and arbitrary
elsewhere. Note that all the quantities are evaluated with
respect to a coordinate system with crack tip as origin.
Following similar considerations, Ky can be calculated
from Egs. (52)-(54), except that the near-tip mode II state
is chosen as auxiliary state while computing M2,

6.2

Simulation of crack propagation

In order to simulate crack growth under linear-elastic
condition, the crack-path direction must be determined.
There are a number of criteria available to predict the
direction of crack trajectory. They are based on: (1)
maximum circumferential stress [27], (2) minimum strain
energy density [28], (3) maximum energy release rate [29],
and (4) vanishing in-plane SIF (Kj) in shear mode for
infinitesimally small crack extension [30]. The first two
criteria predict the direction of crack trajectory from the

stress state prior to the crack extension. The last two cri-
teria require stress analysis for virtually extended cracks in
various directions to find the appropriate crack-growth
directions. In this study, the crack-growth simulation was
based on the first criterion only. Other criteria, which are
not considered here, can be easily implemented into the
proposed meshless method.

Crack trajectory prediction

According to the maximum circumferential stress criteri-
on [27], the initial direction of crack propagation, 0, is the
solution of the equation

Kisinf + Ky(3cos —1) =0 . (55)

where K; and Kj; are SIFs for any instant during the crack
growth. When the values of K; and Kj; are known, 0 can be
easily solved using standard numerical procedures.

Quasi-automatic crack propagation

A fully automatic strategy for crack propagation is the one
which requires no user interaction to predict both the
extent and direction of crack growth. The present ap-
proach is, however, quasi-automatic because the user still
needs to provide a desired crack-length increment every
time the crack tip moves. The quasi-automatic simulation
of crack propagation involves a number of successive
analyses. Each analysis consists of the following steps:

1. A meshless analysis is performed to predict stress and

strain fields.

2. The SIFs are calculated from the results of step 1.

3. The direction of crack trajectory is calculated from

Eq. (55).

4. For a user-defined crack-length increment, the location
of the new crack-tip is determined. The crack geometry
is updated.

. The meshless node in the old crack-tip (if exists) is split
into two nodes locating on the opposite sides of the
crack.

. New meshless nodes are added for improved discreti-
zation of the domain, if desired.

w

(o))

7

Numerical examples

The method developed in this study was applied to per-
form fracture-mechanics analysis of both stationary and
propagating cracks. Both single- (mode I) and mixed-
mode (modes I and II) conditions were considered and
five examples are presented here. The value of A =1 was
used in Examples 2 to 5. For numerical integration, a 6 X 6
Gauss quadrature rule was used in Example 1 and a 8 x 8
rule was used in all other examples for all cells of the
background mesh.

7.1

Example 1: stationary crack under mode-I

Consider an edge-cracked plate under pure tension as
shown in Fig. 1(a), that has length, L = 2 units, width,

W =1 units, and crack length, a = 0.4 units. The far-field
tensile stress, > = 1 units. Due to symmetry, only half of
the plate was analyzed. An EFGM model consisting of 121
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Crack Tip
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Fig. 1a, b. Edge-cracked plate under mode-I loading. a Geome-
try and loads; b meshless discretization (121 nodes)

uniformly spaced meshless nodes is shown in Fig. 1(b).
The domain of the plate was divided by 10 x 10 rectan-
gular cells with their nodes coincident with the meshless
nodes solely for numerical integration. A domain
Q1Q:Q3Qq of size 2b x b required for calculating the
J-integral is defined in Fig. 1(b). Additional nodes of 15
and 18, shown in Fig. 2, were added in P,P,P;P, [see Fig.
1(b)] to study the effect of crack-tip nodal refinement on
SIF. A plane stress condition was assumed with

E = 207,000 units and v = 0.3 units.

Table 1 shows the values of K for N = 121, 136 and 139
used in various nodal arrangements. A linear basis func-
tion and f§ = 2 was used for these calculations. For each
nodal arrangement, the size of domain for J-integral cal-
culation was 6.4 x 3.2 units. When compared with the
benchmark solution of K; = 2.358 units, given by Tada
et al. [31], the predicted values of K from the present
study are accurate. The accuracy improves with the in-
crease of meshless nodes and refinement as expected.
Table 2 also contains the EFGM results of SIF by Bely-
tschko et al. [5] and Kaljevic and Saigal [15] calculated
when N = 121 and 136. The reported results of K; from the

a
'y
. . °
° °
°
'y .
b
®
° .
° °
e %o
° ° ° °
° °

Fig. 2a, b. Nodal refinements at crack tip. a additional 15 nodes;
b additional 18 nodes

Table 1. Mode-I stress-intensity factor using linear basis in var-
ious studies (Example 1)*

Nodal Present study  Belytschko Kaljevic and
points (N) et al. [5] Saigal [13]
121 2.127 (0.901) 2.009 (0.852) 2.010 (0.853)
136 2.290 (0.971) 2.250 (0.954) 2.253 (0.956)
139 2.346 (0.995) b b

# Parenthetical values indicate the ratio of calculated SIF and the
reference value of K; = 2.358 units [27]
b Not calculated

Table 2. Mode-I stress-intensity factor using enriched basis
functions (Example 1)*

Type of enrichment K; SIF Ratio®
Full 2.366 1.003
Radial 2.360 1.001
Hybrid 2.337 0.991

#The SIF Ratio = Predicted SIF/Reference value of SIF, which is
2.358 units [27]

past do approach the reference solution, but their con-
vergence rate is slightly lower than that in the present
development. Further nodal refinements are needed to
reach the accuracy of present results [5, 15]. No Lagrange
multipliers or singular weight functions used by Bely-
tschko et al. [5] and Kaljevic and Saigal [15] were needed
or used in the present development.



Table 2 presents results to study the effect of various
basis functions on the calculation of SIF. Three basis
functions involving full (f = 4), radial (f = 5), and hybrid
(p = 3) enrichments were used to calculate K for the
meshless discretization (N = 121) of Fig. 1(b) and the
same J-integral domain of size 6.4 x 3.2 units. For
the hybrid basis function, the fully enriched basis was used
at the singularity-dominated region (r/a < 0.1) and linear
basis at r/a > 0.2. The agreement between the predicted
SIFs by the proposed method and reference solution is
excellent. The use of enriched basis significantly improved
the accuracy of SIF without needing further refinements at
the crack tip.

Table 3. Mode-I stress-intensity factor using various integral
domains (Example 1)*

Size of domain K; SIF Ratio®
(2b x b)

1.6 X 0.8 2.361 1.001

3.2 X 1.6 2.357 0.999

48 x 2.4 2.358 1.000

6.4 X 3.2 2.366 1.003

#The SIF Ratio = Predicted SIF/Reference value of SIF. Reference
value: K; = 2.358 [27]
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Fig. 3a, b. A square patch subjected to mode-I displacement
field. a Geometry and applied displacements; b meshless
discretization (175 nodes)

Finally, Table 3 shows the results of SIF for N = 121
using fully enriched basis function (f = 4) as a function of
the size of J-integral domain. Very accurate results of SIF
were obtained regardless of the size of the domain.

7.2

Example 2: near-tip mode-I stress field

In this example, the near-tip stress field of a square patch
of size, 2a = 1 units containing an edge crack of length,
a = 0.5 units is investigated [Fig. 3(a)]. The distributions
of the patch with 175 meshless nodes are shown in

Fig. 3(b). The linear-elastic displacement field corre-
sponding to a pure mode-I SIF value of K; = 1 units was
applied along the outer boundary of the patch. The ob-
jective is to predict the near-tip stress field by the meshless
method and compare with the corresponding LEFM sin-
gularity field. A plane stress condition was assumed with
the same values of E and v in Example 1.

Using a fully enriched basis and f§ = 4, Fig. 4 shows the
plots of radial (o,,) and circumferential (cgy) stresses as a
function of r/a, when 0 = 0. For r = 0.14, the angular
variations of o,,, Gy, and shear stress, 7,9, are also shown
in Fig. 5. Figures 4 and 5 also include the plots of exact
stresses from the LEFM singularity field. The predicted
stresses from the meshless method match very well with
the exact stresses. Similar accuracy of stresses was also
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Fig. 4. Near-tip stress field ahead of crack tip
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Fig. 5. Angular variation of stresses for r/a = 0.1
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demonstrated by Fleming et al. [19] using a modified
variational approach. The results of this study, however,
were obtained using the original variational equation and
the transformation method for boundary conditions.

7.3

Example 3: stationary crack under mixed-mode

This example involves an edge-cracked plate in Fig. 6(a),
which is fixed at the bottom and subjected to far-field
shear stress, 7> = 1 unit applied on the top. The plate has
length, L = 16 units, width, W = 7 units, and crack length,
a = 3.5 units. A domain of size 2b; x 2b, required for
calculating the M%) integral is also shown in Fig. 6(a).
Figure 6(b) shows the meshless discretization involving
324 uniformly spaced nodes. A background mesh with cell
points coincident with the meshless nodes was used. The
elastic modulus and Poissons ratio were 30 x 10° units and
0.25, respectively. A plane strain condition was assumed.
The mode-I and mode-II SIFs were calculated according to
Egs. (52)-(54).
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Fig. 6a, b. Edge-cracked plate under mixed-mode loading.
a Geometry, loads, and domain size; b meshless discretization
(324 nodes)
Table 4. Mixed-mode stress-intensity factor using various in-
tegral domains (Example 3)*
Size of domain Mode-I Mode-II
(2by x 2by)
K; SIF Ratio Ky SIF Ratio
2.8 x4.0 33.38 0.982 4.578 1.006
5.6 X 6.0 33.62 0.989 4.545 0.999
5.6 X 10.0 33.65 0.990 4.547 0.999
7.0 X 10.0 33.67 0.990 4.540 0.998
7.0 X 12.0 33.67 0.990 4.540 0.998
7.0 X 16.0 33.68 0.991 4.541 0.998

#SIF Ratio = Predicted SIF/reference value of SIF. Reference va-
lues: K; = 34.0 units and Kj; = 4.55 units [32]

Table 4 shows the predicted K; and Kj; for this edge-
cracked problem using a fully enriched basis function,
(p = 4), and various sizes of fracture integral domain.
No major effects of domain size are seen. The reference
solutions for this problem are: K; = 34.0 units and
Ky = 4.55 units [32]. They compare very well with the
calculated SIFs given in Table 4. Similar results were re-
ported by Fleming et al. [19].

7.4

Example 4: propagating crack under mixed-mode
Consider the edge-crack problem of Example 3. In this
example, the accuracy of crack-path prediction using
meshless method is evaluated. A fully enriched basis
function was used. A domain size with 2b; = 2b, = 0.45
units surrounding the crack tip was chosen for evaluating
the M(1?) integral. For the initial crack, the orientation of
this domain is as shown in the Fig. 6(a). When the crack
tip moves, the domain also moves in such a way that its
center and local x-axis coincide with the new crack tip and
direction of crack propagation, respectively. Otherwise, all
other meshless input parameters are the same as in Ex-
ample 3. For crack-propagation analysis, the maximum
circumferential stress criterion was used.

Figure 7 shows the evolution of crack trajectory using
the proposed method. The increment of crack length
during each step of crack propagation was 4% of the initial
crack length. At each increment, a new node was added at
the crack tip. For comparison, a similar crack-growth
analysis was performed using the FEM. The FEM involves
quarter-point singularity elements and an automatic
remeshing procedure for updating crack-tip mesh during
the progression of crack growth. The predicted crack
path from the meshless method almost coincides with the
crack path from FEM. A similar accuracy of the crack
trajectory is maintained without the burdensome reme-
shing required by FEM. Hence, the complexity of crack-
propagation analysis can be significantly reduced by using
the meshless method.

7.5

Example 5: experimental validation

In this example, crack trajectories predicted by the pro-
posed method are compared with the Pustejovsky’s

© 0 0o 0o 000 0 o0

uuuuuuuuu

initial crack T~
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Fig. 7. Simulation of crack propagation by meshless and finite
element methods
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Fig. 8a, b. Center-oblique-cracked titanium Ti-6Al-4V plate
under uniaxial loading. a Geometry, loads, and domain size;
b Meshless discretization (1124 nodes)

experimental data [33, 34]. Pustejovsky performed a series
of uniaxial tension tests on isotropic Titanium Ti-6Al-4V
plates with oblique center-cracks of length 2a = 13.5 mm
(0.53 inch) at y = 43° and length 24 = 14.2 mm (0.56
inch) at y = 30°. The reported dimensions and material
properties of the specimens were: length, 2L = 304.8 mm
(12 inches), width, 2W = 76.2 mm (3 inches), elastic
modulus, E = 110 GPa (16,000 ksi) and Poissons ratio,
v = 0.29. A far-field uniaxial tensile stress, o> = 207
MPa (30 ksi) was applied on the top and the bottom of
the specimen during meshless analysis. Figure 8(a) and
(b) show the dimensions of the specimen and the
meshless discretization, respectively. A hybrid enrich-
ment of basis function was adopted by using fully en-
riched basis function for a small region close to the two
crack tip regions and by using linear basis function for
the rest of the domain. The inner radius of the coupling
region for hybrid enrichment was 0.5a and the outer
radius was 0.75a4. As shown in the Fig. 8(a), a domain
size with 2b; = 2b, = 1.6 mm (0.0625 inch) surrounding
the crack tip was chosen for evaluating the M) integral
for the initial crack. During crack propagation, the do-
main was moved the same way as explained in Example
4. A plane strain condition was assumed during the
analysis.

Figure 9 shows the comparison of the predicted crack
trajectories by the proposed meshless method with the
experimental data in a small region ABCD [see Fig. 8(b)]
surrounding the crack. The results of both cracks, one with
2a = 13.5 mm (0.53 inch) and y = 43° and the other with
2a = 14.2 mm (0.56 inch) and y = 30°, are shown in
Fig. 9. In both cases, the increment of crack length at each
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Fig. 9. Comparison of simulated crack trajectory by meshless
with experimental data

crack tip during each step of crack propagation was 2% of
the initial crack length. The predicted crack trajectories are
in good agreement with the experimental results.

8

Summary and conclusions

An efficient meshless method was developed to analyze
linear-elastic cracked structures subject to single- or
mixed-mode loading conditions. The method involves an
element-free Galerkin formulation in conjunction with an
exact implementation of essential boundary conditions
and a new weight function. The proposed method elimi-
nates the shortcomings of Lagrange multipliers commonly
used in element-free Galerkin formulations. Numerical
examples show that the proposed method yields accurate
estimates of stress-intensity factors and near-tip stress
field for two-dimensional cracked structures. Furthermore,
this method was applied to model crack propagation un-
der mixed-mode condition. Since the method is meshless,
a structured mesh is not required; only a scattered set of
nodal points is needed in the domain of interest. Since no
element connectivity data are needed, the burdensome
remeshing required by the finite element method is
avoided. By sidestepping remeshing requirement, crack-
propagation analysis can be dramatically simplified. Ex-
ample problems on mixed-mode condition show that the
predicted crack trajectories by the proposed meshless
method are in excellent agreement with the finite element
results or the experimental data.
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