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Shape sensitivity analysis in mixed-mode fracture mechanics

G. Chen, S. Rahman, Y. H. Park

Abstract This paper presents a new method for continu-
um-based shape sensitivity analysis for a crack in a ho-
mogeneous, isotropic, and linear-elastic body subject to
mixed-mode (modes I and II) loading conditions. The
method is based on the material derivative concept of
continuum mechanics, domain integral representation of
an interaction integral, and direct differentiation. Unlike
virtual crack extension techniques, no mesh perturbation
is needed in the proposed method to calculate the sensi-
tivity of stress-intensity factors. Since the governing vari-
ational equation is differentiated prior to the process of
discretization, the resulting sensitivity equations are
independent of approximate numerical techniques, such
as the finite element method, boundary element method,
meshless methods, or others. In addition, since the inter-
action integral is represented by domain integration, only
the first-order sensitivity of the displacement field is
needed. Two numerical examples are presented to illus-
trate the proposed method. The results show that the
maximum difference in the sensitivity of stress-intensity
factors calculated using the proposed method and refer-
ence solutions obtained by analytical or finite-difference
methods is less than four percent.

1

Introduction

Sensitivity analysis of a crack-driving force plays an
important role in many fracture-mechanics applications
involving the stability and arrest of crack propagation,
reliability analysis, parameter identification, or other
considerations. For example, the derivatives of the stress-
intensity factor (SIF) or other fracture parameters are of-
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ten required to predict the probability of fracture initiation
and/or instability in cracked structures. The first- and
second-order reliability methods [1], frequently used in
probabilistic fracture mechanics [2-8], require the gradi-
ent and Hessian of the performance function with respect
to random parameters. In linear-elastic fracture mechanics
(LEFM), the performance function is built on SIF. Hence,
both first- and/or second-order derivatives of SIF are
needed for probabilistic analysis. The calculation of these
derivatives with respect to load and material parameters,
which constitutes size-sensitivity analysis, is not unduly
difficult. However, the evaluation of response derivatives
with respect to crack size is a challenging task, since it
requires shape sensitivity analysis. Using a brute-force
type finite-difference method to calculate the shape
sensitivities is often computationally expensive, in that
numerous repetitions of deterministic finite element
analysis may be required for a complete reliability analy-
sis. Furthermore, if the finite-difference perturbations are
too large relative to finite element meshes, the approxi-
mations can be inaccurate, whereas if the perturbations
are too small, numerical truncation errors may become
significant. Therefore, an important requirement of some
fracture-mechanics applications is to evaluate the rates of
SIF accurately and efficiently.

Some methods have already appeared to predict the
sensitivities of SIF under mode-I condition. In 1988, Lin
and Abel [9] introduced a direct-integration approach for a
virtual crack extension technique that employs the varia-
tional formulation and a finite element method (FEM) to
calculate the first derivative of SIF for a structure
containing a single crack. This method maintains all of the
advantages of similar virtual crack extension techniques
introduced by deLorenzi [10, 11], Haber and Koh [12], and
Barbero and Reddy [13], but adds a capability to calculate
the derivatives of the SIF. Subsequently, Hwang et al. [14]
generalized this method to calculate both first- and second-
order derivatives for structures involving multiple crack
systems, axisymmetric stress state, and crack-face and
thermal loading. A salient feature of this method is that
SIFs and their derivatives can be evaluated in a single
analysis. However, this method requires mesh perturbation
- a fundamental requirement of all virtual crack extension
techniques. For second-order derivatives, the number of
elements affected by mesh perturbation surrounding the
crack tip has a significant effect on solution accuracy [14].
Recently, Feijoo et al. [15] applied the concepts of shape
sensitivity analysis [16] to calculate the first-order deriva-
tive of the potential energy. Since the energy release rate



(ERR) is the first-order derivative of potential energy, the
ERR or SIF can be calculated using this approach, without
any mesh perturbation. Later, Taroco [17] extended this
approach to formulate the second-order sensitivity of
potential energy to predict the first-order derivative of the
ERR. In practice, however, this presents a formidable task,
since it involves calculation of second-order stress and
strain sensitivities. To overcome this difficulty, Chen et al.
[18, 19] invoked the domain integral representation of the
J-integral and used the material derivative concept of
continuum mechanics to obtain first-order sensitivity of
the J-integral for linear-elastic cracked structures. Since
this method requires only the first-order sensitivity of a
displacement field, it is simpler and more efficient than
existing methods. Most of these methods, however, have
been developed for mode-I loading conditions only.
Although the bulk of fracture-mechanics literature is
concerned with the first mode of crack deformation, there
are practical engineering problems that involve mixed-
mode conditions. Hence, there is a need to develop sensi-
tivity equations for mixed-mode loading conditions.

This paper presents a new method for predicting the
first-order sensitivity of mode-I and mode-II stress-
intensity factors, K; and Kjj, respectively, for a crack in a
homogeneous, isotropic, linear-elastic structure. The
method involves the material derivative concept of con-
tinuum mechanics, domain integral representation of an
interaction integral, known as the M-integral, and direct
differentiation. Numerical examples are presented to cal-
culate the first-order derivative of the M-integral and
stress-intensity factors, using the proposed method. The
results from this method are compared with analytical and
finite-difference methods.

2
Shape sensitivity analysis

2.1

Velocity field

Consider a general three-dimensional body defined as an
uncountable infinity of points, called material points, that
can be mapped homeomorphically into the closure of
open, connected subsets of the Euclidean vector space E°.
Each such homeomorphism defines a configuration of the
body. Consider one particular configuration, a reference
configuration, with domain Q C E® and identify a material
point of the body with its position vector x € Q. Figure 1

Fig. 1. Variation of domain

shows the motion of the body from a configuration with
domain Q and boundary I' into another configuration with
domain Q; and boundary I';. This dynamic process can be
represented by

xe€Q (1)
where x and x; are the position vectors of a material point
in the reference and perturbed configurations, respec-

tively, T is a transformation mapping, t plays the role of
time, with

T:x— x,,

x; = T(x,7)
Qr = T(Q7 T) (2)
Ir.=1(T,1) .

A velocity field V can then be defined as

_ dx; _ dT(x, 1) _ 0T(x, 1) 3)
dr dr ot

In the neighborhood of the initial time T = 0, assuming a

regularity hypothesis and ignoring higher-order terms, T
can be approximated by

0T(x,0) n 0(’[2)

~x+1V(x,0) (4)
where x = T(x,0) and V(x) = V(x,0).

V(Xra T)

T(x,7) = T(x,0) + 7

2.2

Sensitivity analysis

The variational governing equation for a structural com-
ponent with the domain Q can be written as [16, 18, 19]

aq(z,z) = lo(z), forallzeZ (5)

where z and z are the actual displacement and virtual
displacement fields of the structure, respectively, Z is the
space of kinematically admissible virtual displacements,
and aq(z,z) and {o(z) are energy bilinear and load linear
forms, respectively. The subscript Q in Eq. (5) is used to
indicate the dependency of the governing equation on the
shape of the structural domain.

The pointwise material derivative at x € Q is defined as
[16-18]

T \4 B
5 — Lim [z (x+1V(x)) z(x)} ' (6)
—0 T
If z, has a regular extension to a neighborhood of Q;, then
z(x) = Z/(x) + Vz'V(x) (7)
where
Z = lim {L‘) - Zﬂ (8)
7—0 T

is the partial derivative of z and
V = {0/0x;,0/0x,,0/0x;}" is the vector of gradient op-
erators. From Eq. (7),

Z(x) = 2(x) — VZ'V(x) . 9)

One attractive feature of the partial derivative is that, given
a smoothness assumption, it commutes with the deriva-
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tives with respect to x;, i = 1, 2, and 3, since they are
derivatives with respect to independent variables, i.e.,

oz\' o , .
i :a(z), i=1,2, and 3 . (10)

Let Y, be a domain functional, defined as an integral over

Q,
Y = /ff(xr)dgr (11)
Q,

where f; is a regular function defined on Q.. If Q is C*
regular, then the material derivative of i/, at Qis [16, 18, 19]

iy = [IF(0) + div(rv ) (12)
Q

For a functional form of

sz /g(ZnVZr)er )

Q,

(13)

the material derivative of \, at Q using Eqgs. (10) and (12)
is

Wy, = /[gzz’ + gy, V7 eriv(gV)]dQ , (14)

Q
where g = {0g/0z,,0g/0z,,0g/0z;}", and
o o g
6(625/6)(1) 6(625/'@(2) 0(0z; /0x3)
8v. = 6(azz§6x1) 6(azz§6x2) 6(6zj@x3) (15)
g g g
6(623/6.761) 6(623/63(2) 6(623/6363)

Using Eq. (9), Eq. (14) can be rewritten as

'702 = / [gzz — 8 (VZTV) + szVi - szV (VZTV)
Q
+div(gV)]dQ . (16)
In Eq. (16), the material derivative z is the solution of
the sensitivity equation obtained by taking the material
derivative of Eq. (5).

If no body force is involved, the variational equation
(Eq. 5) can be written as

an(z,z) = /Jij(z)e,j(i)dQ = lo(z) E/ TizdlT  (17)

Q T

where 0;(z) and &;(z) are the stress and strain tensors of

the displacement z and virtual displacement z, respec-
tively, T; is the ith component of the surface traction, and
z; is the ith component of z.

Taking the material derivative of both sides of Eq. (17),
using Eq. (9), and noting that the partial derivatives with
respect to t and x; commute with each other,

ao(2,2) = U, (z2) — dy(2,2), VzZeZ (18)

where the subscript V is used to indicate the dependency
of the terms on the velocity field. The terms ¢, (z) and
aY,(z,z) can be further derived as

0, (z) = / {~Ti(zi;V)) + [(Tizi)  my

+ Kr(T,-z_i)](Vin,-)}dl" (19)
and
%mw=—/wmmwm+@m@wm
Q
— 0y(2)e;(Z)div V]dQ (20)

where V; is the ith component of V, n; is the ith compo-
nent of unit normal vector n, and kr is the curvature of the
boundary, and Zi.j = azi/axj, Zi,j = Gii/axj, Vi,j = aV,-/axj.

To evaluate the sensitivity expression of Eq. (16), a
numerical method is needed to solve Eq. (17). In this
study, the standard FEM was used. If the solution z of
Eq. (17) is obtained using an FEM code, the same code can
be used to solve Eq. (18) for z. This solution of z can be
obtained efficiently, since it requires only the evaluation of
the same set of FEM matrix equations with a different
fictitious load, i.e., the right hand side of Eq. (18). In this
study, the ABAQUS (Version 5.8) [20] finite element code
was used in all numerical calculations, as presented in
forthcoming sections.

3
The interaction integral and its sensitivity

3.1
The interaction integral
Consider a structure with a rectilinear crack of length 2a
and orientation 7, subjected to external loads
S1,S2,-..,Sm, as shown in Fig. 2. The structure is sub-
jected to mixed-mode deformation involving primary
modes I and II. Let K; and Ky be the SIFs for mode-I and
mode-II, respectively. The SIFs can be calculated using the
interaction integral [21] converted into a domain form [22,
23]. For example, K; can be calculated from

E/

K =—M1?
2

(21)

S

Fig. 2. General cracked body under mixed-mode loading



where

p={%
1—v2)

is the effective elastic modulus with E and v representing
the modulus of elasticity and Poisson’s ratio, respectively,
and M%) is the interaction integral defined as

M(l,z):/ {GZ(_J_I) azi L) azi
A
(23)

axl Y le
where g and z; are the components of stress tensor and
displacement vector, respectively,

12) _ ()() ()(1) _
wi >_%[ +6 j | =0y % i vij

plane stress

plane strain , (22)

0
W<1"2)(31j:| %dA
j

(24)

is the mutual strain energy from the two states, A is the
domain area inside an arbitrarily chosen counter-clock-
wise contour around the crack tip, and g is a weight
function chosen such that it has a value of unity at the
crack tip, zero along the boundary of the domain, and
arbitrary elsewhere. Equations (23) and (24) include the
terms from the actual mixed-mode state for the given
loading and boundary conditions (superscript 1) and the
superimposed near-tip mode-I auxiliary state corre-

sponding to unit SIF (superscript 2). The mode-I auxiliary

state for stresses and displacements for a unit SIF can be
written as

o1 cos> (1 - s1ngsm 0)
03 p =—=—=1 cos?(1+sindsinl) (25)
O12 vamr cos(’sm@cosﬁ

and

1 0 o : 20
z| _ 1 /7 ]cos; [K 1+2 sm2 0] ’ (26)
2 2u \/ siny [K +1—2cos ]

respectively, where yu is the shear modulus and
= (3 —v)/(1 + v) for plane stress and x = 3 — 4v for
plane strain. Note all quantities are evaluated with respect
to a coordinate system with the crack tip as the origin. Here,
the summation convention is adopted for repeated indices.
Following a similar treatment, Ky can be also calculated
from

/
E 02
2
and equations similar to Egs. (22)-(24), except that the
mode II auxiliary state for stresses and displacements for a
unit SIF should be used, which are

Ky = (27)

o1 ) —sin? 2 + cosZcos Y]
_ 0 0. 30
O = sin 5 cos 5 cos 3 (28)
012 V2T | o5l [1 sm ¥sin ]
and

7\ _ 1 [rf sind[k+1+2cos*Y (29)
zf 2u\2m| —cosl[k—1—2sin?Y] [

with h;, i=1,...,

3.2
Sensitivity of interaction integral and stress-intensity
factors

3.2.1
Sensitivity of interaction integral
Expanding each term of Eq. (23) yields

0 oz”) oq ) oz oq | oz g
7 0x; Ox; 3%, 0x; 12 Ox; Ox;
azz 0q 1 622 0q 285
O T e ()
o 62 oq _ azl 99 . 6251)%
ij axl GxJ “ Ox; 0x; 12 8%, Ox,
0% e
2L dx; Ox 2 dx; 0xy
and
@q (2) 6z(1) (2) az(l) 62(1)
12 1 1 2
5“@ Mo T\ o T
6z2 0q
to 22 6x2 ax1 (32)
Applying Egs. (30)-(32) in Eq. (23) yields
az 0q 62 0q
M2 :/ Oz,
611 le 6x1 6x1 6X2
A
+ (1) aZgZ) % + a22 aq dAa
72 @xl axl 0-22 axl aXZ
+ [ o 02" 0 22 2g
12 6x1 axz 22 6x1 6x2
A
(1) (1)
_ 2)621 %_ 2)622 a_q da 33
12 6x2 6x1 2 @xz 6x1 ' ( )

For the two-dimensional plane stress or plane strain
problem, once the stress-strain relationship is applied,
Eq. (33) can be expressed as

M1 = /hdA (34)
A

where

h=hy+hy+hs+ hy + hs + hg — hy — hs (35)

8 dependent on the state of stress.
For plane stress,

1) (1) )
hy = E 0z, +Vaz2 0z)" 0q (36)
1—v2\ O0x; Ox; | Ox; Oxy
E d (1) d (1) d (2) o
hy = A, % 1% 99 (37)
2(1+v) \ 0x, Ox; | Ox; Ox;
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E 6251)
h3_20+v)<&@+

6x1

E 621
h4_1—V2< le +

202 0g

_ Y9
hs = o1; O0x; Ox;
L 622 0q

6= 22 6x1 @xz
az 0q

hy; = il

7 612 axz 6x1

hs - 0'(2) azgl) aq

For plane strain,

2 Bx, Ox;

6x2 6X1 axz

6z§1) 6222) 0q
6x1 6x1

azgl)> azg” 0q

E azV
b= (1 —v)

T (1 —2v) [( Vo T
o E oz +azg” oz aq
2 2(1 + V) @xz axl @xl axl
I E 6251) +6.251) 6222) G_q
’ 2(14v) \ 0x, Ox; | Ox; Ox;
E 621
=g a2 "o T

1)

_ 0z 0q
hs = o13 O0x; Ox,
b @0 0

6 2 le axz
621 0q
h7 N 012 axz 6x1
az 0q

hg = i .
8 622 6x2 axl

(1)] azga %

6x1 le

(44)

(45)

(46)

6x1 axz

Jen

(47)

(48)

(49)

(50)

(51)

Hence, in relation to Eq. (12), the material derivative of

M2 s

M2 = / [W + div(hV)]dA

A

where,

W =h) +H,+ h, + hy + hy + by — h, —

{0}

and

(52)

. B o(hVvy) 0(hVy)
div(hV) = o, + o
_ o(hVy) 0(hyVy) 0(h3Vy) n 0(hyVy)
ax1 6x1 @xl axl
6(h5V1) n 0(hs V1) B o(h; V1) B 0(hgVy)
6x1 axl 6x1 aJC1
n O(hVy)  0(hVy) 0(h3Vy)  O(hyVsy)
0x; Ox; 0x; 0x
n 0(hsV>) n 0(hs V) B 0(h; V) B 0(hgV,)
ox 0x 0x o
(55)
Equation (52) then becomes
M) = /(H1 + Hy + Hs + Hy + Hs
A
+ Hs — H; — Hg)dA (56)
where
iV iV .
H, = g+ V) O 2), i=1,....8 . (57)
! axl @xz

The explicit expressions of H;,i =1,...,8 are given in
Appendix A for both plane stress and plane strain condi-
tions.

Equations (A1)-(A8) and (A9)-(A16) in Appendix A
provide explicit expressions of H;, i = 1, 8 for plane stress
and plane strain conditions, respectively, which can be
1nserted in Eq. (56) to yield the first-order sen51t1v1ty of
M12) with respect to crack size. The integral in Eq. (56) is
independent of the domain size A and can be calculated
numerically using standard Gaussian quadrature. A 2 X 2
or higher integration rule is recommended for calculatlng
M. A flow diagram for calculating the sensitivity of M is
shown in Fig. 3.

3.2.2

Sensitivities of stress-intensity factors

From Egs. (21) and (27), the sensitivities of K and Kj; can
be calculated by

0Ky E'oMUD

a2 oa (58)
aKH o E/ aM(l’H)
Pa "2 da (59)

where M) and M) are the interaction integrals for
mode-I and mode-II, respectively.

4
Numerical examples

4.1

Example 1: Angle-cracked plate under far-field tension
Consider a cracked plate with width 2W = 20 units, length
2L = 20 units, and two cases of crack length 2a, with
a/W = 0.05 and a/W = 0.1, subjected to a far-field re-
mote tensile stress 6> = 1 unit. The material properties,
the elastic modulus E = 26 units, Poisson’s ratio v = 0.3,



Solve displacement z

ag(2.7)=1, (@)

Y

Solve material derivative Z

an(2.2)=1,(Z)-a, (z.7) Kz

Y
Calculate H;,i=1,...,8

(Equations A1-A8 or A9-A16)

Y

Calculate Sensitivity of M
M =J (H+H,+H,+H,+H,+H, —H,—H,)A
A

End

and the crack orientation angle y = 45° were selected. A
plane stress condition was assumed.

Figure 4a shows the geometry and load of the cracked
panel. A finite element mesh for this problem with
a/W = 0.1 is shown in Fig. 4b. Second-order elements
from the ABAQUS (Version 5.8) [20] element library were
used. The element type was CPS8R, a reduced integration,
eight-noded quadrilateral element. The number of ele-
ments and nodes were 656 and 1400, respectively. A ring of
32 focused elements with collapsed nodes was employed in
the vicinity of the crack tip. The size of the integral domain
was 2b; = 2b, = 2a, as shown in Fig. 4a. A 2 x 2 Gaussian
integration scheme was used to calculate the sensitivities.

The analytical solutions of K; and Kj; for an infinite
panel ( a/W — 0) under this loading condition are [24],

K; = ¢ sin®* y\/na (60)
and

Ky = ¢®sinycosyy/na . (61)
Hence, their derivatives with respect to crack length are

0Ky 1

a—al = ano sin’ y\/z (62)
and

0Ky 1

6—::5600 sinycosy\/g . (63)

Table 1 shows the numerical results for 0K;/0a and
0Kj1/0a using two methods, one of which is based on the
proposed continuum shape sensitivity method described

Using FEM, solve:
Kz=F

Using FEM, solve:
F

& fietitious

Fig. 3. A flowchart for continuum sensitivity
analysis of crack size

in this paper. The other method is based on the exact
solution of an infinite panel [i.e., Eqs. (62) and (63)]. The
results in Table 1 show that the continuum shape sensi-
tivity method is accurate for computation of 0K;/0a and
0K11/0a, when compared with the corresponding results of
the infinite panel. The difference between the results of the
proposed method and the infinite-panel solution is less
than 2 and 4 percent for modes I and II, respectively.

4.2
Example 2: Edge-cracked plate under far-field shear
This example involves an edge-cracked plate, as shown in
Fig. 5a, fixed at the bottom and subjected to a far-field shear
stress 7> = 1 unit applied at the top. The plate has length
L = 16 units, width W = 7 units, and two cases of crack
length, a = 1.75 and 3.5 units. A 2b; x 2b, domain with
2b; = 2b, = 3.5 units, required to calculate the M(1?) inte-
gral, is also shown in Fig. 5a. Figure 5b shows the finite
element discretization for a = 3.5 units, which involves
1235 nodes and 560 elements. A ring of 32 focused elements
with collapsed nodes was used in the crack-tip region. The
elastic modulus and Poisson’s ratio were 30 x 10° units and
0.25, respectively. A plane strain condition was assumed.
Table 2 shows the numerical results for 0K;/0a and
0Kj1/0a using the proposed continuum shape sensitivity
method. Since no analytical solutions were available for
this problem, the finite-difference method with a one-
percent crack-length perturbation was selected to verify the
results of the proposed method. The results in Table 2
show that the continuum shape sensitivity method
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Fig. 4a, b. Angle-cracked plate under remote tension a geometry
and loads; b finite element mesh for a/W = 0.1 (full model)

Table 1. Sensitivity of K; and Ky for angle-cracked specimen
by the proposed method and analytical solution

a o AV e
[
L/2
. 2h
Crack '
y |Crac L
= - 2b,
a
L./2 :
! Integral Domain
L)
S % H’//;
W
b
11
e
NS AT
TR
gEBEED AR
- :—’F,c.r’..gl;.\‘i LT

Fig. 5a, b. Edge-cracked plate under remote shear a geometry
and loads; b finite element mesh for a/W = 0.5 (full model)

Table 2. Sensitivity of K; and Ky; for edge-cracked specimen
by the proposed and finite-difference methods

a/W SIF Sensitivity of SIF Difference®  a/W SIF Sensitivity of SIF Difference®
(K1, Kyp) (0Ky/0a, 0Ky/0a) percent (K, Ki1)  (OKy/Oa, 0Kyi/0a) percent
Proposed  Analytical Proposed Finite-difference
method solution method method
Mode-I Mode-I
0.05 0.6298 0.6297 0.6267 -0.49 0.25 17.44 6.60 6.54 -0.92
0.1 0.8729 0.4350 0.4431 1.80 0.5 34.13 15.13 14.94 —1.45
Mode-II Mode-II
0.05 0.6091 0.6078 0.6267 3.0 0.25 1.97 1.41 1.44 2.08
0.1 0.8552 0.4265 0.4431 3.8 0.5 4.54 1.59 1.53 -3.77

® Difference = (analytical solution — proposed method)
x 100/analytical solution

provides accurate estimates for 0K;/0a and 0Ky /0a when
compared with the corresponding results of the finite-dif-
ference method. The difference between the results of the
proposed and finite-difference methods is less than 4%.

® Difference = (finite-difference method — proposed method)
X 100/finite-difference method

5

Summary and conclusions

A new method has been developed for continuum-based
shape sensitivity analysis of a crack in a homogeneous,



isotropic, linear-elastic body subject to mixed-mode
loading conditions. The method involves the material
derivative concept of continuum mechanics, domain in-
tegral representation of an interaction integral, and direct
differentiation. Unlike virtual crack extension techniques,
no mesh perturbation is required in the proposed
method to calculate the sensitivity of stress-intensity
factors. Since the governing variational equation is dif-
ferentiated prior to discretization, the resulting sensitiv-
ity equations are independent of approximate numerical
techniques, such as the FEM, the boundary element
method, meshless methods, or others. Also, since the
proposed method requires only the first-order sensitivity
of a displacement field, it is much simpler and more
efficient than existing methods. Two numerical examples
have been presented to illustrate the proposed method.
The results show that the maximum difference between
the sensitivity of stress-intensity factors calculated
using the proposed method and reference solutions
obtained by analytical or finite-difference methods is less
than 4%.

Appendix A
Plane stress
o E o7 oq [0z | @z
T Ox; Ox; | Ox; 0x;
(e ov, | om o,
axz le axl @xz
n E 0q ngl) v@zgl) 62252>V 4 622?) v
1—120x; \ 0x; = Ox, )\ 0x2 ' oxj0x,
E 6252) 6251) 6221 o aq d%q
v (o o a2 T anen
(2) (1)
. E 0Oz % Gz oV, +az1 oV, (A1)
1 —v2 0x; Ox; 6x2 6x1 Ox; 0x;
" E  0z” 0q (0" o)
2= 2(14v) 0x; 0x; \ Ox;  0Oxy
B LA A
axl @xz axz 6x1
n E 0q 62(11) +62gl) 622(12) Vi + 622(12) v
2(14v)0x; \ Ox;  Oxg 0x3 P ok 0x,

6251> o*q d%q
<6x16x2 Vit G_x% V2>

. E 6252) 6251) n
2(1+v) 0x; \ Ox; Ox;
(1)
o %> (A2)

E 3" 8q (04" ov
2(1+v) 0x; Ox;

_|_

Ox; Ox;  Ox; O0xy

Hs =

Hg =

P : oz o (02" oz
T 2(14v) 0x; 0x; \ Ox;  Oxy
Cagovy ez o,
6X1 6x2 6x2 6x1
E 0q 6251) ngn 62222) Vi 62222) v
204+ v)dx \ ox, | 0x )\ o2 ' dxj0x,
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