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Abstract

A new stochastic method, integrating spline dimensional decomposition (SDD) and isogeometric analysis (IGA), is proposed
for solving stochastic boundary-value problems from linear elasticity. The method, referred to as SDD–IGA, involves Galerkin
isogeometric analysis as a deterministic solver for governing partial differential equations and a novel Fourier-like orthogonal
spline expansion generated from the analysis-of-variance decomposition of a high-dimensional function. For the stochastic
part of the SDD–IGA method, an innovative dimension-reduction integration technique is presented for efficiently calculating
the expansion coefficients. Analytical formulae have been derived to calculate the second-moment properties of an SDD–IGA
approximation for a general output random variable of interest. Numerical examples demonstrate the capability of a low-order
SDD–IGA in efficiently delivering probabilistic solutions with an approximation quality as good as, if not better than, that
obtained from a high-order polynomial dimensional decomposition. The proposed SDD–IGA method is most suitable in the
presence of locally nonlinear or nonsmooth behavior commonly found in applications.
c⃝ 2020 Elsevier B.V. All rights reserved.
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1. Introduction

Design and analysis of almost all mechanical systems involve uncertainties in external loads, boundary conditions,
material properties, and geometry. In many cases, these uncertainties need to be propagated to a response variable
of interest via solution of stochastic partial differential equations (PDEs). Analytical and numerical methods have
been progressively studied in this field of research to model the statistical characteristics of the response. Naive
direct sampling methods, such as Monte Carlo simulation (MCS) [1,2], are most versatile. One major drawback
of MCS, though, is its slow convergence rate, which makes the procedure costly, if not prohibitive, even though
convergence is almost assured. Moreover, the rate of convergence does not depend on the dimension of the stochastic
domain, which is intriguing in the case of high-dimensional problems. On the other hand, the illustrious stochastic
finite element methods (SFEMs) [3,4] have been proposed as powerful computational tools to solve stochastic
PDEs, mostly in the context of linear elasticity. The Galerkin approaches [5,6] based on variational forms often
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provide very accurate results but are expensive. Regression methods [7] have been established to reduce the cost,
but lower accuracy is generally expected. Perturbation methods [8,9], spectral decomposition methods [10,11], and
efficient non-intrusive sparse grids methods [12] are other popular approaches for solving stochastic PDEs along
with the stochastic boundary element method [13,14]. One significant contribution of SFEM has been the integration
of the uncertainty quantification (UQ) procedure into the classical finite element analysis (FEA). As a result, the
applicability of FEA has surged tremendously. Furthermore, the stochastic meshfree method was introduced [15,16]
to mitigate the low efficiency issues of past numerical schemes. In many cases, numerical analyses are carried out
along with MCS to evaluate their accuracy whenever possible.

Polynomial chaos expansion (PCE) methods [17,18] are commonly used in UQ analysis. These methods,
however, generally struggle when they encounter a large number of random variables as the number of expansion
coefficients surges rapidly. This phenomenon is called the curse of dimensionality. In an effort to enhance the
performance of globally supported PCE, domain decomposition techniques, such as multi-element formulation of
PCE [19] and multi-element collocation methods [20], were introduced. The idea was to decompose the domain
based on some variance error threshold. However, in the presence of many subdomains, the multi-element PCE
becomes computationally inefficient. Although the latter helped with the efficiency issues, the functions were
still only C0-continuous at the element boundaries. Moreover, the method incorporated referential dimensional
decomposition (RDD), also known as anchored decomposition, which was sub-optimal and would be inferior to
analysis-of-variance (ANOVA) dimensional decomposition (ADD) [21]. More recent work on stochastic PDEs
includes the spline fictitious boundary element method [22], collocation methods [23], and investigation of the
multiscale aspects of randomness [24], where uncertainty may happen at different scales (macro, micro, and so
forth). SFEMs often require a large number of function evaluations (FEA) [25]. That is why, in practice, they still
need improvement in terms of computational consumption due to high mesh density [26]. Another compelling issue
is the computational difficulties with high-dimensional problems in the stochastic domain, where multi-dimensional
integrals are solved. Consequently, only direct sampling methods, such as MCS, might remain affordable. In this
case, the dimension-reduction integration (DRI) technique [27] is a powerful tool to efficiently estimate the integrals
involving high-dimensional functions.

Introduced to bridge the gap between computer-aided design (CAD) and FEA, isogeometric analysis (IGA)
[28,29] exploits basis splines (B-splines) and non-uniform rational B-splines (NURBS) as basis functions that
are globally smooth and are able to handle complex geometries elegantly [30,31]. This method is desirable in
engineering applications as it preserves an exact representation of many geometrical or computational domains.
Moreover, the convergence of the results is assured through mesh refinement [32]. Drawbacks of the watertight
modeling for complex geometries have been alleviated by the generalization of NURBS into T-splines [33,34]. It
is noteworthy that a major shortcoming of the existing Fourier-based UQ methods, such as PCE and polynomial
dimensional decomposition (PDD) [35] methods, lies in the very nature of the polynomial basis functions employed.
Orthogonal splines based on B-splines have been studied for least squares approximations [36]. The goal has been
to harness the approximating power of B-splines. In the case of a nonsmooth or even heavily oscillatory random
function, the limited control over the orthogonal polynomials becomes calamitous. An accurate solution, in this
case, demands a significantly large polynomial degree. On the other hand, geometrical modeling error inherited by
the classical FEA methods is a daunting disadvantage when a high accuracy in numerical simulation is desired.
Oftentimes, these two factors join hands to make existing stochastic numerical methods provide unsatisfactory
results. Consequently, as the IGA is now beginning to be widely used in computational mechanics, there is a need
for expanding the applications of this method to the stochastic level in order to establish a stochastic isogeometric
analysis (SIGA) framework, where all underlying analyses are conducted via B-splines or NURBS.

A few studies in conjunction with SIGA have been reported. They include analysis of functionally graded
plates [37], spectral analysis of linear elasticity problems [38], and a stochastic collocation method [39] with the
ultimate goal of structural design or safety assessments. In the work by Li et al. [38], the existing PCE method is
exploited involving a globally supported polynomial basis for stochastic analysis, although B-splines and NURBS
have been used for deterministic calculations. Due to the mismatch in the basis functions, the approximating power
of SIGA has not been harnessed to its maximum level. Indeed, SIGA naturally inherits the desirable properties of
B-splines and NURBS and satisfactorily handles smooth and nonsmooth functions, not only in the stress analysis
and random field discretization, but also within the stochastic domain. Moreover, these methods are ill-equipped
to deal with high-dimensional problems, because of the tensor-product structure mandated by PCE. Therefore,
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new computational methods capable of exploiting low effective dimensions of high-dimensional functions are still
desirable, and the authors envision attaining a higher accuracy by capitalizing on B-splines and/or NURBS, not
only for deterministic computations, but also for subsequent stochastic analysis. This is the principal motivation for
this work.

This paper presents a new stochastic method, coupling spline dimensional decomposition (SDD) and IGA for
solving a general stochastic boundary-value problem from linear elasticity. While this paper addresses the compu-
tational and practical aspects of the method, referred to as SDD–IGA, readers looking for rigorous mathematical
analysis of SDD, including theoretical results and their formal proofs, should check the companion paper [40].3

The paper is organized as follows. Section 2 presents a description of random input and requisite assumptions,
followed by the formulation of the stochastic boundary-value problem and its finite-dimensional approximation
via the Galerkin method. The SDD method is formally presented in Section 3, including derivation of the output
statistics from an SDD approximation. The SDD approximation is then coupled with the non-intrusive deterministic
IGA framework to construct the stochastic method. Section 4 presents a DRI technique, customized for SDD, to
alleviate the numerical difficulties of high-dimensional integration while calculating the expansion coefficients. Four
numerical examples are provided in Section 5 to analyze the accuracy and efficiency of the proposed method and
the effectiveness of DRI to evaluate various probabilistic response characteristics. Section 6 discusses the future
outlook before the conclusions are drawn in Section 7. Appendices A through C explain or provide introductory
basics of the isogeometric method, special cases of the SDD approximation, and additional details of the numerical
examples.

2. Stochastic boundary-value problem

Let N := {1, 2, . . .}, N0 := N ∪ {0}, R := (−∞,+∞), and R+

0 := [0,+∞) represent the sets of positive integer
(natural), non-negative integer, real, and non-negative real numbers, respectively. For a physical or spatial dimension
d = 1, 2, 3, denote by D a closed bounded set of Rd , which can represent a linear-elastic, deformable body under
equilibrium. In stochastic analysis of a general linear-elasticity problem, which is the focus of this work, the applied
loads, boundary conditions, material properties, and geometry, defined on or for D, are likely to be uncertain due
to their inherent statistical variability. This is referred to as the stochastic boundary-value problem or, simply, the
stochastic problem in this work.

2.1. Input random variables and fields

For N ∈ N and k = 1, . . . , N , define A{k}
:= [ak, bk] as a finite closed interval, where ak, bk ∈ R and bk > ak .

Then AN
:= ×

N
k=1A{k}

= ×
N
k=1[ak, bk] represents a closed bounded subdomain of RN , where × symbolizes tensor

product. The domain AN is referred to as the stochastic domain in this paper.
Let (Ω ,F ,P) be a complete probability space, where Ω is a sample space representing an abstract set of

elementary events, F is a σ -algebra on Ω , and P : F → [0, 1] is a probability measure. With BN
:= B(AN )

representing the Borel σ -algebra on AN
⊆ RN , consider an AN -valued input random vector X := (X1, . . . , X N )T

:

(Ω ,F) → (AN ,BN ), describing the statistical uncertainties in all input and system parameters, including external
loads, displacement boundary conditions, material properties, and geometry, of a mechanical system. The integer N ,
which represents the total number of input random variables, is often referred to as the dimension of the stochastic
problem. As an example, consider a simply-supported beam with random length L , and random Young’s modulus
E , which is subjected to two vertically applied concentrated forces F1 and F2. If all of these input parameters are
modeled as random variables, then X := (L , E, F1, F2)T with stochastic dimension N = 4.

Denote by FX(x) := P(∩N
k=1{Xk ≤ xk}) a joint distribution function of X, admitting a joint probability density

function (PDF) fX(x) := ∂N FX(x)/∂x1 · · · ∂xN . Similarly, each random variable Xk is defined on the abstract
marginal probability space (Ω {k},F {k},P{k}), comprising sample space Ω {k}, σ -algebra F {k}, and probability measure
P{k}.

Depending on the stochastic problem, some of the input parameters may possess spatial variability, suggesting a
need for their random field description. Common examples are elastic properties of engineering materials, size and

3 The PDF file to this manuscript is available at http://user.engineering.uiowa.edu/∼rahman/sdd.pdf.
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shape characteristics of mechanical components, and wind and snow loads in structural systems, to name a few. For
computational purposes, the random fields must be discretized into a finite number of constituent random variables.
An oft-used approach entails the Karhunen–Loève (K–L) expansion [41], leading to an infinite series expansion of
the random field consisting of deterministic functions of space and uncorrelated random variables.

Let α(z, ·) be a real-valued random field with the physical coordinate z defined on D ∈ Rd , which has a zero
mean and a square-integrable covariance function Γ : D × D → R. Any of the input parameters described in the
preceding paragraphs can be represented by this random field. Given an infinite sequence of eigenpairs {λi , φi (z)}i∈N,
obtained from solving the Fredholm integral equation∫

D
Γ (z, z′)φ(z′)dz′

= λφ(z), (1)

the random field admits a mean-square convergent infinite series expansion [41]

α(z, ·) ∼

∞∑
i=1

√
λiφi (z)X i ,

where {X i }i∈N is an infinite sequence of zero-mean, standardized, uncorrelated random variables. In a practical
setting, though, an N ′-term truncation or K–L approximation, such as

αN ′ (z, ·) =

N ′∑
i=1

√
λiφi (z)X i (2)

of α(z, ·), must be used, provided that the eigenvalues have been arranged in a descending sequence. The value of
N ′

∈ N is frequently selected from the condition that all truncated modes have zero or negligible contributions to the
expansion. According to (2), the statistical variation of random field α(z, ·) is being swapped with those controlled
by N ′ uncorrelated random variables X1, . . . , X N ′ . Other random field expansions or approximations comprising
random variables are possible. Having said this, the K–L approximation has an error-minimizing property — a
desirable optimal property recognized in the stochastic community.

The success of the K–L approximation is heavily reliant on the efficient solution of (1). For complex geometries
in high dimensions, solving this eigenvalue problem is computationally intensive, where the eigensolutions must be
obtained numerically. In the past, finite element method (FEM) [3] or mesh-free modeling [16] was employed to
deliver such numerical solutions. More recent works are premised on Galerkin isogeometric [42] and isogeometric
collocation methods [43], where the latter, by eliminating one dimension-order of domain integration, offers a hefty
computational advantage over the former. Readers interested in further detail are directed to the aforementioned
works.

In summary, the randomness in the stochastic problem may stem from spatially invariant random variables
alone, from the discretization of spatially variant random fields, or both. If the stochastic problem contains spatially
invariant random variables and random fields, then N represents the total number of random variables.

2.2. Assumptions

A set of conditions enforced on the input random variables is as follows.

Assumption 1. The input random vector X := (X1, . . . , X N )T
: (Ω ,F) → (AN ,BN ) satisfies all of the following

conditions:

(a) Each input random variable Xk : (Ω {k},F {k}) → (A{k},B{k}) has absolutely continuous marginal distribution
function FXk (xk) := P(Xk ≤ xk) and continuous marginal density function fXk (xk) := ∂FXk (xk)/∂xk with a
bounded support A{k}

⊂ R.
(b) All component random variables Xk , k = 1, . . . , N , are statistically independent, but not necessarily identical.

Consequently, X is endowed with a product-type PDF, that is, fX(x) =
∏N

k=1 fXk (xk), with a bounded support
AN

⊂ RN .
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(c) Given a non-negative integer pk ∈ N0, each input random variable Xk possesses finite moments of all orders
up to 2pk , that is, for all k = 1, . . . , N and 0 ≤ l ≤ 2pk ,

E
[
X l

k

]
:=

∫
Ω

X l
k(ω)dP(ω) =

∫
AN

x l
k fX(x)dx =

∫
A{k}

x l
k fXk (xk)dxk < ∞,

where E is the expectation operator with respect to the probability measure P or fX(x)dx.

Assumption 1 ensures the existence of a relevant sequence of orthogonal polynomials or splines consistent with
the input probability measure. The discrete distributions and dependent variables are not considered in this paper.

According to Assumption 1, the probability measures of input random variables are defined on a closed, bounded
domain. However, for those problems entailing unbounded domains, such as those emanating from normal and
lognormal distributions, a measure transformation can be applied, so that all transformed variables are described on
a bounded domain. This mapping, however, is not unique and likely leads to different orders of accuracy. In other
words, a simple output function of normal random variables may become heavily nonlinear when transformed to
uniform or other random variables. The bottom line is that the requirement for bounded probability measures is
not prohibitive, as the distribution can be mapped onto a bounded domain, although at the cost of lower accuracy
and/or efficiency. This will be addressed further in the numerical examples section.

2.3. Stochastic PDE

The governing equations of linear elasticity from the classical deterministic setting are easily generalized to the
stochastic framework. Indeed, having an input random vector X defined in Section 2.1, whether or not it includes
random variables from random field discretization, the stochastic PDE calls for finding the displacement vector
u(z; X) and stress vector σ (z; X) solutions, which satisfy P-almost surely

∇ · σ (z; X) + b(z; X) = 0 in D(X) ⊂ Rd ,

σ (z; X) · n(z; X) = t̄(z; X) on Γt (X) ⊂ ∂D(X),
u(z; X) = ū(z; X) on Γu(X) ⊂ ∂D(X),

(3)

at every point z = (z1, . . . , zd ) ∈ D(X) ⊂ Rd within the body such that

Γt (X) ∪ Γu(X) ∪ Γ0(X) = ∂D(X), Γt (X) ∩ Γu(X) = ∅,

with Γ0(X) representing the free boundary. Here, ∇ := (∂/∂z1, . . . , ∂/∂zd ) is a vector of gradients, b(z; X) is the
body force vector, t̄(z; X) is the prescribed traction vector, ū(z; X) is the prescribed displacement vector, and n(z; X)
is an unit outward normal vector. The stress vector σ (z; X) is obtained from D(z; X) : ϵ(z; X), where D(z; X) is the
elasticity tensor and ϵ(z; X) := (1/2)(∇ + ∇

T )u(z; X) is the strain vector. The symbols · and : denote dot product
and tensor contraction, respectively.

2.4. Finite-dimensional approximation

The first step to approximate the solution of (3) in a finite-dimensional space hinges on its variational or weak
form. Denote by L2(D(X)), the collection of all square integrable functions u : ∞ ×Ω → Rd . Hence, the solution
of the weak form resides in

U :=
{
u(z; X) : u(z; X) ∈ H 1(D(X)),u(z; X) |Γu = ū(z; X)

}
,

where H 1(D(X)) is the Sobolev space in which only the Dirichlet boundary conditions need to be satisfied. One
major reason for transformation into the weak form is that it requires a lower derivative of the candidate solution
function to exist and to be computed, which can make the numerical scheme more expedient and less strict on the
regularity of the basis functions. The weighting functions are defined as

W :=
{
w(z; X) : w(z; X) ∈ H 1(D(X)),w(z; X) |Γu = 0

}
.

Hence, the weak form is [30]

A(u(z; X),w(z; X)) = L(w(z; X)), (4)
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where

A(u(z; X),w(z; X)) =

∫
D(X)

ϵT (u(z; X))D(z; X)ϵ(w(z; X)) dz (5)

and

L(w(z; X)) =

∫
D(X)

wT (z; X)b(z; X) dz +

∫
Γt (X)

wT (z; X) t̄(z; X) dΓt . (6)

With a set of regularity conditions satisfied, the weak form (4) and the strong form (3) are analytically
equivalent [44]. It is elementary to illustrate that there is a symmetry to the bilinear functional A(·, ·) in (5), which
is a desirable property for numerical implementation purposes. Moreover, note that the first integral in (6) is on the
entire domain and the second integral is on the boundary where the traction t̄(z; X) is applied.

2.4.1. Galerkin discretization
The Galerkin method reduces the original problem to finite-dimensional vector subspaces Uh

⊂ U and Wh
⊂ W ,

where the approximate solution may be calculated through a linear combination of a set of linearly independent
basis functions residing in Uh and Wh . Then, for all wh

⊂ Wh , the Galerkin method yields

A(vh(z; X),wh(z; X)) = L(wh(z; X)) − A(wh(z; X), ūh(z; X)) (7)

with an assumption that for a given function ūh(z; X) ∈ Uh and ūh(z; X) |Γu = ū(z; X), for every uh(z; X) ∈ Uh ,
there exists a unique vh(z; X) ∈ Wh such that

uh(z; X) = vh(z; X) + ūh(z; X).

A brief introduction to isogeometric analysis is provided in Appendix A, where the notations are also introduced.
More specifically, it elaborates on the NURBS basis functions for any physical single-patch problem of dimension
d = 1, 2, or 3, whether they correspond to the stress analysis or the K–L expansion. It is noteworthy, however, that
the random field discretization and the FEA are not necessarily restrained to the use of identical basis functions.
Considering the general multivariate NURBS basis functions R̄i,p,Ξ for a given multi-index set i, order vector p,
and set of knot vectors Ξ , the finite-dimensional approximation by dint of the Galerkin approach is at hand.

2.4.2. Matrix formulation
A matrix formulation of the problem can be developed from (7). The same sets of basis functions are employed

from Uh and Wh in the classical Galerkin approach [44], which also define the geometry. Essentially, the projection
to the NURBS space is carried out by first considering the NURBS functions R̄i,p,Ξ for a given i := (ik1 , . . . , ikd ) ∈

Nd as the basis function index set, the order vector p := (pk1 , . . . , pkd ) ∈ N0
d , and the set of knot vectors

Ξ := (ξ 1, . . . , ξ d ) with 1 ≤ ikl ≤ nkl and 1 ≤ l ≤ d. Note that nk is referred to as the number of basis functions in
coordinate direction k = 1, . . . , d and nc is the total number of basis functions or control points. It is once again
emphasized that the notations are all defined in Appendix A.

The weak form is hence projected to the NURBS space, yielding [30]

K(X)d(X) = F(X), (8)

where

Ki j (X) = A((R̄i(i,d),p,Ξ (z); X), (R̄j( j,d),p,Ξ (z); X)),
Fi (X) = L((R̄i(i,d),p,Ξ (z); X)).

Here, Ki j represents the (i, j)th and Fi stands for the i th component of K and F. A NURBS basis function’s index
i is related to i and the physical problem’s dimension d in the stiffness matrix and force vector assembly procedure.
This, illustrated by i(i, d) in the subscript of R̄, determines the contribution of each component to the global stiffness
matrix and force vector. For more detailed information on how to assemble K and F, refer to Section 4 of the work
of Cottrell et al. [30]. Thus, the vector d is sought by

d(X) = K−1(X)F(X).
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Let I be the multi-index set of all basis functions that define the geometry, as presented in Appendix A. Now,
denote by Iū ⊂ I the multi-index set of all non-zero basis functions on Γu(X). Eventually, the i th component of
the approximate solution uh(z; X) ∈ Uh can be written as

uh
i (z; X) =

∑
j∈I−Iū

R̄j,p,Ξ (z)dji (X) +

∑
j∈Iū

R̄j,p,Ξ (z)ūh
ji (X), (9)

where dji is the i th component of dj, which itself is the j th component of d(X). Moreover, the second term on the
right-hand side of (9) is equivalent to the i th component of ūh(z; X), with ūh

ji (X) being its expansion coefficients
in terms of the basis functions R̄j(i,d),p,Ξ (z).

In (8), matrix K and vectors F and d are generally all random. The solution provided by (9) is referred to as
the IGA solution in terms of displacements. With the displacements calculated, the projected (approximate) stress
tensor is

σ h(z; X) = D(z; X)ϵh(z; X), (10)

where ϵh(z; X) := (1/2)(∇ + ∇
T )uh(z; X) is the projected strain tensor. The elasticity tensor D(z; X) is generally

random as well, since the mechanical properties may be random due to the uncertainties in the manufacturing
processes.

3. A spline dimensional decomposition

Given an input random vector X := (X1, . . . , X N )T
: (Ω ,F) → (AN ,BN ) with known PDF fX(x) on AN

⊂ RN ,
let y(X) := y(X1, . . . , X N ), a real-valued, measurable transformation on (Ω ,F), define a stochastic response or
output function of interest. It is common to assume that the function y belongs to a reasonably large function class,
such as the Hilbert space

L2(Ω ,F ,P) :=

{
y : Ω → R :

∫
Ω

|y(X(ω))|2 dP(ω) < ∞

}
,

with respect to the probability measure fX(x)dx. In linear elasticity applications, the function

y(X) := y(u(z; X), σ (z; X)), (11)

written here with a certain abuse of notation, typically stems from the solutions u : D × Ω → Rd and
σ : D × Ω → Rd(d+1)/2 of the parameterized stochastic PDE described by (3). A principal objective of solving
the stochastic problem from linear elasticity, in particular, and from solid mechanics, in general, is to effectively
estimate the relevant probabilistic characteristics of y(X) ∈ L2(Ω ,F ,P). The dimension N of a real-life stochastic
problem often exceeds 10 and may even be in the realm of hundreds, where the output response function y(X)
is highly nonlinear with locally significant changes, including discontinuity and nonsmoothness, with respect to
the random input X. Therefore, probabilistic computations for complex mechanical systems in a high-dimensional
stochastic domain AN is an expensive initiative.

3.1. ANOVA dimensional decomposition

Denote by u a subset of the index set {1, . . . , N } with the complementary set −u := {1, . . . , N }\u and cardinality
0 ≤ |u| ≤ N . Let Xu = (Xk1 , . . . , Xk|u|

), u ̸= ∅, 1 ≤ k1 < · · · < k|u| ≤ N , be a subvector of X with
X−u := X{1,...,N }\u defining its complementary subvector. Then, for a given ∅ ̸= u ⊆ {1, . . . , N }, the marginal
density function of Xu , defined on Au

:= ×k∈uA{k}
⊂ R|u|, is

fXu (xu) :=

∫
A−u

fX(x)dx−u =

∏
k∈u

fXk (xk),

where the second equality forms due to statistical independence of the input random variables as per Assumption 1.
Hence, it can be shown that, for any function y ∈ L2(Ω ,F ,P), there exists a unique, finite, hierarchical
expansion [21,45]

y(X) = y∅ +

∑
∅̸=u⊆{1,...,N }

yu(Xu), (12a)
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y∅ :=

∫
AN

y(x) fX(x)dx, (12b)

yu(Xu) :=

∫
A−u

y(Xu, x−u) fX−u (x−u)dx−u −

∑
v⊂u

yv(Xv), (12c)

referred to as ADD, where yu is a |u|-variate component function describing a constant or an |u|-variate interaction
of Xu = (Xk1 , . . . , Xk|u|

) on y when |u| = 0 or |u| > 0. Here, (Xu, x−u) denotes an N -dimensional vector whose
kth component is Xk if k ∈ u and xk if k /∈ u. The summation in (12a) comprises 2N

− 1 terms with each term
depending on a group of variables indexed by a particular subset of {1, . . . , N }.

The decomposition presented in (12a)–(12c) has two notable properties [21]:

(1) Any non-constant component function yu(Xu) has a zero mean, that is,

E[yu(Xu)] = 0, ∅ ̸= u ∈ {1, . . . , N }. (13)

(2) Any two distinct component functions yu(Xu) and yv(Xv) are mutually orthogonal, that is,

E[yu(Xu)yv(Xv)] = 0, u, v ∈ {1, . . . , N }, u ̸= v. (14)

Readers interested in further details of ADD are directed to prior works [21,45].
It is elementary to show that all ADD component functions of y(X) are members of respective subspaces of

L2(Ω ,F ,P). Unfortunately, the subspaces are infinite-dimensional. Therefore, a further discretization or refinement
is necessary. In contrast to the past works on polynomial refinements, a new spline adaptation of the subspaces,
spanning measure-consistent orthonormal B-splines, is proposed.

3.2. Measure-consistent orthonormal B-splines

For the coordinate direction k, k = 1, . . . , N , define a positive integer nk ∈ N and a non-negative integer
pk ∈ N0, representing the number of basis functions and degree, respectively. Then, a knot vector or sequence
ξ k := {ζk,ik }

nk+pk+1
ik=1 is defined on the interval [ak, bk] by a non-decreasing sequence of real numbers, where ζk,ik is

the ik th knot with ik = 1, 2, . . . , nk + pk + 1. For more details, refer to Appendix A and Chapter 2 of [30]. In this
work, only open knot vectors are considered.

Denote by Bk
ik ,pk ,ξk

(xk) the ik th univariate B-spline with degree pk . Given the knot sequence ξ k and zero-
degree basis functions, all higher-order B-spline functions on [ak, bk] are defined recursively, where 1 ≤ k ≤ N ,
1 ≤ ik ≤ nk , and 1 ≤ pk < ∞. See Appendix A for an explicit definition of Bk

ik ,pk ,ξk
(xk).

The B-splines are endowed with a number of desirable properties, which can generally deliver tremendous
approximating power to numerical methods. More specifically, they are [30,46]: (1) non-negative; (2) locally
supported on the interval [ζk,ik , ζk,ik+pk+1) for all ik ; (3) linearly independent; (4) committed to partition of
unity; and (5) pointwise C∞-continuous everywhere except at the knots ζk,ik of multiplicity mk,ik , where they are
C pk−mk,ik -continuous, provided that 1 ≤ mk,ik < pk + 1.

3.2.1. Univariate orthonormal B-splines
The aforementioned B-splines, although they form a basis, are not orthogonal. A linear transformation, originally

proposed in the companion paper [40], is summarized here in three steps to generate their orthonormal version.

(1) Given a set of B-splines of degree pk , create an auxiliary set by replacing the first element with 1. Arrange
the elements of the set into an nk-dimensional vector

Pk(xk) := (1, Bk
2,pk ,ξk

(xk), . . . , Bk
nk ,pk ,ξk

(xk))T

comprising the auxiliary B-splines. The auxiliary B-splines are also linearly independent [40].
(2) Construct an nk × nk spline moment matrix

Gk := E[Pk(Xk)PT
k (Xk)].

The matrix Gk exists because Xk has finite moments up to order 2pk , as stated in Assumption 1. It is
symmetric and positive-definite [40], ensuring the existence of a non-singular nk × nk whitening matrix Wk
such that

WT
k Wk = G−1

k .
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Fig. 1. A set of B-splines associated with the knot vector ξ = {−1,−1,−1,−1,−0.5, 0, 0.5, 1, 1, 1, 1} and order p = 3: (a) original
B-splines, and (b) orthonormalized B-splines with respect to a uniform PDF on [−1, 1].

(3) Apply a whitening transformation to create a vector of orthonormal B-splines

ψk(xk) = WkPk(xk),

consisting of uncorrelated components ψk
ik ,pk ,ξk

(xk), ik = 1, . . . , nk, k = 1, . . . , N . However, the invertibility
of Gk does not uniquely determine Wk . Indeed, there are various options to choose Wk from, all satisfying
the condition described in Step 2 [40]. One prominent choice is to invoke the Cholesky factorization:
Gk = QkQT

k , yielding

Wk = Q−1
k .

Fig. 1 depicts a set of B-spline functions with the knot vector ξ = {−1,−1,−1,−1,−0.5, 0, 0.5, 1, 1, 1, 1}

and order p = 3, before and after orthonormalization with respect to a uniform density function of a random
variable X on the domain [−1, 1]. The original and orthonormal B-splines are plotted in Fig. 1(a) and Fig. 1(b),
respectively. The whitening matrix is obtained from the Cholesky factorization. Note that after orthonormalization,
the B-splines are neither non-negative nor locally supported. Having orthonormal basis functions, however, is a
necessity before proceeding with spline refinement of ADD as ANOVA is constructed via orthogonal component
functions. As discernible in Fig. 1(b), all non-constant functions have zero mean.

3.2.2. Multivariate orthonormal B-splines
Due to the product-type probability measure of random input variables, measure-consistent multivariate orthonor-

mal B-splines in N variables are easily built from the N -dimensional tensor product of measure-consistent univariate
B-splines. However, forming such a tensor product in a high-dimensional setting is not recommended. Instead, the
authors advocate constructing a series of tensor products in a dimensionwise manner.

For a subset ∅ ̸= u = {k1, . . . , k|u|} ⊆ {1, . . . , N }, let Xu := (Xk1 , . . . , Xk|u|
)T , defined on the abstract probability

space (Ωu,Fu,Pu), where Ωu is the sample space of Xu , Fu is a σ -algebra on Ωu , and Pu is a probability measure.
Define three multi-indices iu := (ik1 , . . . , ik|u|

) ∈ N|u|

0 , nu := (nk1 , . . . , nk|u|
) ∈ N|u|

0 , and pu := (pk1 , . . . , pk|u|
) ∈ N|u|

0 ,
representing the knot indices, numbers of basis functions, and degrees of splines, respectively, in all |u| coordinate
directions. Associated with iu , define an index set

Iu,nu :=
{
iu = (ik1 , . . . , ik|u|

) : 1 ≤ ikl ≤ nkl , l = 1, . . . , |u|
}

⊂ N|u|

with cardinality

|Iu,nu | =

∏
k∈u

nk .
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For the coordinate direction kl , define by

Ikl = rkl − 1,

the number of subintervals corresponding to the knot vector ξ kl
with rkl distinct knots. Then the partition, defined

by the knot sequences ξ k1
, . . . , ξ k|u|

, decomposes the |u|-dimensional rectangle Au
:= ×k∈u[ak, bk] into smaller

rectangles

Au
iu =

{
xu = (xk1 , . . . , xk|u|

) : ζkl ,ikl
≤ xkl < ζkl ,ikl +1 , l = 1, . . . , |u|

}
,

iu ∈
{
iu = (ik1 , . . . , ik|u|

) : 1 ≤ ikl ≤ Ikl , l = 1, . . . , |u|
}

⊆ Iu,nu ,

where ζkl ,ikl
is the ikl th distinct knot in the coordinate direction kl . A mesh is defined by the partition of Au into

rectangular elements Au
iu , iu ∈ Iu,nu . Define the largest element size in each coordinate direction k ∈ u by

hu,kl := max
1≤l≤Ikl

(
ζkl ,l+1 − ζkl ,l

)
, l = 1, . . . , |u|.

Then, given the knot sequences Ξ u = {ξ k1
, . . . , ξ k|u|

},

hu := (hu,k1 , . . . , hu,k|u|
) and hu := max

1≤l≤|u|

hu,kl

define a vector of the largest element sizes in all |u| coordinates and the global mesh size, respectively, for the
domain Au . Consequently, for ∅ ̸= u = {k1, . . . , k|u|} ⊆ {1, . . . , N }, with pu = (pk1 , . . . , pk|u|

) ∈ N|u|

0 and
Ξ u = {ξ k1

, . . . , ξ k|u|
} in mind, the multivariate B-splines in xu = (xk1 , . . . , xk|u|

) consistent with the probability
measure fXu (xu)dxu are

Ψ u
iu ,pu ,Ξ u

(xu) =

∏
k∈u

ψk
ik ,pk ,ξk

(xk) =

|u|∏
l=1

ψk
ikl ,pkl ,ξkl

(xkl ), iu = (ik1 , . . . , ik|u|
) ∈ Iu,nu . (15)

When the input random variables X1, . . . , X N , instead of real variables x1, . . . , xN , are inserted in the argument,
the multivariate splines Ψ u

iu ,pu ,Ξ u
(Xu), ∅ ̸= u ⊆ {1, . . . , N }, iu ∈ Iu,nu , become functions of random input variables.

To describe their second-moment properties succinctly, limit the index ikl , l = 1, . . . , |u|, associated with the kl th
variable xkl , to run from 2 to nkl . The exclusion of ikl = 1 essentially removes the first constant element of ψk(Xk).
Hence, define a reduced index set

Īu,nu :=
{
iu = (ik1 , . . . , ik|u|

) : 2 ≤ ikl ≤ nkl , l = 1, . . . , |u|
}

⊂ (N \ {1})|u|,

which has cardinality

|Īu,nu | :=

∏
k∈u

(nk − 1). (16)

Then, for ∅ ̸= u, v ⊆ {1, . . . , N }, iu ∈ Īu,nu , and jv ∈ Īv,nv , the first- and second-order moments of multivariate
orthonormal B-splines are [40]

E
[
Ψ u

iu ,pu ,Ξ u
(Xu)

]
= 0 (17)

and

E
[
Ψ u

iu ,pu ,Ξ u
(Xu)Ψ v

jv ,pv ,Ξ v
(Xv)

]
=

{
1, u = v and iu = jv,
0, otherwise,

(18)

respectively. The orthonormal B-spline functions, defined in (15), are crucial ingredients of the proposed SDD
method.

3.3. Fourier spline expansion

Consider any nonconstant component function of ADD defined in (12c). From the second-moment properties in
(13) and (14), yu(Xu) belongs to the Hilbert space

Su :=
{

yu(Xu) ∈ L2(Ωu,Fu,Pu) : E [yu(Xu)yv(Xv)] = 0 if u ̸= v, v ⊆ {1, . . . , N }
}
.
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Denote by {Ψ u
iu ,pu ,Ξ u

(Xu) : iu ∈ Īu,nu } a set of measure-consistent multivariate orthonormal B-splines in Xu . The
size of the set is |Īu,nu |, as defined in (16). Therefore, it is controlled by the number of basis functions nkl , which,
in turn, is determined from the length of the knot sequence ξ kl

and order pkl . Clearly, the longer the sequence ξ kl
,

the larger the nkl and, hence, the size of the set. For a refinement process with fixed pu , consider increasing the
length of ξ kl

or nkl in all |u| coordinate directions, where the largest element size hu,kl is monotonically reduced.
The result is an increasing family of the sets of such basis functions. In the limit, when nkl → ∞, kl = 1, . . . , |u|,
denote by ξ kl ,∞

and Ξ u,∞ = (ξ 1,∞, . . . , ξ |u|,∞) the associated knot sequence in the kl th coordinate direction and
the set of such |u| knot sequences, respectively. Then there exists an infinite number of basis functions with the
associated index set

Īu,∞ :=
{
iu = (ik1 , . . . , ik|u|

) : 2 ≤ ikl < ∞, l = 1, . . . , |u|
}
,

representing the infinite counterpart of Īu,nu . In consequence, the infinite set of multivariate B-splines
{Ψ u

iu ,pu ,Ξ u,∞
(Xu) : iu ∈ Īu,∞} forms an orthonormal basis of Su , yielding

Su = span{Ψ u
iu ,pu ,Ξ u,∞

(Xu) : iu ∈ Īu,∞},

where the overline stands for set closure.
According to the standard Hilbert space theory, every yu(Xu) ∈ Su can be expanded in terms of the

aforementioned spanning set, resulting in

yu(Xu) ∼

∑
iu∈Īu,∞

Cu
iu ,pu ,Ξ∞

Ψ u
iu ,pu ,Ξ u,∞

(Xu), (19)

where

Cu
iu ,pu ,Ξ u,∞

:=

∫
Au

yu(xu)Ψ u
iu ,pu ,Ξ u,∞

(xu) fXu (x)dxu =

∫
AN

y(x)Ψ u
iu ,pu ,Ξ u,∞

(xu) fX(x)dx, iu ∈ Īu,∞,

are the expansion coefficients. Here, the integral in the second equality forms when (12c) is applied to the first
integral. Finally, combine (12c) and (19) to obtain the Fourier spline expansion

y(X) ∼ y∅ +

∑
∅̸=u⊆{1,...,N }

∑
iu∈Īu,∞

Cu
iu ,pu ,Ξ u,∞

Ψ u
iu ,pu ,Ξ u,∞

(Xu), (20)

where the constant component function y∅ is already defined in (12b). The expansion in (20) behaves like a
Fourier series and is referred to as SDD in this paper. According to (20), the SDD of any random variable
y(X) ∈ L2(Ω ,F ,P) is a dimensionwise orthogonal projection onto the spline space spanning the set of associated
measure-consistent multivariate orthonormal B-splines.

The relationship between SDD in (20) and ADD in (12a)–(12c) is obvious, as the former is derived by exploiting
the spline adaptation of the latter. In addition, because of the orthonormality of basis functions, as described in (17)
and (18), SDD inherits all the desirable properties of ADD, including the second-moment properties of yu(Xu)
described in (13) and (14). The SDD formulation of (20) is valid for any random function y(X) and is, therefore,
not specific to linear elasticity problems.

3.4. Truncation of SDD

In a practical setting, all knot sequences are finite, and so is the number of basis functions. In this case, a
truncated set {Ψ u

iu ,pu ,Ξ u
(Xu) : iu ∈ Īu,nu } is used to approximate y(X), resulting in the SDD approximation

yp,Ξ (X) := y∅ +

∑
∅̸=u⊆{1,...,N }

Cu
iu ,pu ,Ξ u

Ψ u
iu ,pu ,Ξ u

(Xu) (21)

with the expansion coefficients

Cu
iu ,pu ,Ξ u

:=

∫
AN

y(x)Ψ u
iu ,pu ,Ξ u

(xu) fX(x)dx, iu ∈ Īu,nu . (22)
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From (21) and (22), there are

Lp,Ξ = 1 +

N∑
s=1

(
N
s

) s∏
k=1

(nk − 1) =

N∏
k=1

nk (23)

expansion coefficients. Therefore, the SDD approximation suffers from the curse of dimensionality if all terms of
(21) are retained. However, due to the dimensional hierarchical structure, many higher-variate interaction terms of
SDD contribute only a negligible amount to the function value and therefore can be safely ignored. A straightforward
approach to achieving this feat entails keeping all orthonormal splines in at most 0 ≤ S ≤ N variables, thereby
retaining the degrees of interaction among input variables less than or equal to S. The result is an S-variate SDD
approximation

yS,p,Ξ (X) := y∅ +

∑
∅̸=u⊆{1,...,N }

1≤|u|≤S

∑
iu∈Īu,nu

Cu
iu ,pu ,Ξ u

Ψ u
iu ,pu ,Ξ u

(Xu) (24)

of y(X), comprising

L S,p,Ξ = 1 +

S∑
s=1

(
N
s

) s∏
k=1

(nk − 1) ≤

N∏
k=1

nk = Lp,Ξ (25)

expansion coefficients, including y∅. When S = 1 or S = 2, the resulting SDD approximations are referred to as
univariate and bivariate SDD approximations, respectively. In such cases, the functions y1,p,Ξ (X) or y2,p,Ξ (X) should
not be viewed as first- and second-order approximations, nor do they limit the nonlinearity of y(X). Depending on
how the orders and knot vectors are chosen, arbitrarily high-order univariate and bivariate terms of y(X), including
discontinuity and nonsmoothness, could be lurking inside y1,p,Ξ (X) or y2,p,Ξ (X).

Furthermore, if S ≪ N , as it is envisioned to hold in practical applications, the number of coefficients in the
S-variate SDD approximation declines sharply, resulting in significant computational savings. As an example, set
N = 15, nk = 5, and S = 1 or 2. Then there are more than 3 × 1010 coefficients in (23) versus 61 coefficients
for S = 1 and 1741 coefficients for S = 2 in (25), demonstrating a substantial reduction in the computational
effort while formulating univariate or bivariate SDD approximations. In general, the computational complexity of a
truncated SDD (S < N ) with respect to N is polynomial, as opposed to exponential, as in the case of PCE, thereby
alleviating the curse of dimensionality to the extent possible.

The SDD approximations in (21) and (24) are both convergent to the correct limit in mean-square, in probability,
and in distribution. Readers interested in formal proofs are referred to the companion paper [40].

3.5. Output statistics and other properties

The S-variate SDD approximation yS,p,Ξ (X) can be viewed as an inexpensive surrogate of an expensive-to-
calculate function y(X). Therefore, pertinent statistical properties of y(X), such as its first two moments, can be
estimated from those of yS,p,Ξ (X).

Applying the expectation operator on yS,p,Ξ (X) in (24) and recognizing (17), its mean

E
[
yS,p,Ξ (X)

]
= y∅ = E [y(X)] (26)

is independent of S, p, and Ξ . More importantly, the SDD approximation always yields the exact mean, provided
that the expansion coefficient y∅ is determined exactly.

Applying the expectation operator again, this time on [yS,p,Ξ (X) − y∅]2, and using (18) results in the variance

var
[
yS,p,Ξ (X)

]
=

∑
∅̸=u⊆{1,...,N }

1≤|u|≤S

∑
iu∈Īu,nu

Cu2

iu ,pu ,Ξ u
≤ var [y(X)] (27)

of yp,Ξ (X). Therefore, the second-moment statistics of an SDD approximation in (26) and (27) are determined
based on a set of expansion coefficients. The formulae for the mean and variance of the SDD approximation are
identical to those established for the PDD approximation, although the respective expansion coefficients involved
are not. The fundamental reason for this similarity is rooted in the use of hierarchically ordered orthonormal basis
function in both decomposition expressions.
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Being convergent in probability and in distribution, the cumulative distribution function (CDF) and the PDF of
y(X), if it exists, can also be estimated economically by resampling yS,p,Ξ (X). This will be illustrated in a numerical
example.

3.6. Integration of SDD and IGA for linear elasticity problems

In linear elasticity applications, the random response function y(X) defined in (11) depends on displacement
u(z; X) and stress σ (z; X), which are obtained by solving the PDE in (3). The solution of the PDE, however,
is generally not attainable in closed form. Having the IGA solver framework presented in Section 2.4.2, the
approximated uh(z; X) and approximated σ h(z; X) are calculated instead. This is generally the case in reality when
facing practical problems. Hence, for the problems involving linear elasticity and IGA, the random response function
is redefined as

y(X) := y(uh(z; X); σ h(z; X)), (28)

thereby integrating the proposed SDD method with the deterministic IGA solver. In simpler words, the random
response function y(X) under study is a function of approximate displacements and stresses rather than their exact
counterparts. As a result, a source of error due to IGA discretization is already introduced to the numerical scheme,
which is generally inevitable, but acceptable. The proposed stochastic method for linear elasticity applications shall
thus be called SDD–IGA. But, for brevity, the term SDD will also be used. Note that starting with Section 4, SDD
is a general term, which includes SDD–IGA, since the function evaluation process may be carried out through a
non-intrusive IGA black box.

4. Dimension-reduction integration for expansion coefficients

The determination of the expansion coefficients of SDD, namely y∅ and Cu
iu ,pu ,Ξ u

, involves various high-
dimensional integrations. For an arbitrary function y and an arbitrary probability distribution of random input X,
an exact evaluation of these coefficients from definition alone is impossible. A natural instinct is to approximate
the coefficients by numerical integration, for instance, by a general anisotropic (Qk1 , . . . , QkN )-point, multivariate,
tensor-product Gauss-type quadrature rule with Qk1 , . . . , QkN ∈ N, yielding

y∅ ≃

Qk1∑
jk1 =1

· · ·

QkN∑
jkN =1  

N sums

y(x
( jk1 )
k1

, . . . , x
( jkN )
kN

)
N∏

l=1

w
( jkl )
kl

, (29)

Cu
iu ,pu ,Ξ u

≃

Qk1∑
jk1 =1

· · ·

QkN∑
jkN =1  

N sums

y(x
( jk1 )
k1

, . . . , x
( jkN )
kN

)
|u|∏

l=1

ψ
ikl
ikl ,pkl ,ξkl

(x
( jkl )
kl

)
N∏

l=1

w
( jkl )
kl

, (30)

where, for each l = 1, . . . , N , x
( jkl )
kl

and w
( jkl )
kl

are the integration points and matching weights, determined by the
probability measure fXkl

(xkl )dxkl . This is referred to as full integration in the paper. Recall that in linear elasticity
applications, each value of function y in (29) and (30) is related to an IGA, as described in Section 3.6. Clearly,
for a high-dimensional problem, say, with N exceeding 10, evaluating the N -dimensional sums in (29) or (30) is
computationally formidable and likely prohibitive. Therefore, DRI is necessary to estimate these coefficients.

4.1. Dimension-reduction approximation

For a high-dimensional function y(x), consider its referential dimensional decomposition (RDD) [21]

y(x) = w∅ +

∑
∅̸=u⊆{1,...,N }

wu(xu; c), (31)
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where

w∅ := y(c),

wu(xu; c) := y(xu, c−u) −

∑
v⊂u

wv(xv; c),

which is also known as cut-HDMR [47] and anchored decomposition [48]. Here, wu is a |u|-variate RDD component
function describing |u|-variate interaction of Xu on y, and c = (c1, . . . , cN ) ∈ AN is a chosen reference point. The
second argument c appearing in wu and wv means that the RDD component functions also depend on the reference
point, but y does not, as (31) is exact. Although RDD follows the same dimensional structure as ADD, the former
does not feature the orthogonal property of the latter. This is the primary reason why ADD is favored over RDD
for developing the SDD method. However, the RDD component functions are relatively easy to obtain as they only
require function evaluations at the reference point, as opposed to the high-dimensional integration involved in ADD.
As will be seen later, RDD is crucial for developing the DRI technique.

Given an integer S ≤ R ≤ N , the R-variate RDD approximation, say, ŷR(x; c) of y(x), is obtained by truncating
the right-hand side of (31), yielding

ŷR(X; c) = w∅ +

∑
∅̸=u⊆{1,...,N }

1≤|u|≤R

wu(xu; c), (32)

which also depends on the reference point, needing the second argument c in ŷR . From the work of Xu and
Rahman [27], (32) has a direct form, so that RDD can also be written as

ŷR(x; c) =

R∑
r=0

(−1)r
(

N − R + r − 1
r

) ∑
∅̸=v⊆{1,...,N }

|v|=R−r

y(xv, c−v) (33)

in terms of the original function y explicitly. The direct form, under the names of dimension-reduction [49]
and decomposition [50] methods, was employed for statistical moment and reliability analysis of mechanical
systems, respectively. Although (33) was derived using the Taylor expansion, the function y is not restricted to
be differentiable. Nonetheless, (32) and (33) follow the same dimensional structure, but the direct form of RDD is
suitable for high-dimensional integration.

It is important to clarify that an optimal selection of the reference point c remains elusive. However, decent
estimates of statistical moments and reliability were reported when the mean value of random input is selected as
the reference point [27,48]. This work follows the same trend.

4.2. Reduced integration

In reference to (12b) and (22), replace the original function y(X) in the integrands with the direct form of the
R-variate RDD approximation ŷR(X; c) described in (33). As a result, the estimates ŷ∅ (say) and Ĉu

iu ,pu ,Ξ u
(say) of

the expansion coefficients y∅ and Cu
iu ,pu ,Ξ u

are

ŷ∅ =

R∑
r=0

(−1)r
(

N − R + r − 1
r

) ∑
∅̸=v⊆{1,...,N }

|v|=R−r

∫
Av

y(xv, c−v) fXv (xv)dxv (34)

and

Ĉu
iu ,pu ,Ξ u

=

R∑
r=0

(−1)r
(

N − R + r − 1
r

) ∑
∅̸=v⊆{1,...,N }

|v|=R−r,u⊆v

∫
Av

y(xv, c−v)Ψ u
iu ,pu ,Ξ u

(xv) fXv (xv)dxv, (35)

respectively, requiring evaluation of multiple |v|-dimensional integrals. As |v| = R −r and r varies from zero to R,
at most R-dimensional integrals are involved. Therefore, the formulae (34) and (35) can be viewed to entail reduced
integration, defending the appellation of DRI. Indeed, they are more efficient than calculating N -dimensional
integrals, particularly when R ≪ N . Hence, the computational effort in calculating the coefficients is significantly
lowered by DRI, thereby deflating the curse of dimensionality. When R = 1 or 2, (34) and (35) involve one-, or at
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most, two-dimensional integrals, respectively. When R = N , (34) and (35) transform to the original N -dimensional
integrals from (12b) and (22), ensuring convergence of DRI.

It is important to emphasize that to obtain non-trivial estimates of the coefficients by DRI, R must be equal
to or greater than the truncation parameter S. Furthermore, for computational expediency, the value of R should
be as low as possible. Therefore, the selection of R = S permits the most efficient calculation of the expansion
coefficients for an S-variate SDD approximation.

For a general function y, numerical approximation is still required to approximate the |v|-dimensional integrals
embedded in (34) and (35). If a (Qk1 , . . . , Qk|v|

)-point |v|-variate Gauss-type quadrature rule is used, then these
integrals are approximated by∫

Av
y(xv, c−v) fXv (xv)dxv ≃

Qk1∑
jk1 =1

· · ·

Qk|v|∑
jk|v|=1  

|v| sums

y(x
( jk1 )
k1

, . . . , x
( jk|v| )

k|v|
)

|v|∏
l=1

w
( jkl )
kl

and ∫
Av

y(xv, c−v)Ψ u
iu ,pu ,Ξ u

(xv) fXv (xv)dxv

≃

Qk1∑
jk1 =1

· · ·

Qk|v|∑
jk|v|=1  

|v| sums

y(c1, . . . , ck1−1, x
( jk1 )
k1

, ck1+1, . . . , ck|v|−1, x
( jk|v| )

k|v|
, ck|v|+1, . . . , cN )×

|u|∏
l=1

ψ
ikl
ikl ,pkl ,ξkl

(
x

( jkl )
kl

) |v|∏
l=1

w
( jkl )
kl

.

The integration points and associated weights of DRI also depend on the probability distribution of X and are readily
available, such as the Stieltjes procedure [49], to generate the measure-consistent Gauss quadrature formulae. The
resultant estimation of ŷ∅ and Ĉu

iu ,pu ,Ξ u
, obtained using (34) and (35), is referred to as reduced integration in this

paper.

4.3. Expanded version

While the compact notations enable a concise description of SDD, an expanded version using additional index
notations should impart a better interpretation of the corresponding approximations. For instance, the S-variate SDD
approximation can also be written as

yS,p,Ξ (X) = y∅ +

N∑
k=1

nk∑
ik=2

αkikψ
k
ik ,pk ,ξk

(Xk) +

N−1∑
k1=1

N∑
k2=k1+1

nk1∑
ik1 =2

nk2∑
ik2 =2

βk1k2ik1 ik2
ψ

k1
ik1 ,pk1 ,ξk1

(Xk1 )ψk2
ik2 ,pk2 ,ξk2

(Xk2 ) +

N−2∑
k1=1

N−1∑
k2=k1+1

N∑
k3=k2+1

nk1∑
ik1 =2

nk2∑
ik2 =2

nk3∑
ik3 =2

γk1k2k3ik1 ik2 ik3
ψ

k1
ik1 ,pk1 ,ξk1

(Xk1 ) ×

ψ
k2
ik2 ,pk2 ,ξk2

(Xk2 )ψk3
ik3 ,pk3 ,ξk3

(Xk3 ) + · · ·+

N−S+1∑
k1=1

· · ·

N∑
kS=kS−1+1  

S sums

nk1∑
ik1 =2

· · ·

nkS∑
ikS =2  

S sums

Ck1...kS ik1 ...ikS

S∏
s=1

ψ
ks
iks ,pks ,ξks

(Xks ),
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where αkik , βk1k2ik1 ik2
, and γk1k2k3ik1 ik2 ik3

are introduced to symbolize univariate, bivariate, and trivariate expansion
coefficients, respectively. Moreover, the zero-variate and general S-variate expansion coefficients are defined as

y∅ :=

∫
AN

y(x1, . . . , xN )
N∏

k=1

fXk (xk)dxk

and

Ck1...kS ik1 ...ikS
:=

∫
AN

y(x1, . . . , xN )
S∏

s=1

ψ
ks
iks ,pks ,ξks

(xks )
N∏

k=1

fXk (xk)dxk,

respectively. Finally, the estimated expansion coefficients from DRI are

ŷ∅ =

R∑
r=0

(−1)r
(

N − R + r − 1
r

) N−R+r+1∑
k1=1

· · ·

N∑
kR−r =kR−r−1+1  

(R−r ) sums∫
A{k1,...,kR−r }

y(c1, . . . , ck1−1, xk1 , ck1+1, . . . , ckR−r −1, xkR−r , ckR−r +1, . . . , cN )
R−r∏
l=1

fXkl
(xkl )dxkl

and

Ĉk1...kS ik1 ...ikS
=

R∑
r=0

(−1)r
(

N − R + r − 1
r

) N−R+r+1∑
k1=1

· · ·

N∑
kR−r =kR−r−1+1  

(R−r ) sums∫
A{k1,...,kR−r }

y(c1, . . . , ck1−1, xk1 , ck1+1, . . . , ckR−r −1, xkR−r , ckR−r +1, . . . , cN )×

S∏
l=1

ψ
kl
ikl ,pkl ,ξkl

(xkl )
R−r∏
l=1

fXkl
(xkl )dxkl .

These expanded versions are particularly useful in light of univariate (S = 1), bivariate (S = 2), and trivariate
(S = 3) approximations of SDD, to be illustrated in the numerical examples. Implementing the DRI, Appendix B
provides examples of the expansion coefficients for the three specific cases of S = 1, S = 2, and S = 3.

4.4. Computational effort

The S-variate SDD approximation yS,p,Ξ (X) requires evaluations of L S,p,Ξ expansion coefficients: y∅ and
Ck1...ks ik1 ...iks

, k1 = 1, . . . , N − s + 1, · · · , ks = ks−1 + 1, . . . , N , ik1 = 2, . . . , nk1 , · · · , iks = 2, . . . , nks ,
s = 1, . . . , S. Suppose these coefficients are to be estimated by the DRI technique with S ≤ R ≤ N , involving
at most an R-dimensional tensor product of a (Qk1 , . . . , QkR )-point univariate Gauss quadrature rule. Then the
following deterministic responses from IGA or function evaluations are asked for:

(1) y(c);
(2) y(c1, . . . , ck1−1, x

( jk1 )
k1

, ck1+1, . . . , ckr −1, x
( jkr )
kr

, ckr +1, . . . , cN ), jk1 = 1, . . . , Qk1 , · · · , jkr = 1, . . . , Qkr , r =

1, . . . , R, where the superscripts on variables indicate corresponding integration points.

However, since the B-splines are piecewise polynomials and not necessarily smooth functions on the entire domain
A{k1,...,kR−r }, a very large value of Qkl , l = 1, . . . , R − r , is required for accurate calculation of the integrals. A
convenient alternative for numerical computation of the integrals involving piecewise polynomials is to break the
domain of each integral into subintervals and then sum up their individual contributions.

Denote by qkl the number of integration points on each subinterval, and by q = (qk1 , . . . , qkl ), the collection
of such numbers for all kl coordinate directions of the stochastic domain. Then, in the DRI framework, there are
Qkl = qkl Ikl integration points in the coordinate direction kl . Recall that Ikl refers to the number of subintervals.
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As a result, the total cost for calculating the expansion coefficients of the S-variate SDD approximation entails

1 +

R∑
r=1

N−r+1∑
k1=1

· · ·

N∑
kr =kr−1+1  

r sums

r∏
l=1

(qkl Ikl ) (36)

function evaluations. If Ikl and qkl do not vary with kl and are the same as I (say) and q (say), respectively, then
the number of function evaluations becomes

1 +

R∑
r=1

N−r+1∑
k1=1

· · ·

N∑
kr =kr−1+1  

r sums

(q I )r
=

R∑
r=0

(
N

R − r

)
(q I )R−r . (37)

For the latter case, consider the univariate, bivariate, and trivariate SDD approximations. Then the respective
numbers of function evaluations using R = S are as follows:

(1) Univariate approximation (R = S = 1): 1 + N (q I ).
(2) Bivariate approximation (R = S = 2): 1 + N (q I ) + N (N − 1)(q I )2/2.
(3) Trivariate approximation (R = S = 3): 1 + N (q I ) + N (N − 1)(q I )2/2 + N (N − 1)(N − 2)(q I )3/6.

According to (34) or (35), the computational complexity of the SDD approximation is an Sth-order polynomial
with respect to the number of random variables or integration points. This is possible because of the dimensional
hierarchy of SDD.

Fig. 2 indicates a flowchart of the SDD–IGA method with the objective of constructing an S-variate approxima-
tion of the random response function y(X) defined in (28). For reduced integration, DRI or any alternative method
may be applied to efficiently estimate the expansion coefficients. However, while using the analytical formulae or
even the regression methods, there is a need to run the deterministic IGA solver for a number of times, as discussed
previously, to have samples of y(X). This is done by the IGA solver illustrated in Fig. 2. The quality of the S-variate
approximation, eventually, relies on the knot vectors Ξ , B-splines orders p, numbers of integration points on the
subintervals q, the truncation parameter S in (24), and the parameter R if implementing DRI. In agreement with
Fig. 2, for a fixed IGA discretization, these input parameters may be controlled to obtain a desired accuracy.

On the other hand, coupling the same IGA solver described in Section 2.4.2 with PDD [35,51], a stochastic
method is established, which shall be called PDD–IGA. However, for brevity in this paper, it will be referred
to solely as PDD. In this case, since the PDD also engenders polynomial computational complexity, a relative
comparison between the numbers of function evaluations by an S-variate SDD approximation in (36) or (37) and
by an S-variate, mth-order PDD approximation [35,51] should be intriguing. For stochastic problems entailing
smooth response functions, the computational cost of SDD is expected to be larger than that of PDD. This is
because of the additional factor Ikl ≥ 1 or Ik ≥ 1 originating from the subintervals, whereas no such factor exists
or is needed due to the globally supported polynomial, smooth basis functions in PDD. In contrast, if the response
function is discontinuous or nonsmooth, an impractically high order of PDD approximation will be required for
satisfactory results, but will likely incur a cost that exceeds the computational budget. In the latter case, SDD
becomes competitive and perhaps necessary to produce a desired solution with a reasonable cost. Nonetheless, if
there are too many subintervals, the SDD method may also become expensive. This issue will be revisited when
discussing numerical results.

5. Numerical examples

Four problems are put forward to illustrate the proposed SDD method for obtaining the second-moment statistics
and probability distribution of various responses. Each example follows a particular objective: Example 1, not related
to linear elasticity, makes a rigorous comparison between SDD and some of the favored UQ methods currently
existing in the literature, while Examples 2 through 4 specifically entail linear elasticity problems. Example 2
compares the SDD and PDD methods, Example 3 evaluates the adequacy of the proposed DRI technique, and,
finally, Example 4 handles a relatively complex geometry problem with a high stochastic dimension. The stress
analyses were conducted using the standard IGA formulation discussed in Section 2 and Appendix A. The IGA
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Fig. 2. A flowchart for the proposed SDD–IGA method.

discretization was fixed and deemed adequate, justifying no need for deterministic error analysis. In the stochastic
domain, the degrees p and knot vector ξ used for SDD calculations were identical in all coordinate directions.
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Fig. 3. Modified Genz functions in Example 1: (a) discontinuous, (b) continuous, and (c) product peak.

Hence, all subscripts k from pk , ξ k , and Ik were dropped accordingly. For the DRI technique used in Examples 3
and 4, R was the same as the SDD truncation parameter S, and the mean input was selected as the reference point.
A crude MCS was employed to provide the benchmark solutions in linear elasticity problems. The sample sizes for
MCS were 108 in Example 2, 105 in Example 3, and 104 in Example 4.

5.1. Example 1: Modified Genz functions

For the first numerical example, consider three N -variate modified Genz functions [52]

y1(X) =

N∏
i=1

fi (X i ) (discontinuous),

y2(X) = exp(−2
N∑

i=1

|X i |) (continuous),

y3(X) =

N∏
i=1

1
1 + X2

i
(product peak),

where

fi (X i ) =

{
0, if X i > 0,
exp(2X i ), otherwise.

Here, X i , i = 1, . . . , N , are independent and identical random variables with uniform distribution over [−1, 1].
There is diversity in the functions’ regularity, as illustrated in Fig. 3 for bivariate (N = 2) functions y1(X1, X2),
y2(X1, X2), and y3(X1, X2). The objective is to study the second-moment statistical characteristics by various
methods. Note that the Genz functions were introduced to test various integration techniques for mean calculation
purposes [52]. Here, however, the variance is studied, which is even more challenging to compute. Hence, only
powerful tools are expected to be able to accurately handle the variance. This is a remarkable opportunity to
rigorously test the proposed SDD method before moving to linear elasticity applications.

The numerical investigations entailed two cases: bivariate (N = 2) and decavariate (N = 10) functions. For
N = 2, the variances were calculated for y1(X1, X2), y2(X1, X2), and y3(X1, X2) exactly as 1.28743890 × 10−2,
2.52956894×10−2, and 3.25578478×10−2, respectively. The variances were then also estimated by sparse grids with
the Clenshaw–Curtis quadrature rule [53,54], tensor-product PCE [17,18], and the bivaraite, linear (S = 2, p = 1)
and bivariate, quadratic (S = 2, p = 2) SDD methods. All PCE and SDD coefficients were calculated exactly as
well. It is noteworthy that bivariate SDD is exact since S = N = 2. For N = 10, as exact computation of ten-
dimensional integrals was not possible, the reference variances were calculated by crude MCS with 1010 samples
as 7.41004195 × 10−7, 7.68143090 × 10−10, and 4.04864921 × 10−3, for discontinuous, continuous, and product
peak functions, respectively. In this case, PCE calculations were not feasible for the same reason, in addition to the
curse of dimensionality. Moreover, the univariate, linear (S = 1, p = 1), bivariate, linear (S = 2, p = 1), and
trivariate, linear (S = 3, p = 1) SDD coefficients were calculated by MCS with 3 × 107 samples. For all SDD
approximations, in order to capture the discontinuity or nonsmoothness in discontinuous or continuous functions,
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Fig. 4. Variance error analysis for bivariate (N = 2) modified Genz functions in Example 1: (a) discontinuous, (b) continuous, and (c)
product peak.

respectively, the knots at xi = 0, i = 1, . . . , N were repeated accordingly to harness the potential capabilities of
SDD. Eventually, the errors were calculated versus the number of basis functions, which itself increased with the
number of levels for sparse grids, the maximum polynomial order for PCE, and the number of subintervals for a
given B-spline order in the case of SDD. For instance, for N = 2, the number of levels in sparse grids varied from
one to seven, the PCE order increased from one to ten, and there were two, four, and ten subintervals in the SDD
calculations. Note that the number of bases for the sparse grids method is equivalent to the number of integration
points.

Fig. 4 depicts how the absolute errors in variance, calculated by various methods, decay for discontinuous,
continuous, and product peak functions. According to Fig. 4(a) and (b), the sparse grids and PCE methods struggle
to provide results as accurate as those obtained by SDD methods of order (p) only up to two. This is due to
the discontinuity and nonsmoothness in the functions. As observed, PCE and sparse grids perform slightly better
on the continuous function than the discontinuous one. Moreover, the convergence is steeper for quadratic SDD
than linear SDD in both cases. For the error decay corresponding to the product peak function, as the original
function is rather smooth, all methods do well. Hence, SDD may not be needed in this case. Furthermore, the basis
functions of odd order do not contribute to PCE approximations, as the original function is even, as demonstrated in
Fig. 3(c). Overall, numerical evidence reveals significant contribution of the proposed SDD method in terms of both
efficiency and accuracy, while the rate of convergence is also markedly higher for functions with harsh regularities,
as expected.

The absolute variance errors corresponding to decavariate (N = 10) functions are illustrated in Fig. 5. Here, the
univariate, bivariate, and trivariate SDD methods are compared only with sparse grids as PCE, suffering from low
efficiency, was ruled out. Obviously, for a given number of basis functions, the SDD methods are substantially more
accurate than sparse grids. By comparing Figs. 4 and 5, it is clear that the larger the N , the more devastating the
problem becomes for sparse grids. Furthermore, SDD provides more accurate results with the increase in S. The
errors in univariate, bivariate, and trivariate SDD methods, however, all reach a plateau in Fig. 5(a) and (b). The
reason is that for approximation of such functions, a higher level of interaction between variables (S) is needed.
In other words, for S = 10 = N , the trends would have been monotonically decreasing, as previously observed
for S = N = 2 in Fig. 4. Of course, in order to keep the number of coefficients as low as possible, S > 3 was
deemed unnecessary in this example. According to Fig. 5(c), the sparse grids method is marginally better for the
case of smooth function, but still is inferior to SDD in terms of accuracy. It must be emphasized that for N = 10,
neither the reference variance, nor the SDD coefficients were exact. Hence, the reported errors are approximate. The
bottom line is that the proposed method is able to elegantly deal with harsh functions in terms of regularity. This
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Fig. 5. Variance error analysis for decavariate (N = 10) modified Genz functions in Example 1: (a) discontinuous, (b) continuous, and
(c) product peak.

Fig. 6. A bar under uniaxial tension in Example 2: (a) problem schematic; (b) IGA mesh.

affordable method also surpasses PCE and sparse grids, when it comes to accuracy, while for high-dimensional
problems, the dimension-wise structure of SDD yields accurate low-variate approximations. This will be further
discussed for linear elasticity applications in Example 4.

5.2. Example 2: Bar under uniaxial loading

The second example illustrates a prismatic bar under a uniaxial loading along the z-axis in the physical space,
as defined in Fig. 6(a). The bar is 6 inches long and is fixed at Point A (z = 0). Three external loads are applied
to the bar: (1) a linearly distributed load P(z) = 6z/L (kipf per inch); (2) a concentrated force F1 (kipf) acting
on the endpoint B at z = L = 6 inches, and (3) another concentrated force F2 (kipf) applied to the endpoint B.
The loads may be physically due to different sources. For instance, F1 and F2 may be applied by two separate
pushing/pulling sources of energy, while P(z) may be the effect of a magnetic field. A positive or negative value
of F1 or F2 represents a tensile or compressive force, respectively.

While the cross section A = 1 in2 and the length L = 6 in are both deterministic, the Young’s modulus E and
the forces F1, F2 are set as independent random variables with their statistical properties described in Table 1.
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Table 1
Statistical properties of the random inputs in Example 2.

Random variable Type Bounds Mean Standard deviation Units

F1 Uniform [−20, 20] 0 11.547 kipf
F2 Uniform [−20, 20] 0 11.547 kipf
E Uniform [27 × 106, 33 × 106] 30 × 106 1.732 × 106 lbf/in2

The output response of interest, denoted by δB(X), is the absolute displacement of the endpoint B, which depends
on the three-dimensional (N = 3) random input vector X = (F1, F2, E). The objective of this example is to compare
the approximation quality of the SDD and PDD methods, while calculating the mean and standard deviation of δB .

The deterministic IGA involved three quadratic elements with the corresponding mesh shown in Fig. 6(b).
Additional information about the control points, weights, and knot vector are provided in Table C.1 of Appendix C.
In the stochastic domain of SDD, two B-spline orders, p = 1 and p = 2, representing linear and quadratic elements,
respectively, were employed. Given p, four uniform knot vectors ξ in each of the three coordinate directions were
chosen in such a way that the number of subintervals I varies as 2, 4, 6, and 8. The larger the I , the smaller
the element size, and hence the finer the mesh in the stochastic domain A3. For numerical integration required for
calculating the SDD expansion coefficients, a full integration involving an isotropic (p + 1)-point (q = p + 1)
Gauss quadrature rule was employed for each subinterval. For both SDD and PDD methods, three respective
approximations resulting from univariate (S = 1), bivariate (S = 2), and trivariate (S = 3) truncations were used.
The second-moment properties calculated by SDD were based on (26) and (27). The order m of PDD approximations
was varied as 1, 2, 3, 5, 6, 8, 10, and 12. The second-moment properties by PDD were calculated using the reported
formula from Gautschi [49]. A full integration involving an isotropic (m + 1)-point Gauss quadrature rule was
used for estimating the PDD expansion coefficients. As the response function involves the absolute value of a
displacement, a nonsmoothness exists in the original function, which is generally difficult to capture by globally
supported, smooth basis functions. This explains the motivation for including PDD, to be contrasted with SDD. The
relative errors committed by SDD and PDD approximations were assessed with respect to the crude MCS solution,
which provided the following benchmark statistics: mean of δB(X) = 0.003356688 inch; standard deviation of δB(X)
= 0.002370485 inch.

Fig. 7 illustrates the relative error in the mean values approximated by the PDD and SDD methods versus the
corresponding number of requisite expansion coefficients. The number of expansion coefficients increases with the
maximum polynomial order m for PDD and with the number of subintervals I and order p in the case of SDD.
Based on Fig. 7, all methods are convergent and are able to accurately calculate the mean of the response. This is not
a surprising finding as calculating the mean value is generally not difficult. However, as the mean is independent
of the choice of the basis function, the more rigorous the numerical integration of (12b), the more precise the
estimation of mean. The SDD method provides more accurate results than PDD since, for integration, the entire
domain is broken into subintervals.

Moreover, the linear SDD method (p = 1) exhibits a more dominant convergence behavior than the quadratic
SDD (p = 2) as the number of coefficients increases. The reason is that, with the refinement of the knot vectors,
the knots tend to fall on the proximity of the nonsmoothness of the original function. Hence, the function is
approximated better. In the case of the quadratic SDD (p = 2), however, as the knots are not repeated, the
C1-continuous approximate function is not able to represent nonsmoothness adequately. Hence, the linear SDD is
superior to the quadratic SDD. Having said this, when the number of subintervals is low, the number of expansion
coefficients is low, and the knots do not fall in a close neighborhood of nonsmoothness, and the quadratic SDD
method provides better results than the linear SDD method as it is of higher order.

Fig. 8(a) through (c) demonstrate the convergence of the standard deviation of δB(X) estimated by the univariate,
bivariate, and trivariate PDD and SDD methods. According to Fig. 8(a), all PDD and SDD methods reach a plateau,
implying that the univariate approximation lacks accuracy. This is due to the bivariate interaction of F1 and F2

acting on δB , which is not captured by the univariate approximations. The errors get much lower for the bivariate
and trivariate approximations, as depicted in Fig. 8(b) and 8(c), respectively. Furthermore, PDD methods struggle
to estimate the standard deviation of δB as accurately as linear or quadratic SDD methods, although the order grows
as large as 12. This is due to the nonsmoothness in the response function, which is impressively captured by SDD.
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Fig. 7. Convergence of the mean to the benchmark value versus the number of expansion coefficients in Example 2.

Fig. 8. Convergence of the standard deviation to the benchmark value versus the number of expansion coefficients in Example 2:
(a) univariate (S = 1); (b) bivariate (S = 2); and (c) trivariate (S = 3) approximations.

Results improve with the increase in S where the trivariate approximation is the most accurate, as S = N = 3.
Once more, linear SDD dominates quadratic SDD with the increase in the number of expansion coefficients for
the same reason discussed previously. It is observed that the proposed SDD method is able to properly estimate
the second-moment statistical properties of the response even with linear basis functions, whereas the PDD method
with polynomials of maximum order up to 12 is unable to match in terms of accuracy.

5.3. Example 3: Plate with the hole problem

The main purpose of the third example is to evaluate the influence of the proposed DRI technique on the accuracy
of the SDD method. Consider a square plate with a central circular hole. The plate is of length 2L units, and the
hole is of radius a units, as illustrated in Fig. 9(a). The plate undergoes a uniaxial far-field tensile stress σ∞ in the
y-direction. The isotropic elastic properties of the material are completely defined by the Young’s modulus E and
the Poisson’s ratio ν. The stochastic PDE associated with this problem entails five random variables (N = 5) with
X = (L , a, E, ν, σ∞). Their statistical properties are described in Table 2 in consistent units. The plate thickness is
1 unit. For simplicity, only a quarter of the plate was modeled due to the symmetry in the geometry and loading.
The objective is to study the statistical properties of the displacements and stresses within the body due to the
uncertainty in the input parameters described earlier.
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Fig. 9. A plate with a circular hole under uniaxial tension in the y-direction in Example 3: (a) problem schematic; (b) refined mesh employed
in the analyses. The control points are illustrated by red closed squares.

Table 2
Statistical properties of the random inputs in Example 3.

Random variable Type Bounds Mean Standard deviation

L Uniform [9.5, 10.5] 10 0.2887
a Uniform [0.95, 1.05] 1 0.0289
E Uniform [0.8, 1.2] 1 0.1155
ν Uniform [3/10, 11/30] 1/3 0.0192
σ∞ Lognormal (0,+∞) 1 0.15

Fig. 9(b) illustrates the IGA discretization on the exact single-patch geometry with the control points indicated
by red closed squares. This mesh was generated by simple h-refinement on a base two-element mesh with knot
vectors, control points, and weights defined in Tables C.2, C.3, and Fig. C.1 of Appendix C. The IGA mesh in
Fig. 9(b) consists of a total of 256 quadratic elements. The corresponding control points for the refined mesh are
too many to report. Two sets of solutions are provided, and their difference lies in the numerical calculation of
the SDD coefficients: (1) full integration based on (12b) and (22); and (2) reduced integration entailing the DRI
technique with additional Gauss quadrature approximations in (34) and (35). The SDD methods include bivariate,
linear (S = 2, p = 1) and bivariate, quadratic (S = 2, p = 2) approximations, each with two subintervals (I = 2).
The expansion coefficients were calculated with (p + 1) Gauss points on each subinterval.

Tables 3 and 4 list the results for the mean and standard deviation computations, respectively, at various points
of the plate, defined in Fig. 9(a). Here, u, σ , and τ symbolize displacement, normal stress, and shear stress,
respectively. The displacements and stresses were calculated using (9) and (10), respectively, and the number of
function evaluations or IGA for each method is noted in the parentheses. This number for reduced integration
methods was computed using (37). It is observed that both means and standard deviations of the responses are
accurately estimated by the SDD method when compared with the MCS solution. However, those calculations
involving the DRI technique are tremendously more efficient as the numbers of IGA are much lower than those
of the methods with full integration. The DRI has negligible impact on the accuracy, and the maximum error in
mean predictions among all methods, also negligible at 0.18%, is obtained by the reduced integration approach with
linear (p = 1) SDD.
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Table 3
Mean of various responses at several points of the plate in consistent units in Example 3a.

Full integrationb Reduced integrationc

p = 1 p = 2 p = 1 p = 2
Point Response (1024) (7776) (181) (391) MCS (100,000)

A
ux −1.071 −1.072 −1.071 −1.072 −1.072
σy 3.182 3.185 3.182 3.185 3.187
τxy −0.003808 −0.003812 −0.003808 −0.003812 −0.003813

B
ux −3.626 −3.630 −3.626 −3.630 −3.629
σy 0.9746 0.9756 0.9746 0.9756 0.9760

C
u y 3.112 3.115 3.112 3.115 3.114
σx −1.117 −1.118 −1.117 −1.118 −1.119
τxy 0.001521 0.001523 0.001521 0.001523 0.001523

D
u y 10.567 10.577 10.567 10.577 10.573
σy 1.007 1.008 1.007 1.008 1.008

E
ux −3.150 −3.153 −3.150 −3.153 −3.152
u y 9.850 9.860 9.850 9.860 9.856
σy 0.9987 0.9997 0.9987 0.9997 1.000

aThe numbers of function evaluations are reported in parentheses.
bN-dimensional integrals are computed.
cThe DRI technique is applied.

Table 4
Standard deviation of various responses at several points of the plate in consistent units in Example 3a.

Full integrationb Reduced integrationc

p = 1 p = 2 p = 1 p = 2
Point Response (1024) (7776) (181) (391) MCS (100,000)

A
ux 0.1945 0.2009 0.1953 0.2018 0.2081
σy 0.4281 0.4527 0.4280 0.4527 0.4802
τxy 0.0005520 0.0005795 0.0005525 0.0005802 0.0006102

B
ux 0.6816 0.7026 0.6849 0.7063 0.7254
σy 0.1311 0.1386 0.1310 0.1386 0.1471

C
u y 0.5635 0.5821 0.5658 0.5847 0.6029
σx 0.1506 0.1592 0.1505 0.1592 0.1688
τxy 0.0002101 0.0002216 0.0002103 0.0002218 0.0002345

D
u y 1.906 1.969 1.913 1.978 2.038
σy 0.1354 0.1432 0.1354 0.1432 0.1519

E
ux 0.6039 0.6218 0.6071 0.6254 0.6413
u y 1.781 1.840 1.788 1.848 1.904
σy 0.1343 0.1420 0.1343 0.1420 0.1507

aThe numbers of function evaluations are reported in parentheses.
bN-dimensional integrals are computed.
cThe DRI technique is applied.

On the other hand, there is a slight degradation in the accuracy of the values of standard deviation (Table 4) with
or without the implementation of DRI. The maximum errors by full integration with p = 1 and p = 2 are 10.88%
and 5.78%, respectively, compared to 10.94% and 5.78% by reduced integration. As a result, the DRI does not
impose a significant impact on the accuracy of the standard deviation values either, while the number of function
evaluations drops drastically from 1024 to 181 and from 7776 to 391 for the linear and quadratic SDD methods,
respectively. Furthermore, all results generally improve with the increase in order p from 1 to 2.

Figs. 10 and 11 display the contour plots of the mean and standard deviation of displacement u y , normal stress
σy , and absolute value of shear stress

⏐⏐τxy
⏐⏐ computed by crude MCS and bivariate, quadratic SDD approximation
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Fig. 10. Contour plots for the mean of (a) u y , (b) σy , and (c)
⏐⏐τxy

⏐⏐ obtained by SDD with reduced integration by DRI (left), SDD with
full integration (middle), and MCS (right) in consistent units in Example 3.

with two subintervals (S = 2, p = 2, I = 2). Again, the purpose is to evaluate the accuracy of the results obtained
from full integration and reduced integration (DRI), but this time over the whole physical domain. In agreement
with previous statements, any difference in the contour plots by SDD and MCS is indiscernible to the naked eye.
The increase in the order yields an increase in the number of basis functions and, by extension, the number of
expansion coefficients, boosting the total number of IGA required by SDD. As a result, the larger the order and/or



R. Jahanbin and S. Rahman / Computer Methods in Applied Mechanics and Engineering 364 (2020) 112928 27

Fig. 11. Contour plots for the standard deviation of (a) u y , (b) σy , and (c)
⏐⏐τxy

⏐⏐ obtained by SDD with reduced integration by DRI (left),
SDD with full integration (middle), and MCS (right) in consistent units in Example 3.

the more refined the knot vectors representing the stochastic domain of B-splines, the more crucial the need for
DRI becomes in the corresponding computations. This further magnifies the benefit and convenience of the DRI
technique proposed.

Note that, in this example, the lognormal probability measure corresponding to σ∞ was transformed to a uniform
probability measure for the SDD method to be theoretically applicable, as mentioned in Section 2.2. Although the
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Fig. 12. A horseshoe under asymmetric loading in Example 4: (a) problem schematic; (b) refined mesh employed in the analyses. The
control points are illustrated by red closed squares.

target distribution with a bounded domain is not unique, since only one of the random variables was unbounded,
mapping to the uniform distribution led to accurate results, at least for the calculation of second-moment properties
of the response. Thus, there was no need to try other target distributions.

5.4. Example 4: Horseshoe random field problem

Having studied the positive impact of the DRI on a two-dimensional physical domain, the final example delves
into a geometrically complex yet single-patch three-dimensional horseshoe problem with a high-dimensional random
input. The solid horseshoe is constructed by executing a U-sweep of the cross section of a notched square. The
cross section has a size L × L , subtracted by a quarter disk with the radius r2, as shown in Fig. 12(a). Additional
parameters required to completely describe the horseshoe geometry, namely, r1 representing the distance between
the origin and the centerpoint of the quarter disk and h identifying the height of the straight portion, are also
sketched. The following values were used: r1 = 3 units, r2 = 4 units, L = 20 units, and h = 20 units. Hence, the
geometry is completely defined.

For material properties, the Poisson’s ratio ν = 1/3. Moreover, the Young’s modulus E(z; ·) is a homogeneous
lognormal random field with mean µE = 210 × 109 units and coefficient of variation νE = 0.1. As a translation
random field, E(z; ·) is written as

E(z; ·) = Cα exp[α(z; ·)],

where

Cα =
µE√

1 + ν2
E

and α(z; ·) is a homogeneous Gaussian random field with mean zero and covariance function

Γ (z, z′) = σ 2 exp

(
−

⏐⏐⏐⏐z − z′
⏐⏐⏐⏐

bL

)
, z, z′

∈ D ⊂ R3

with σ 2
= 0.01 and b = 1.

For stress analysis, the top surfaces of the horseshoe are subjected to displacements of magnitude us = 0.01 units
in the directions shown in Fig. 12(a). This causes asymmetric deformation and resultant twisting of the horseshoe.
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The stochastic problem requires calculating the statistical properties and probabilistic characteristics of stresses and
strains due to uncertain material properties.

Employing IGA with quadratic NURBS, the geometry was constructed precisely. Similar to the procedure in
Example 3, a base eight-element mesh was generated with quadratic NURBS; the corresponding knot vectors are
reported in Table C.3, and in Fig. C.1 of Appendix C. Too numerous to report, the control points and weights
corresponding to the coarse mesh have been suppressed. The fine mesh illustrated in Fig. 12(b) was then constructed
by simple knot insertion, which consists of 1024 quadratic elements and 2442 control points. The control points are
depicted by red closed squares. Readers interested in modeling techniques of three-dimensional objects via NURBS
are directed to the book by Cottrell et al. [30].

The random field describing Young’s modulus was discretized by the K–L expansion, exploiting the isogeometric
collocation method [43] and considering a total of 15 (N = N ′

= 15) independent standard Gaussian random
variables. As the 15th eigenvalue was only 2.47% percent of the first eigenvalue, this number was deemed adequate
to satisfactorily approximate the random field. The domain discretization and NURBS objects, such as orders and
knot vectors, for the K–L expansion and deterministic IGA were identical. The eigenpairs {λi , φi (z)}, i = 1, . . . , N ,
were then numerically calculated. By dint of the collocation method, the random field is efficiently discretized with
adequate accuracy. However, the error due to the truncation of the K–L expansion is not studied here. The horseshoe
problem was solved by crude MCS and SDD. For the SDD method, each standard Gaussian random variable X i
was transformed to a truncated Gaussian variable, where the original PDF was truncated at xi = ±3. Both univariate
and bivariate SDD approximations with p = 1 and p = 2 and two or four subintervals (I = 2 or 4) were employed.
The expansion coefficients were calculated using the DRI technique with p + 2 Gauss points on each subinterval.
Two sets of stochastic analyses were performed for this example, the results of which are presented next.

5.4.1. Second-moment analysis
The first set of analyses entails the evaluation of the second-moment properties of a stress and a strain component.

The crude MCS was chosen to provide the benchmark solution along with two SDD methods: univariate, quadratic
SDD approximation (S = 1, p = 2) and bivariate, quadratic SDD approximation (S = 2, p = 2), each with
two subintervals (I = 2). Figs. 13 and 14 demonstrate the contour plots of the mean and standard deviation,
respectively, of the normal stress σz and the shear strain ϵxz , obtained by the univariate SDD, bivariate SDD, and
MCS. No tangible improvement is noticed when implementing bivariate SDD over univariate SDD, indicating that
the original function is dominantly univariate with weak interaction terms. Furthermore, both methods satisfactorily
estimate the mean and standard deviation of the responses in comparison with those obtained from the MCS to
the extent that any differences in the contours are barely distinguishable. The error in the maximum values of the
mean and standard deviation of stress and strain committed by SDD are below 0.5%. Moreover, the numbers of
function evaluations for the univariate SDD and bivariate SDD are 121 and 6841, respectively. This reveals that the
univariate, quadratic (S = 1, p = 2) SDD approximation with two subintervals is adequate for computation of the
second-moment properties of the responses with only 121 IGA. For even more accurate results, further refinement
and an increase in the B-splines orders is valid for SDD. However, doing so for this high-dimensional problem will
be numerically intensive, especially for the bivariate SDD approximation. Although DRI significantly contributes
to the numerical scheme developed, there is still a need to further improve on the numerical integration methods
for high-dimensional integrals involving splines.

5.4.2. Probability distribution analysis
In this section, the CDF of a relevant stress component at a critical point of the horseshoe is studied. Let the point

at which the mean of the normal stress σz is maximum be the critical point and denote by σz,c the normal stress
at that point. For CDF analysis, the crude MCS was selected along with three univariate SDD methods: univariate,
linear SDD approximation with two subintervals (S = 1, p = 1, I = 2); univariate, linear SDD approximation
with four subintervals (S = 1, p = 1, I = 4); and univariate, quadratic SDD approximation with two subintervals
(S = 1, p = 2, I = 2). With each SDD surrogate obtained, one is able to re-sample the SDD approximation with
a relatively large sample size – 105 in this example – to estimate the CDF of σz,c.

Fig. 15 illustrates the CDF of σz,c calculated by the aforementioned methods. Evidently, the univariate, quadratic
SDD approximation with two subintervals not only assiduously captures the second-moment statistical properties
of the response, as observed previously, but also provides an impressive approximation of the CDF with only 121
IGA, compared to 104 IGA in the case of MCS.
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Fig. 13. Contour plots for the mean of (a) normal stress σz and (b) shear strain ϵxz obtained by univariate SDD (left), bivariate SDD
(middle); and MCS (right) in consistent units in Example 4.

Now the question to be addressed is whether the lower-order SDD methods are also able to accurately estimate
the distribution of σz,c. According to Fig. 15, while the linear SDD approximation with two subintervals and 91
IGA struggles to approximate the CDF of σz,c well, increasing the number of subintervals from two to four helps
remarkably. However, the number of IGA is nearly doubled from 91 to 181, and yet, the linear SDD with four
subintervals is not as good as the quadratic SDD with two subintervals in either accuracy or efficiency.

Note that the transformation of the Gaussian probability measures to other desired probability measures may
change the results. However, a transformation yielding the least difference in the original and mapped distributions is
more enticing, since in general, heavily nonlinear transformations are to be avoided to obtain better approximations.
Investigations revealed that, for the fourth numerical example, transformation from Gaussian to truncated Gaussian
measures indeed provided much more accurate yet numerically affordable results than mapping them to uniform
probability measures. For brevity, the results corresponding to uniform mapping are not reported here. Evidently, the
SDD method can reliably estimate the statistical characteristics and probability distribution of a random response
for bounded or unbounded distributions, while the geometrically complex domains are precisely modeled in IGA.

6. Outlook

Although the development of SDD–IGA contributes to the advancement of SIGA and to overall progress in
stochastic mechanics, there are a few open questions or concerns. The computationally intensive high-dimensional
integration involved in calculating the expansion coefficients remains to be conquered as the most challenging part
of the SDD method. For the K–L expansion in random field discretization and for the Galerkin IGA in linear
elasticity, the integrals are at most three-dimensional since they are defined on a physical domain, whereas in the
stochastic domain, in practice, the number of random variables often exceeds 10 and may even be 100 or more.
This issue, however, was alleviated to some extent by introducing the DRI technique. Fundamentally, the problem
of high-dimensional integration is not specific to SDD or SIGA. Obviously, there is a long-standing interest and
need for further research in this direction.
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Fig. 14. Contour plots for the standard deviation of (a) normal stress σz and (b) shear strain ϵxz obtained by univariate SDD (left), bivariate
SDD (middle); and MCS (right) in consistent units in Example 4.

Fig. 15. The CDF of the response σz,c in Example 4.
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Another open question in SDD–IGA is the choice of the knot vectors and B-spline orders. It was observed in
the second example that having a knot in the proximity of the nonsmoothness of the original response function may
help with the accurate approximation of the response function, provided that the order is chosen cleverly. Hence,
seeking optimal or adaptive knot vectors and B-spline orders would be a significant contribution to this area. This
also presents the opportunity to introduce unbounded knot vectors to the established framework to handle unbounded
distributions of random input. If that were done, no measure transformation would be required.

Last but not least, the scope of the proposed SDD–IGA method, in the context of SIGA, should be expanded to
account for more complex multi-patch geometries in IGA in the future.

7. Conclusion

A new stochastic method, referred to as SDD–IGA, was developed for solving stochastic boundary-value
problems from linear elasticity. As a stochastic version of the Galerkin isogeometric analysis, the method has at least
two important novelties. First, measure-consistent orthonormal B-splines were employed for refining ADD of a high-
dimensional response function. The result is a Fourier-like orthogonal expansion in spline basis, which is equipped
to capture locally abrupt changes in stochastic responses, including discontinuity and nonsmoothness, better than
globally supported polynomial basis. Second, an innovative DRI technique, meant for computing high-dimensional
integrals, was exploited for estimating the expansion coefficients of SDD–IGA. Consequently, high-dimensional
stochastic problems, featuring locally prominent, highly nonlinear response functions, can be effectively solved with
a polynomial computational complexity. Therefore, a time-honored stochastic problem associated with the curse of
dimensionality has been diminished to an appreciable magnitude. Analytical formulae were derived to calculate
the second-moment properties of a general SDD–IGA approximation. The significance of the SDD–IGA method
lies in harnessing common ingredients of IGA – B-splines and NURBS – in geometrical modeling, random field
discretization, stress analysis, and now UQ for any square-integrable output random variable of interest. Because of
the connection to IGA, the SDD–IGA method preserves exact geometrical representation of commonly used shapes
found in engineering, thereby removing an additional source of imprecision in the discretization process.

A numerical example entailing functions with harsh regularities illustrates the dominance of SDD over PCE
and sparse grids methods. Moreover, the numerical results from three elastostatic problems, including a three-
dimensional, fifteen-variable horseshoe problem, demonstrate that a low-order SDD–IGA approximation is capable
of efficiently delivering probabilistic solutions with an approximation quality as good as, if not better than, that
obtained from a high-order PDD–IGA method. The established SDD–IGA framework is most suitable in the
presence of locally nonlinear or nonsmooth response behavior, not uncommon in engineering applications.

Appendix A. Isogeometric analysis

The IGA was developed to establish a tight connection between CAD and FEA, where the B-splines and NURBS
are employed for both frameworks [30]. This section describes the basic concepts of IGA and its notations for
single-patch geometries, which is sufficient for the materials covered in this paper.

A.1. Univariate basis functions

B-splines are constructed via knot vectors and orders.4 A knot vector ξ k in coordinate direction k ∈ N and of
order pk ∈ N0 is defined on a bounded interval [ak, bk] ⊂ R with ak < bk and nk > pk ≥ 0 as a non-decreasing
sequence of real numbers as

ξ k := {ξk,ik }
nk+pk+1
ik=1 = {ak = ξk,1, ξk,2, . . . , ξk,nk+pk+1 = bk},

ξk,1 ≤ ξk,2 ≤ . . . ≤ ξk,nk+pk+1

where nk ∈ N represents the number of basis functions in direction k. Here, the coordinate direction k corresponds
to either the stress analysis or the K–L expansion (k = 1, . . . , d), where d = 1, 2, 3, or the stochastic analysis
(k = 1, . . . , N ) with N ∈ N being the dimension of the stochastic problem. Moreover, ξk,ik is the ik th knot with
ik = 1, 2, . . . , nk + pk + 1 identifying its index. There are nk + pk + 1 knots in the knot vector, which may be

4 Degree and order are used interchangeably in the paper.
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equally spaced or unequally spaced, resulting in a uniform or non-uniform mesh, respectively. More importantly,
a knot may be repeated 1 ≤ mk,ik ≤ pk + 1 times, where mk,ik is referred to as its multiplicity. The multiplicity
has significant impact on the regularity of B-spline functions. In case of rk distinct knots in ξ k with corresponding
multiplicities mk,1, . . . ,mk,rk , the general expression of the knot vector in direction k reduces to

ξ k = (ak = ζk,1, . . . , ζk,1  
mk,1 times

, ζk,2, . . . , ζk,2  
mk,2 times

, . . . , ζk,rk , . . . , ζk,rk  
mk,rk times

= bk),

which comprises
rk∑

ik=1

mk,ik = nk + pk + 1.

knots. For any occurrence ζk,ik > ζk,ik−1, denote by [ζk,ik−1, ζk,ik ] ⊂ R a subinterval of the domain [ak, bk]. A knot
vector is called open if its first and last knots appear pk + 1 times [55]. Only open knot vectors are employed in
this work.

With a specified knot vector ξ k and order pk in coordinate direction k, the B-spline function Bk
ik ,pk ,ξk

(xk) with
ik = 1, . . . , nk is generated in a recursive manner. The zero-order basis function is formed by

Bk
ik ,0,ξk

(xk) =

{
1, ζk,ik ≤ xk < ζk,ik+1,

0, otherwise,

and higher-order B-splines are all generated by the Cox–de Boor formula [46]

Bk
ik ,pk ,ξk

(xk) =
xk − ζk,ik

ζk,ik+pk − ζk,ik
Bk

ik ,pk−1,ξk
(xk) +

ζk,ik+pk+1 − xk

ζk,ik+pk+1 − ζk,ik+1
Bk

ik+1,pk−1,ξk
(xk), (A.1)

where 0/0 is considered as zero.
The B-spline functions possess several beneficial properties. They are non-negative, locally supported on the

interval, linearly independent, and committed to partition of unity [28]. A B-spline is also everywhere pointwise
C∞-continuous except at the knots ζk,ik of multiplicity mk,ik , where it is C pk−mk,ik -continuous, provided that
1 ≤ mk,ik < pk + 1. Some of these properties are quite fruitful in computational stress analysis, random field
discretization, and stochastic analysis.

A.2. Multivariate functions for stress and K–L analyses

Multivariate B-splines in d variables with knot vectors ξ 1, . . . , ξ d are constructed from the tensor product of the
corresponding univariate B-splines. Define three multi-indices i := (ik1 , . . . , ikd ) ∈ Nd , p := (pk1 , . . . , pkd ) ∈ N0

d ,
and Ξ := (ξ 1, . . . , ξ d ). For the first multi-index, denote by

I :=
{
i = (ik1 , . . . , ikd ) : 1 ≤ ikl ≤ nkl , l = 1, . . . , d

}
⊂ Nd

a multi-index set. Denoting by D̂ the parametric space, for i ∈ I and p, the multivariate B-spline function
Bi,p,Ξ : D̂ → R is defined as

Bi,p,Ξ (x) :=

d∏
k=1

Bk
ik ,pk ,ξk

(xk)

with the corresponding tensor-product B-spline space

Bh :=

d⨂
k=1

Bk(pk; ξ k) =

d⨂
k=1

span{Bk
ik ,pk ,ξk

(xk)}ik=1,...,nk = span{Bi,p,Ξ (x)}i∈I .

Bh is therefore a family of piecewise polynomials that, due to the tensor-product structure, inherit the basic properties
of their univariate counterparts. Denote by R+ the collection of all positive real numbers and by wi ∈ R+ a positive
weight. Then, a weight function w : D̂ → R can be defined through a linear combination of multivariate B-splines
as [56]

w(x) :=

∑
i∈I

wiBi,p,Ξ (x).



34 R. Jahanbin and S. Rahman / Computer Methods in Applied Mechanics and Engineering 364 (2020) 112928

Hence, the multivariate NURBS function Ri,p,Ξ (x) : D̂ → R is defined as [30]

Ri,p,Ξ (x) :=
wiBi,p,Ξ (x)
w(x)

=
wiBi,p,Ξ (x)∑
i∈I wiBi,p,Ξ (x)

, (A.2)

producing the NURBS function space

Rh := span{Ri,p,Ξ (x)}i∈I . (A.3)

The NURBS functions also inherit the important properties from their piecewise polynomial counterparts.
For each i ∈ I, let ci ∈ Rd be a control point. Denote by nc := |I| the cardinality of I, representing the

number of such control points for any d-dimensional geometry. Call the collection of such control points {ci}i∈I
a control mesh. Using NURBS functions, the physical domain D ⊂ Rd is obtained by a geometrical mapping
x : D̂ → D ⊂ Rd , which is described more explicitly by

H(x) =

∑
i∈I

Ri,p,Ξ (x)ci, (A.4)

which can be a line, a surface, or a volume. Where the control points are and how they are weighted determines the
geometry in a convenient manner. The use of NURBS by (A.2) is vital in many engineering applications where the
geometry may not be accurately modeled via B-splines. Using the geometrical mapping (A.4), the physical mesh
Kh is the projection of the parametric mesh Zh , that is,

Kh := {K = H(Z ) : Z ∈ Zh} ,

where element K of the physical mesh is the image of element Z of the parametric discretization. Moreover, define
the space of NURBS functions in the physical domain D as the push-forward of the NURBS space Rh in (A.3)
via

Vh := span
{
Ri,p,Ξ ◦ H−1}

i∈I = span
{
R̄i,p,Ξ

}
i∈I , (A.5)

where R̄i,p,Ξ := Ri,p,Ξ ◦ H−1 is the NURBS function in the physical domain.
The accuracy of IGA depends on the enrichment of the NURBS spaces Rh in (A.3) and Vh in (A.5) via

refinement. Although many conic geometries may be exactly represented by a single element, mesh refinement is
often needed for numerical accuracy purposes when solving a PDE. A simple and straightforward type of refinement
is through knot insertion, which is equivalent to the h-refinement commonly used in FEM. Here, an obvious
difference between the two is the continuity in the bases of the former over the element boundaries. However,
the regularity of the NURBS functions may be altered by repeating knots as desired. By knot insertion, a finer
mesh is constructed by subsequently adding knots to the existing knot vectors without changing the geometry. It
yields an increase in the number of control points and thus in the number of basis functions. As an example, consider
inserting a new knot ζ ′

k ∈ [ζk,l , ζk,l+1), 1 ≤ l ≤ nk + pk , to the existing knot vector ξ k := (ζk,1, ζk,2, . . . , ζk,nk+pk+1).
The Cox–de Boor formula in (A.1) is then applied to the new knot vector

ξ ′

k := (ζ ′

k,1, ζ
′

k,2, . . . , ζ
′

k,nk+pk+2) = (ζk,1, ζk,2, . . . , ζk,l , ζ
′

k, ζk,l+1, . . . , ζk,nk+pk+1).

Hence, a new set of nk + 1 basis functions is created with their span nesting the span of existing basis functions,
and, for a NURBS object in Rd , a new set of control points should be defined for the new basis functions to obtain
an object that is geometrically and parametrically the same as the original one. More details of the isogeometric
analysis are suppressed for brevity. Readers interested in this topic are directed to [30] and [31].

Appendix B. Examples of SDD coefficients with DRI

This section presents some examples of the expansion coefficients in SDD, where the DRI is implemented. The
examples entail S = R = 1, S = R = 2, and S = R = 3. The conditions on the summations noted by u ⊆ v in
(35) are also imposed. This will filter out some of the terms with zero contributions due to (17) and (18).
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S = R = 1.

ŷ∅ =

N∑
k=1

∫
A{k}

y(c1, . . . , ck−1, xk, ck+1, . . . , cN ) fXk (xk)dxk − (N − 1)y(c)

α̂kik =
∫
A{k} y(c1, . . . , ck−1, xk, ck+1, . . . , cN )ψk

ik ,pk ,ξk
(xk) fXk (xk)dxk

S = R = 2.

ŷ∅ =

N−1∑
k1=1

N∑
k2=k1+1

∫
A{k1,k2}

y(c1, . . . , ck1−1, xk1 , ck1+1, . . . , ck2−1, xk2 , ck2+1, . . . , cN )×

fXk1
(xk1 ) fXk2

(xk2 )dxk1dxk2 − (N − 2)
N∑

k=1

∫
A{k}

y(c1, . . . , ck−1, xk, ck+1, . . . , cN ) fXk (xk)dxk

+
(N − 1)(N − 2)

2
y(c)

α̂kik =

N−1∑
k1=1

N∑
k2=k1+1

{k}⊂{k1,k2}

∫
A{k1,k2}

y(c1, . . . , ck1−1, xk1 , ck1+1, . . . , ck2−1, xk2 , ck2+1, . . . , cN )ψk
ik ,pk ,ξk

(xk)×

fXk1
(xk1 ) fXk2

(xk2 )dxk1dxk2 − (N − 2)
∫
A{k}

y(c1, . . . , ck−1, xk, ck+1, . . . , cN )ψk
ik ,pk ,ξk

(xk)×

fXk (xk)dxk

β̂k1k2ik1 ik2
=

∫
A{k1,k2}

y(c1, . . . , ck1−1, xk1 , ck1+1, . . . , ck2−1, xk2 , ck2+1, . . . , cN )ψk1
ik1 ,pk1 ,ξk1

(xk1 )×

ψ
k2
ik2 ,pk2 ,ξk2

(xk2 ) fXk1
(xk1 ) fXk2

(xk2 )dxk1dxk2

S = R = 3.

ŷ∅ =

N−2∑
k1=1

N−1∑
k2=k1+1

N∑
k3=k2+1

∫
A{k1,k2,k3}

y(c1, . . . , ck1−1, xk1 , ck1+1, . . . , ck2−1, xk2 , ck2+1, . . . , ck3−1, xk3 , ck3+1, . . . , cN )

× fXk1
(xk1 ) fXk2

(xk2 ) fXk3
(xk3 )dxk1 dxk2 dxk3

−(N − 3)
N−1∑
k1=1

N∑
k2=k1+1

∫
A{k1,k2}

y(c1, . . . , ck1−1, xk1 , ck1+1, . . . , ck2−1, xk2 , ck2+1, . . . , cN )

× fXk1
(xk1 ) fXk2

(xk2 )dxk1 dxk2 +
(N − 2)(N − 3)

2

×

N∑
k=1

∫
A{k}

y(c1, . . . , ck−1, xk , ck+1, . . . , cN ) fXk (xk )dxk −
(N − 1)(N − 2)(N − 3)

6
y(c)

α̂kik =

N−2∑
k1=1

N−1∑
k2=k1+1

N∑
k3=k2+1

{k}⊂{k1,k2,k3}

∫
A{k1,k2,k3}

y(c1, . . . , ck1−1, xk1 , ck1+1, . . . , ck2−1, xk2 , ck2+1, . . . , ck3−1, xk3 , ck3+1, . . . , cN )

×ψk
ik ,pk ,ξ k

(xk ) fXk1
(xk1 ) fXk2

(xk2 ) fXk3
(xk3 )dxk1 dxk2 dxk3

−(N − 3)
N−1∑
k1=1

N∑
k2=k1+1

{k}⊂{k1,k2}

∫
A{k1,k2}

y(c1, . . . , ck1−1, xk1 , ck1+1, . . . , ck2−1, xk2 , ck2+1, . . . , cN )ψk
ik ,pk ,ξ k

(xk )

× fXk1
(xk1 ) fXk2

(xk2 )dxk1 dxk2

+
(N − 2)(N − 3)

2

∫
A{k}

y(c1, . . . , ck−1, xk , ck+1, . . . , cN )ψk
ik ,pk ,ξ k

(xk ) fXk (xk )dxk
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β̂k1k2ik1 ik2
=

N−2∑
j1=1

N−1∑
j2= j1+1

N∑
j3= j2+1

{k1,k2}⊂{ j1, j2, j3}

∫
A{ j1, j2, j3}

y(c1, . . . , c j1−1, x j1 , c j1+1, . . . , c j2−1, x j2 , c j2+1, . . . , c j3−1, x j3 , c j3+1, . . . , cN )

×ψ
j1

i j1 ,p j1 ,ξ j1
(x j1 )ψ j2

i j2 ,p j2 ,ξ j2
(x j2 ) fX j1

(x j1 ) fX j2
(x j2 ) fX j3

(x j3 )dx j1 dx j2 dx j3

−(N − 3)
∫
A{k1,k2}

y(c1, . . . , ck1−1, xk1 , ck1+1, . . . , ck2−1, xk2 , ck2+1, . . . , cN )

×ψ
k1
ik1 ,pk1 ,ξ k1

(xk1 )ψk2
ik2 ,pk2 ,ξ k2

(xk2 ) fXk1
(xk1 ) fXk2

(xk2 )dxk1 dxk2

γ̂k1k2k3ik1 ik2 ik3
=

∫
A{k1,k2,k3}

y(c1, . . . , ck1−1, xk1 , ck1+1, . . . , ck2−1, xk2 , ck2+1, . . . , ck3−1, xk3 , ck3+1, . . . , cN )

×ψ
k1
ik1 ,pk1 ,ξ k1

(xk1 )ψk2
ik2 ,pk2 ,ξ k2

(xk2 )ψk3
ik3 ,pk3 ,ξ k3

(xk3 ) fXk1
(xk1 ) fXk2

(xk2 ) fXk3
(xk3 )

×dxk1 dxk2 dxk3

Appendix C. IGA details of numerical examples

Supplementary information about the isogeometric analyses in the numerical examples is provided in this section.
NURBS objects for Example 2 are listed in Table C.1. Table C.2 lists the control points corresponding to the coarse
mesh in Example 3. Moreover, Fig. C.1 demonstrates the coarse meshes for Example 3 and Example 4, for which
the knot vectors are presented in Table C.3. The directions of the knot vectors are also defined in Fig. C.1 and the
control points are illustrated by red closed squares. For Example 4, the control points are too many to list and are
thus omitted.

Fig. C.1. Coarse mesh discretization and knot vector directions for (a) Example 3 and (b) Example 4. The control points are illustrated by
red closed squares.

Table C.1
NURBS objects for the isogeometric analysis in Example 2.

Control points Weights Knot vector

{0, 1.5, 3, 4.5, 6} {1, 1, 1, 1, 1} ξ z = {0, 0, 0, 1/3, 2/3, 1, 1, 1}
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Table C.2
Control points and weights corresponding to the base mesh for the
isogeometric analysis in Example 3.

Control point coordinates Weight

(−a, 0) 1
(−0.5L − 0.5a, 0) 0.85355
(−L , 0) 0.85355
(−a, (

√
2 − 1)a) 1

(−0.5L − 0.5a, 0.1875L) 1
(−L , L) 1
(−(

√
2 − 1)a, a) 1

(−0.1875L , 0.5L + 0.5a) 1
(−L , L) 1
(0, a) 1
(0, 0.5L + 0.5a) 1
(0, L) 1

Table C.3
Knot vectors corresponding to the base mesh for the isogeometric analyses in Examples 3 and 4a.

Example 3 Example 4

ξ1 = {0, 0, 0, 0.5, 1, 1, 1} ξ1 = {0, 0, 0, 0.5, 0.5, 1, 1, 1}

ξ2 = {0, 0, 0, 1, 1, 1} ξ2 = {0, 0, 0, 1, 1, 1}

ξ3 = {0, 0, 0, 0.25, 0.25, 0.5, 0.5, 0.75, 0.75, 1, 1, 1}

aDirections are defined in Fig. C.1.
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