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Abstract—A probabilistic model is developed for nonlinear fracture-mechanics analysis of through-walled-
cracked pipes subject to bending loads. It involves elastic-plastic finite element analysis for estimating
energy release rates. J-tearing theory for characterizing ductile fracture and standard structural reliability
methods for conducting probabilistic analysis. Evaluation of the J-integral is based on the deformation
theory of plasticity and power-law idealizations of stress—strain and fracture toughness curves. This allows
the J-integral to be expressed in terms of non-dimensional influence functions (F- and 4, -functions) that
depend on crack size, pipe geometry and material hardening constant. The equations for these functions
(and hence, J) for a cracked pipe are developed in closed-form based on recent results of elastic—plastic
finite element analysis. This makes the subsequent stochastic analysis computationally feasible to conduct
probabilistic pipe fracture evaluations. Both analytical and simulation methods are formulated to
determine probabilistic characteristics of J for a circumferential through-wall-cracked pipe as a function
of applied bending moment. The same methods are used later to compute failure probability of the cracked
pipes. Several failure criteria associated with crack initiation, unstable crack growth and Net-Section-
Collapse are used to determine such probabilities.

Numerical applications are provided to illustrate the proposed methodology. First, the validity of the
J-integral based on the proposed equations for predicting the crack driving force in a through-wall-
cracked pipe is evaluated by comparing with available results in the current literature. Second, probability
densities of the J-integral are predicted as a function of applied loads. Third, failure probabilities
corresponding to various performance criteria are evaluated for a stainless steel nuclear piping in the
Boiling Water Reactor plant. The effects of correlation and distribution properties of random input on
fatlure probability are also evaluated.

1. INTRODUCTION

STRUCTURAL COMPONENTS, which are comprised of piping systems, can be found in nuclear power
plants, off-shore drilling platforms, fossil power generation plants, gas pipelines and others. The
unavoidable existence of cracks in some components may lead to increased safety concerns about
the loss of structural strength and possibly failure of these structural systems. Traditional approach
to safety assessment and design lies in a deterministic model which invariably involves a large safety
factor usually assigned from heuristic and somewhat arbitrary decisions. This approach has almost
certainly been reinforced by the very large extent to which structural engineering design is codified
and the lack of feedback about the actual performance of the structure. Use of large safety factors
can lead to the view that “‘absolute” safety can be achieved. Absolute safety is, of course,
undesirable if not unobtainable, since it could enly be approached by deploying infinite resources.
Moreover, these safety factors do not provide any information regarding the probability that a
pre-existing flaw would lead to the loss of the pipe’s structural integrity.

A realistic evaluation of structural performance can be conducted only if the uncertainty in
structural loads, flaw sizes and material properties, and hence responses, are taken into consider-
ation. Typical response parameters of piping systems that undergo plastic deformation due to
applied loads are the J-integral, crack-tip opening displacement and others. While the load and
the resistance are not deterministic, they nevertheless show statistical regularity and the statistical
information, which is necessary to describe their probability laws, is available from the existing
literature, e.g. the material properties of base and weld metals used in typical nuclear piping can
be obtained from the PIFRAC database [1], the Degraded Piping Program [2] and the International
Piping Integrity Research Group (IPIRG) Program [3) and others [4-6]. A diligent search of the
above database from these research programs can provide a wealth of data for statistical
characterization of the strength (stress—strain curve) and the toughness (J-resistance) properties of
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typical pipe materials. These suggest that the probability theory and structural reliability methods
can be applied to assess performance of piping and piping welds subjected to in-service (normal
operational loads) and extreme (seismic loads) loading environments.

The objective of this paper is to develop a probabilistic model for nonlinear fracture-mechanics
analysis of circumferential through-walled-cracked (TWC) pipes subject to bending loads. It
involves (1) elastic—plastic finite-element analysis for estimating energy release rates, (2) J-tearing
theory for characterizing ductile fracture and (3) standard methods of structural reliability theory
for conducting probabilistic analysis. The evaluation of the J-integral is based on the deformation
theory of plasticity and constitutive law characterized by the power-law equation for the
stress—strain curve. This permits the J-integral to be expressed in terms of non-dimensional
influence functions that depend on crack geometry, pipe geometry and material hardening constant.
The equations for these functions (and hence, J) for a cracked pipe are developed in closed-
form based on recent results of elastic-plastic finite element analysis. This makes the subsequent
stochastic analysis computationally feasible to evaluate probabilistic characteristics of the J-inte-
gral and failure loads. Both analytical and computational methods (e.g. First- and Second-Order
Reliability Methods) and simulation methods (e.g. Monte Carlo Simulation and Importance
Sampling) are formulated to determine relevant probability measures for pipe fracture evaluations.
Numerical examples are presented to illustrate the proposed methodology.

2. ELASTIC-PLASTIC FRACTURE ANALYSIS OF TWC PIPES

It is now well-established that the elastic -plastic fracture mechanics (EPFM) provide more
realistic measures of fracture behavior of cracked engineering systems when compared with the
elastic methods. The use of EPFM becomes almost necessary for structural materials with high
toughness and low strength. which generally undergo extensive plastic deformation around a crack
tip. Recent analytical. experimental and computational studies on this subject indicate that the
energy release rate (also known as J-integral) and crack-tip opening displacement (CTOD) are
the most viable fracture parameters for characterizing crack initiation, stable crack growth and
subsequent tnstability in ductile materials [7, 8]. This clearly suggests that the global parameters like
J and/or CTOD can be conveniently used to assess structural integrity for both leak-before-break
and in-service flaw acceptance criteria in degraded piping systems. It is, however, noted that the
parameter J still possesses some theoretical limitations, e.g. the Hutchinson-Rice-Rosengren
(HRR) singular field [9. 10] may not be valid in the case of a certain amount of crack extension
where J ceases to act as amplifier for this singular field. Nevertheless, possible error is considered
tolerable if the relative amount of crack extension stays within a certain limit, and if elastic
unloading and non-proportional plastic loading zones around a crack tip are surrounded by a much
larger zone of nearly proportional loading controlled by the HRR field. Under this condition of
J-dominance, both the onset and limited amount of crack growth can be correlated to the critical
values of J and J-resistance curve, respectively [11].

Consider Fig. 1 which illustrates a typical pipe with mean radius R, wall thickness ¢ and a
circumferential through-wall crack of total angle 20 and length 2a = 2Rf. Suppose that the TWC
pipe, which has length L. is subject to pure bending moment M (Fig. 1). It is assumed that the
value of L is large enough so that there are no effects of boundary conditions on the crack driving
force. The constitutive law characterizing the material’s stress—strain response is represented by the
well-known Ramberg Osgood model

f:ua(z)‘ )
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in which g, is a reference stress which can be arbitrary, but is usually assumed to be the yield stress,
E is the modulus of elasticity, ¢, = g,/E is the associated reference strain, and o and » are model
parameters usually chosen from best fit of actual laboratory data. Also, the J-resistance curve from
the compact tension specimen is deemed to be adequately characterized by a power-law equation

Je(Aa) = J, + C<-A£> )
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Fig. 1. A pipe with a circumferential through-wall crack subject to pure bending.

in which Aa = R Af is the crack length extension during crack growth, J,. is the fracture toughness
at crack initiation, and C and m are model parameters also obtained from best fit of experimental
data. The dummy parameter k, which has a value of I, is introduced in eq. (2) only to
dimensionalize C (e.g. when Aa is expressed in mm and £ = | mm, then C has the same dimension
as J). Note that “Aa™ here is the physical crack extension, i.e. without blunting. This is because
blunting is automatically accounted for in the pipe estimation schemes as well as finite element
analysis.

2.1. The J-integral

Consider a cracked pipe with an arbitrary counter-clockwise path I" around the crack tip. The

J-integral is defined by [7-14]
,
J= J (W dy -1, ds), 3)
r éx

where x and y are co-ordinate axes with the crack tip as their origin, u, and T, = o,n; are the ith
components of displacements and traction vectors, n, is the jth component of the unit outward
normal to the integration path, ds is the differential length along contour I' and W = fo,de, is
the strain energy density with o, and (,, representing components of stress and strain tensors,
respectively. For a pure power-law type constitutive equation, e.g. the Ramberg-Osgood model in
eq. (1) [minus the elastic term] and mode-I loading. the stress and strain ficlds ahead of the crack
tip are [7-14]

EJ Ttn+ 1y
Uu =0y [3 "“] &y/(ns 0) (4)
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where I, is an integration constant that depends on n, G,{n,8) and ¢, (n, 0) are dimensionless
functions, J is the path-independent integral defined by eq. (3), and r and 6 are polar co-ordinates
with the crack tip as their origin. The parameters 7,, d,(n.0) and ¢,(n, §) also depend on the state
of stress, i.e. on plane stress or plane strain condition. The above equations are the well-known
HRR singularity field.
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The J-integral defines the amplitude of the HRR singularity field, just as the stress intensity
factor characterizes the amplitude of the stress field in linear-elastic fracture mechanics (LEFM).
Thus, J completely describes the conditions within the plastic zones. A cracked structure in
small-scale yielding has two singularity-dominated zones: one in the elastic region, where stress
varies as 7 ~' 2 and one in the plastic zone, where stress varies as r ~*+ ", In EPFM, the latter often
persists long after the linear-elastic singularity zone has been destroyed by crack tip plasticity.

Under elastic—plastic condition, when the stress—strain curve is modeled by eq. (1), the total
crack driving force J can be obtained by adding the elastic component J, and plastic component
J,. le.

p*

J=J+1,. (5)

For a TWC pipe under pure bending, closed-form expressions can be developed for both J, and
J,. They are described below.
2.1.1. Elastic solution for TWC pipe. The elastic component .J, is given by [12-14]

Ky
Jo=51 6
= (©)

where K, is the mode-I stress intensity factor in which plane stress condition is assumed. From
LEFM theory. K| can be obtained as

M g R\ ——
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where F(0/n, R t) is a dimensionless function that depends on pipe and crack geometry. Hence,
the elastic J is

8 /6 R\ M*
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2.1.2. Plustic solution for TWC pipe. From eq. (4), the plastic component J, in terms of

applied stress is

10,1 o | 1 1
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For J-controlled condition. the loading must be proportional, i.e. the local stresses must increase
in proportion to the remote applied load, M. Therefore, for the pipe crack problem, eq. (9) can
be written more specifically as [12-14]

ey 0N, [0 R\ M
Jo=—LRO[T— = Jn(=.n =) =] . 10
R ( n)“(n 7 M, (10)

in which 4, (0/r, n. R/1) is another dimensionless function that depends on pipe geometry, crack
geometry and material constant, and

s e 1 .
M,= 40‘-,R-t[cos 5~ 5sin G:I, (1)

is a conveniently defined reference load that represents the limit-load for a TWC pipe under pure
bending if g, is the collapse stress. Thus. for a given TWC pipe if F and h, are known, the crack
driving force J can be predicted readily.

2.2. Evaluation of F- and h,-functions

2.2.1. Finite element analvsis. The influence functions, F(6/n, R/t) and h (8 /n, n, R/t), can be
computed by using the finite element method (FEM). Computations of this kind for through-wall-
cracked pipes were first reported by Kumar and coworkers [13, 14]. The finite element analyses by
Kumar and coworkers[13. 14] involved computer code ADINA [15] using nine-noded shell
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elements with three displacement and two rotational degrees of freedom at each node. The elements
had only one node in the thickness direction. No special elements were needed to account for plastic
incompressibility since the TWC pipe under tension or bending is essentially a plane stress
problem [13, 14]. J was calculated by the virtual crack extension technique [13, 14]. In refs [13, 14],
these influence functions are cataloged at several discrete values of parameters 8/n, # and R/t. For
a given pipe with arbitrary values of these parameters, the corresponding F- and 4, -functions can
be determined via interpolation or extrapolation of these tabulated values.

In a recent study at Battelle, these influence functions were examined to determine their
adequacy for flaw evaluation of pipes with circumferential through-wall cracks. From preliminary
evaluations, it was found that (1) the compiled values of #,, and hence J,, are too large especially
when the hardening exponent » is large and/or the crack size §/n is small, (2) for small crack sizes,
the pipe rotations due to the crack are negative for both elastic and plastic solutions, and (3) no
solutions are made available for » = 10 and some of n =7 cases due to reported numerical
difficultics. Some of these difficulties may be due to the use of simple nine-noded shell elements
that could have produced overly stiff results [16, 17]. In consequence, the above influence functions
were recomputed with particular attention to pipes with short through-wall cracks (e.g. when
O/m < 1/8). In these new calculations several load cases, e.g. tension, bending, and combined
bending and tension. were considered. Figure 2 shows a typical finite element mesh for a TWC
pipe. Due to symmetry, only a quarter of the pipe was needed to be modeled. In all cases, 20-noded
isoparametric brick elements were used with adequate refinement at the crack tip. Only one element
through the pipe wall thickness was used and as such, the results should be viewed as average values
through the pipe wall. The elastic solutions were developed using the elastic properties of pipe.
A deformation theory of plasticity algorithm in the ABAQUS finite element code [18] was used
to generate the plastic solution. A reduced 2 x 2 Gauss quadrature integration rule was uti-
lized. J was calculated by the contour integral defined by eq. (3). The calculations were carried
out for #/m =1/16, /8. 1/4 and 1/2, n=1,2.3,5,7 and 10, and R/t =5,10 and 20. No
numerical difficulties were encountered. Further details are available in Brust et /. [17, 19].

2.2.2. Multivariate response surfuce approximations. Following explicit finite element
(ABAQUS) calculations of F- and A, -functions at the pre-determined values of #/n. n and R/t,
multivariate response surface approximations are developed in this paper for F(0//z, R/t) and
h(8/m, n, R/t). They are as follows:

Fig. 2. Finite element idealization for a quarter pipe with a through-wall crack.
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Fig. 3. Surface plot of proposed F-function.

F-function. The F-function can be approximated by
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where the constant coefficients 4,(7 =1 3) and B,(i = | 4) are calculated from best fit of FEM
results. The values of these coefficients are provided in Appendix A. Using these values, Fig. 3
shows a surface plot of F defined by eq. (12) as a function of #/r and R/t. The points with the
droplines in this figure represent the values from the ABAQUS finite element calculations [17-19].
h -function. The h -function can be approximated by
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where the coefficients C, (/. j = 0-3) depend only on the R/t ratio and are calculated as well.
Appendix A also provides the values of C,, for R/t = 5,10 and 20. Using these values and eq. (13),
Figs 4-6 show the surface plots of A, as functions of §/m and # for R/t = S, 10 and 20, respectively.
As before, the points with the droplines in these figures represent the values from the ABAQUS
finite element calculations [17-19].

2.2.3. Comparisons with other solutions. In order to evaluate eqs (12) and (13), other solutions
of F- and /,-functions. which are available in the literature, are compiled. They include analytical
solutions by Sanders” energy release rate (elastic) formula [20, 21], analytical solutions by Klecker
et al.[22] and Zahoor[23]. and extensive finite-element calculations by Kumar and cowork-
ers[13. 14]. and Brust er a/. [17,19]. Figure 7 shows the comparisons of proposed F with these
solutions as a function of crack size 6/n for R.7 = 5,10 and 20. As expected, eq. (12) agrees very
well with all FEM calculations by Battelle. There is little difference between the FEM results by
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Fig. 4. Surface plot of proposed 4,-function for R/t = 5.

Battelle and GE/EPRI when the crack size is smaller (e.g. 8/n < 1/8). However, for large crack
size and large R/t = 20, the values of F produced by Battelle FEM are slightly greater than those
generated by GE/EPRI FEM. The Sanders’ solutions provide accurate results for large cracks, but
can be overly unconservative for small cracks. In the limit when 8/n approaches zero, the Sanders’
solutions do not converge to unity. The solutions by Klecker er al., which were developed based
on Sanders’ solutions with corrections for small cracks, are closer to the GE/EPRI solutions. The
solutions by Zahoor appear to fall inbetween the FEM results of Battelle and GE/EPRI.
Figure 8 shows similar plots of 4, as a function of material constant # for several cases of crack
size 8/m =1/16,1/8,1/4 and 1/2, and R/r = 5,10 and 20 by various methods. As before, the
solutions include finite element calculations by Battelte [17, 19] and GE/EPRI[13, 14]. However, no
analytical solutions are available for calculating /1, due to the complexity of the problem. From
Fig. 8, there are some differences between the FEM results of GE/EPRI and Battelle when the crack
size is small (e.g. #/n < 1/8) and/or the material hardening exponent # is large (e.g. n = 5). In those
cases, the values of /, produced by GE/EPRI FEM are always greater than those generated by
Battelle. Hence, for short TWC cracked pipes with ferritic steel or ferritic/austenitic welds (which
are usually associated with large #). the prediction of load-carrying capacity based on GE/EPRI
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Fig. 5. Surface plot of propaesed £, -function for R/t = 10.
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Fig. 6. Surface plot of proposed 4,-function for R/t = 20.

influence functions can be somewhat conservative. This is consistent with the author’s past
experience during analysis of full-scale pipe fracture experiments routinely conducted at
Battelle [19, 24-26]. Also, for large R/t (e.g. R/t = 20), some differences may also exist between
these FEM solutions. Further details on the comparisons of results for other influence functions
for crack opening displacement, pipe displacement and pipe rotation are discussed in refs [17, 19].

The F- and #,-functions developed in this paper [eqs (12) and (13)] should be applicable for
1/16 <f/n <1/2, 1 <n < 10and 5< R/t <20. For the values of parameters outside these ranges,
they are not verified here due to the scarcity of corresponding FEM results.

3. FAILURE LOAD

In order to evaluate structural integrity, it is required to know the load-carrying capacity of
a piping system. There are several means by which it can be estimated. They are based on various
definitions of failure criteria, e.g. initiation of crack growth and unstable crack growth in

elastic—plastic fracture mechanics, and the Net-Section-Collapse in limit-load analysis. They are
briefly described below.

3.1. Initiation load

The initiation load M, can be defined as the bending moment which corresponds to initiation

of crack growth in a pipe. If J is a relevant crack driving force, it can be estimated by solving the
following nonlinear equation

F(M) S J(M,.a)— i, =0, (14)

in which J(M,, a) is the energy release rate (i.e. J-integral) for load M; and crack size @ = Rf, which
can be obtained from eqs (5). (8) and (10), and J, is the fracture toughness at crack initiation. Jy
can be determined from a standard compact tension test at the laboratory [3,24]. Standard

numerical methods, e.g. the bisection method, Newton-Raphson method and others, can be
applied to solve eq. (14) [27].

3.2. Maximum load

In applications of nonlinear fracture mechanics, particularly for nuclear power plants, the
J-tearing theory is a very prominent concept for calculating the maximum load-carrying capacity
of a pipe. It is based on the fact that fracture instability can occur after some amount of stable
crack growth in tough and ductile materials, with an attendant higher applied load level at fracture.
Let J and J, denote the crack driving force and toughness of a ductile piping material as a function
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of load and crack size. The limit state characterizing fracture instability based on J-tearing theory

is given by

and
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Fig. 7. Comparisons of F-functions by various methods.
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where M., and a* represent load and half the crack length when crack growth becomes unstable.
Equations (15) and (16) are two nonlinear simultaneous equations with the independent variables

M .. and a*. Once again, they can be solved by standard methods, e.g. the Newton—-Raphson
method [27).

3.3. Net-Section-Collapse load

The Net-Section-Collapse analysis is a simple. straightforward failure prediction method for
TWC pipes in pure bending. In this analysis, it is assumed that (1) the failure load occurs when
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the pipe section containing the crack becomes fully plastic, (2) there is insignificant crack growth
from crack initiation to failure and (3) the toughness of the material is sufficiently high so that
failure is governed by the strength of materials (i.e. the flow or collapse stress). The collapse stress
is a value between the yield and ultimate strengths of a material and represents an average critical
net-section stress throughout the uncracked ligament of the structure. Based on these assumptions,
the Net-Section-Collapse load M, is given by [28]

8 1
MN:4J,-R21<COS; ~ 5 sin 0). (17)

where o is the flow or collapse stress. In this paper, g, is assumed to be the average of yield and
ultimate strengths of the pipe material.

4. RANDOM PARAMETERS AND SYSTEM RESPONSE

Consider a cracked pipe with uncertain mechanical and geometric characteristics that is subject
to random loads. Denote by X an n-dimensional random vector with components X, X,, ..., X,
characterizing uncertainty in the system and load parameters. For example. when a TWC pipe is
considered, the possible random components are: crack size #/xn, pipe radius-to-thickness (R/t)
ratio, elastic modulus E, basic strength parameters ¢, and o,. Ramberg-Osgood constitutive
parameters o and #, fracture toughness parameters J,., C and m, applied bending moment M. All
or some of these variables can be modeled as random variables. Hence, any relevant response, such
as the J-integral, should be evaluated by the probability

del’

def
£,0p) = PrlJ(X) <] = [ H(x)dx, (18)
o XY gy

where F,(j,) is the cumulative probability distribution function of J and f(x) is the known joint
probability density function of random vector X.

The above fracture parameter J can also be applied to determine the load-carrying capacity
of TWC pipes. Several fracture criteria based on this J-integral parameter and Net-Section-
Collapse are discussed in Section 3. In a generic sense, let M (X) denote the failure moment for
a given TWC pipe under pure bending. Note that M (X) is always random because it depends on
input vector X which is random. It can be evaluated when a relevant crack driving force from
deterministic fracture [e.g. J-integral from finite element analysis or egs (8) and (10)] and an
appropriate fracture criterion [e.g. eq. (14) or egs (15) and (16)] are known. Suppose that the design
requires M;(X) to always be greater than the applied load M (M can be random as well). This
requirement cannot be satisfied with certainty because both the system and load parameters are
uncertain. Hence, the performance of the pipe should be evaluated by the reliability Pg or its
complement, the probability of failure, P, (Ps=1— P,) defined as

d

of der "
Py = Prlg(X) < 0] = J fy(x) dx, (19)

gix)y <0

where the g(X) is the performance function given by
gX)—M,—M =5S(,.0,,0.nJ..Comb/n R/t E)y— M, 20)

in which S is a function (implicit) of random parameters characterizing the pipe’s structural
resistance [only the random arguments are shown in eq. (20)]. A wide variety of failure probability,
defined by eq. (19), can be evaluated if the appropriate fracture criterion is known. For example,
when M(X) is equal to the initiation load M;(X). Py in eq. (19) corresponds to the probability of
initiation of crack growth which provides a conservative estimate of the pipe's structural
performance. A more realistic evaluation of the pipe’s reliability can be evaluated if M (X) is equal
to the maximum load M., (X) (which allows the crack to grow until it becomes unstable) in which
case Pr represents failure probability due to the exceedance of the pipe’s maximum load-carrying
capacity. When EPFM-based failure criteria are not necessary. the simple performance function
based on limit-load analysis [i.e. M;(X) = M, (X)] can also be used to determine failure probability
of pipes.
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5. STRUCTURAL RELIABILITY ANALYSIS

The generic expressions for both probabilities in eqs (18) and (19) involve multi-dimensional
probability integration for their evaluation. In this regard, standard reliability methods such as
First- and Second-Order Reliability Methods (FORM/SORM) [29-35] and simulation methods,
e.g. Importance Sampling (IS) [35-40], Directional Simulation [41-44], Monte Carlo Simulation
(MCS)[35,45] and others, can be applied to compute these probabilities. In this paper,
FORM/SORM., Importance Sampling and MCS methods are used for structural reliability
analysis. They are briefly described here to compute the probability of failure Pp in eq. (19)
assuming a generic N-dimensional random vector X and the performance function g(x) defined
by eq. (20). The same methods can be applied to determine the probability F,(j,) defined by
eq. (18).

5.1. First- and Second-Order Reliability Methods (FORM /SORM)

First- and Second-Order Reliability Methods are general methods of structural reliability
theory. The methods are based on linear (first-order) and quadratic (second-order) approximations
of the limit state surface g(x) =10 tangent to the closest point of the surface to the origin of the
space. The determination of this point involves nonlinear programming and is performed in the
standard Gaussian image of the original space. The FORM/SORM algorithms involve several
steps. First. the space of uncertain parameters x is transformed into a new N-dimensional space
u consisting of independent standard Gaussian variables. The original limit state g(x) =0 then
becomes mapped onto the new limit state g,.(u) = 0 in the u space. Second, the point on the limit
state g (u) = 0 having the shortest distance to the origin of the u space is determined by using an
appropriate nonlinear optimization algorithm. This point is referred to as the design or S-point,
and has a distance S, to the origin of the u space. Third, the limit state g,,(u) = 0 is approximated
by a surface tangent to it at the design point. Let such limit states be g; (u) = 0 and g, (u) = 0, which
correspond to approximating surfaces of hyperplane (linear or first-order) and hyperparaboloid
(quadratic or second-order), respectively. The probability of failure Pg [eq. (19)] is thus approxi-
mated by Prfg, (u) <0] in FORM and Prlg,(u) <0] in SORM. These first- and second-order
estimates P, and P, . are given by [29-35]

PH = (p(”ﬁm.)
(21
Vo
Ppy= @ (—~fy) n (1=K, Bu) '
i=1
where
Lo o
Pu)=—= | exp(—3&Hd¢ (22)

-

Vv en
is the cumulative distribution function of a standard Gaussian random variable, and x,’s are the
principal curvatures of the limit state surface at the design point. FORM/SORM are analytical
probability computation methods. Each input random variable and the performance function g(x)
must be continuous. Depending on the solver for nonlinear programming, additional requirement
regarding smoothness, i.e. differentiability of g(x). may be required. Further details of
FORM/SORM equations are given in Appendix B.

5.2. Monte Carlo Simulation (MCS)

Consider a generic N-dimensional random vector X which characterizes uncertainty in all load
and system parameters with the known joint distribution function Fy(x). Suppose that
xox® L x'“"are L realizations of input random vector X which can be generated independently.
Appendix C provides a simple method to generate X from its known probability distribution. Let
gl g . g'" be the output samples of g(X) corresponding to the input x'”, x®, ..., x that
can be obtained by conducting repeated deterministic evaluation of the performance function in
€q. (20). Define L; as the number of trials which is associated with negative values of the
performance function. Then, the estimate Pr,,c5 by simulation becomes
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I,
Prmes = f . (23)

which approaches the exact failure probability P when L approaches infinity. When L is finite,
a statistical estimate on the probability estimator may be needed. In general, the required sample
size must be at least 10/minimum (P, Ps) for a 30% coefficient of variation of the estimator [45].

5.3. Importance Sampling

In Importance Sampling, the random variables are sampled from a different probability
density, known as the sampling density. The purpose is to generate more outcomes from the region
of interest, e.g. the failure set F = {x: g(x) < 0}. Using information from FORM/SORM analyses,
good sampling densities can be constructed. According to Hohenbichler [40], the failure probability
estimate Pp,s by importance sampling based on SORM improvement is given by

Mg ¢ hQ(“ ] N-1| )
Pejs=@(—By) r] [1—r ¥ (=Bu) v —EW(BHL) Z KeWiy 1 (24)
r=1 N]S/—l (p(ﬁHL) k=1
where ¥(—fBuL) = ¢(—Pu ) P(—fui ) w,={w,, ,wy,.....wy ) is the jth realization of the

independent Gaussian random vector W with the mean and variance of ith component being zero
and /[l — Y (—pBu)l. hy(w)) is the quadratic approximant in the form of rotational hyper-
paraboloid and N is the sample size for importance sampling. Further details are given in
Appendix B and are also available elsewhere [35, 40].

6. NUMERICAL APPLICATIONS
6.1. Description of the problem

Consider a TWC side riser pipe made of Type 304 stainless steel from a Boiling Water Reactor
plant with outer diameter D, = 709.17 mm (27.92 in.), pipe wall thickness r = 33.77 mm (1.33in.)
and elastic modulus £ = 182.700 MPa (26.500 ksi). They are assumed to be deterministic. The
random parameters include crack size #;n, yield strength ¢,, ultimate strength o,, Ram-
berg-Osgood constitutive parameters x and », and fracture toughness parameters J,., C and m. The
statistical properties of these variables are described below.

6.1.1. Staristical characterization of material properties. Samples of raw data for stress—strain
and J-resistance curves of a specific pipe material (e.g. Type 304 stainless steel) are obtained from
refs [1--6]. Each of these are then fitted with egs (1) and (2) to determine the constitutive model
parameters x and n, and fracture toughness parameters, J., C and m. During the calculation of
Ramberg—Osgood parameters x and #, the reference stress g, is assumed to be 152 MPa (22.05 ksi).
The basic strength parameters. e.g. yield strength o, (0.2% offset) and ultimate strength a,, are
determined as well. These provided the independent measurements of the random vectors {a,, , },
{a,n}"and {J,., C. m}' representing pipe material properties. Standard statistical analyses are then
conducted to determme their probabilistic characteristics. Table 1 shows the mean and covariance

Table 1. Mean and covariance of material properties for Type 304 stainless steel pipe

Random Mean Covariance

vector vector matrix

AL 151.526) 220.881 118.615
° >

o, 450.632 118,615 652.654

J'xl”” 8.942 10,920 —1.202

{7} 3.615 -1.202  0.208

Jo | 1059.56 | [2024%10° 58937 -25.530
C 345.087 | —58.937  1.006 x 10* 6.842
m 0.652 [ —25.530 6.842 0.0242

(a) Both ¢, and ¢, are in MPa unit.

(b) x and n are dimensionless; g, = 152 MPa; £ = 182,700 MPa [eq. (1)].

(c) Both J,. and C are in kJym? unit with k& = I mm [eq. (2)]: m is dimensionless; Aa
is to be expressed in mm unit.

EFM 52:2—F
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Fig. 9. Statistical characterization of random input variables.

for each of these random vectors. It is assumed that the joint probability distribution of each
vector is lognormal. This is justified via comparisons with actual data in Fig. 9 which indicate
that the marginal probability of each component of the above vectors follows the lognormal
distribution reasonably well. A Gaussian distribution also seems to be a good choice, but there
are some concerns over the possible negative realizations of some of these positive random variables
which have large coefficients of variation. Hence, X will be modeled with lognormal probability
although no rigorous proof is provided here to validate this assumption by comparing the
multivariate joint probability distributions. Also. no correlations are permitted between the
strength and toughness properties, because each set of laboratory data does not always include
simultaneous measurement of all properties. However, the components within each vector are

correlated and their correlation characteristics are defined in the covariance matrices provided in
Table 1.
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Methods to generate samples of random vector X, which are needed in FORM/SORM and
simulation analyses, are described in Appendix C. For special cases, when X is either correlated
normal or correlated lognormal, sample generation of X becomes much simpler. They are also
explained in Appendix C.

6.1.2. Statistical characterization of through-waltl-crack size. In order to perform probabilistic
analysis, the probability distribution of initial crack size #/x also needs to be specified. In this
example problem, it is assumed that the TWC crack is located in the base metal of the pipe with
the anticipated cracking mechanism being intergranular stress corrosion cracking (IGSCC). During
a recent study by the author on probabilistic leak-before-break analysis (LBB) [46, 47], it was found
that the leakage size flaw can be modeled by the lognormal or truncated normal distri-
butions [48, 49]. The distribution parameters of this flaw size vary according to the leak-rate
detection capability and applied normal stresses in the pipe. The analyses accounted for statistical
variability of several crack morphology variables (e.g. surface roughness, number of turns or bends,
path deviation factors, etc.) of IGSCC crack, which can affect the leak rate through cracks typically
found in nuclear piping. Detailed results of these analyses are available in refs [48, 49]. Assuming
that the initial crack is the LBB detectable flaw (leakage size crack), it is modeled here with
lognormal probability distribution. When the normal operating stress is 50% of ASME Service
Level-A stress (Service Level-A stress limit is equal to 1.5S,,, where S, is code-specified design stress
defined in the ASME Section 111, Appendix I [50]) and the leakage detection capability is 10 gpm,
the mean value of 8/n is 0.16 with the coefficient of variation 9.69% for the side riser pipe
considered in this example [48, 49]. Comparisons of lognormal (and also Gaussian) distribution
with simulated (computed) distribution of #/x are also shown in Fig. 9. Further details can be
obtained from refs [48. 49].

6.2. Probabilistic characteristics of J-integral

The Second Order Reliability Method is applied to determine the probabilistic characteristics
of the J-integral for the side riser pipe as a function of applied load. Figures 10 and 11 show the
computed probability densities for several values of applied load M = 1.0 MNm, 1.5 MNm,
2.0 MNm and 3.0 MNm. They are obtained by repeated FORM/SORM analysis for various
thresholds of J/, i.e. by calculating the probability in eq. (18) as a function of j, and then taking
the numerical derivative of this probability with respect to j,. As expected, the probability mass
shifts to the right when the applied loads are higher. Also presented in the same figures are
the corresponding histograms of the J-integral developed by conducting direct Monte Carlo
simulations for the same values of applied loads. The sample size for each Monte Carlo analysis
is 10000. Comparisons with the SORM results indicate that this approximate method can

10
- M=1{O0OMNm = | —=———=— SORM
[
g 8 F MCS (10000 sampies)
2
£
)
2 6t
> .
= H:stogram
3
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Z PDF
3 —
©
2 2f
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0.0 0.3 0.6 0.9 1.2 1.8

J-integral, MJ/m?
Fig. 10. Probabilistic characteristics of J-integral (M = 0.5 and 1 MNm).
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Fig. 11. Probabilistic characteristics of J-integral (M =2 and 3 MNm).

predict probabilistic characteristics of J with very good accuracy for all values of applied load
considered here.

6.3. Reliability assessment of TWC pipes

Figure 12 shows the plots of failure probability Pp vs applied moment M for the side riser
pipe obtained for several definitions of failure load defined earlier. Various reliability methods, e.g.
FORM and SORM, and simulation methods, e.g. Importance Sampling (IS) and MCS, are used
to determine the failure probability. They all consistently indicate that Pg increases as M increases,
and it approaches unity when M becomes very large. Based on the formulation of failure condition
[eq. (19)], these curves also represent the cumulative probability distribution functions of the failure
loads of the pipes. Compared with the failure probabilities due to pipe instability, the above results
based on initiation of crack growth and Net-Section-Collapse are higher and lower, respectively.
The results of Fig. 12 also address the applicability of Net-Section-Collapse equations which are
widely used by engineers for pipe flaw evaluation in nuclear power plants. Unless there is sufficient
evidence that the pipe will, indeed, fail with the limit-load criterion, an analysis based on the
Net-Section-Collapse load (without any safety margin) may overpredict the reliability of pipes.
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Fig. [2. Probability of failure by various methods.
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Fig. 13. Computational efficiency of FORM/SORM and Importance Sampling.

Figure 12 also shows that the resuits obtained from the approximate methods, e.g. FORM
and SORM, provide satisfactory probability estimates when compared with “exact” results from
Importance Sampling and MCS. No meaningful differences are found between the results of
FORM and SORM, and their probability estimates are virtually identical. During the performance
of MCS, the sample size is varied according to the level of probability being estimated. In all cases,
the sample size has been targeted to be 10/min(P;, Ps) [with a minimum of 500] for obtaining a
30% coeflicient of variation of the probability estimator.

Figure 13 exhibits the relative effort and computational expenses required to determine above
solutions by FORM, SORM, IS and MCS methods. They are measured in terms of Central
Processing Units (CPU) by executing computer codes for each of these methods. The plots in this
figure show how the normalized ratio of CPU time required by FORM, SORM and IS (CPU ratio
is defined as the ratio of CPU by each of these methods and the CPU by MCS) vary with the range
of probability estimates made in this study. It appears that for values of failure probability
approaching one, the CPU ratio also approaches one implying that the computational effort by
each of the above four methods is very similar. However, when the failure probabilities are smaller,
a significant amount of CPU time can be saved by using FORM, SORM and IS methods, instead
of using MCS. A computational reduction in the order of 10~¢ times the CPU required by MCS
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Fig. 14. Effects of correlation on failure probabilities of TWC pipes.



282 S. RAHMAN

10°
10! 3
102

10

TR

104 F

Probability of Failure (P;)

Lognormal
Normal

10% 3

10¢

Applied Load (M), MN-m

Fig. 15. Effects of input distributions on failure probabilities of TWC pipes.

has been observed in performing these pipe specific probability calculations. Also, the differences
in CPU times consumed by FORM, SORM and IS analyses are quite negligible when compared
with the magnitudes of CPU time required by MCS. Clearly, the FORM/SORM algorithms and
Importance Sampling method are more efficient than direct MCS and become far superior
particularly when the failure probabilities are in the lower range.

6.4. Effects of correlation and probability distribution of input

Figure 14 shows the plots of failure probability as a function of applied load when the
correlation coefficient between any two input random variables is neglected. The probability
distribution of X is, however, still lognormal with the same means and variances prescribed in
Table 1. Comparisons of results suggest that the failure probability based on zero correlation is
unconservative when compared with those based on actual correlations. Particularly, when the load
is small, large differences in the failure probability associated with EPFM-based fracture criteria
may exist and hence, correlation coefficients should not be neglected in those cases.

Figure 15 presents similar results to study the effects of probability distributions of input
random variables on the failure probability. Both Gaussian and lognormal probabilities are
assumed for joint distributions of random material properties and initial crack size. In both cases,
the same mean vector and covariance matrices are assumed, and are defined in Table 1. From
Fig. 15, it appears that probability distributions of input random variables with identical first- and
second-moment characteristics can provide different values of failure probability when the
performance criteria are based on the initiation and maximum loads. Differences in the results
diverge rapidly when the applied load levels are smaller, for which cases probabilities are also
smaller. Hence, careful attention should be given to determine the statistical characteristics of input
as accurately as possible. All probabilities in Figs 14 and 15 are computed by SORM.

The above observations, however, appear to be irrelevant for pipe fracture evaluation based
on Net-Section-Collapse load. This is mainly because for limit-load analysis (1) the number of
random variables is fewer e.g. 0/n, g, and ¢, and (2) the variance (uncertainty) for each of these
variables is smaller (see Table 1). Hence, both normal and lognormal distributions should provide
fairly close failure probabilities.

7. SUMMARY AND CONCLUSIONS

A probabilistic model is developed for nonlinear fracture-mechanics analysis of through-
walled-cracked pipes subject to bending loads. It involves elastic-plastic finite element analysis for
estimating energy release rates, J-tearing theory for characterizing ductile fracture and standard
structural reliability methods for conducting probabilistic analysis. Evaluation of the J-integral is
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based on deformation theory of plasticity and power-law idealizations of stress-strain and
fracture toughness curves. This allows the J-integral to be expressed in terms of non-dimensional
influence functions (F- and #, -functions) that depend on crack size, pipe geometry and
material hardening constant. New equations are developed for these influence functions based
on recent finite-element calculations at Battelle. The validity of proposed equations for predicting
the crack driving force in TWC pipes is evaluated by comparing with available results in the
literature.

A number of standard reliability methods is formulated to determine the probabilistic
characteristics of the J-integral for a circumferential TWC pipe as a function of applied bending
moment. The same methods are used later to compute failure probability of the cracked pipes.
Several failure criteria associated with crack tnitiation, unstable crack growth and Net-Section-Col-
lapse are used to determine such probabilities.

Numerical applications are provided to illustrate the proposed methodology. A nuclear piping
made of Type 304 stainless steel (side riser pipe) from a Boiling Water Reactor plant is chosen to
evaluate its probabilistic performance. First, the probability densities of the J-integral are predicted
as a function of applied bending loads. Second, failure probabilities corresponding to various
performance criteria are evaluated by standard structural reliability methods. Finally, sensitivity
studies are performed to determine the effects of correlation and distribution properties of random
input on the failure probability. Results suggest that

(1) current reliability methods. e.g. FORM and SORM, can provide accurate probabilistic
characteristics of the J-integral and failure loads for TWC pipes under bending with much
less computational effort when compared with those obtained from direct MCS. A
computational reduction in the order of 10" ¢ times the CPU consumed by MCS has
been observed in performing pipe specific probability calculations. Similar accuracy and
computational efficiency by Importance Sampling method have also been demonstrated,

(2) failure probabilities due to the exceedance of initiation load and Net-Section-Collapse load
are higher and lower. respectively, when compared with those due to the exceedance of
maximum load of TWC pipes. Large differences may exist in the results produced by each
of the three failure criteria, especially when the applied load levels are smaller, for which
failure probabilities are also smaller. Unless there is adequate evidence that the pipe will fail
with a limit-load criterion, an analysis based on Net-Section-Collapse load (without any
safety margin) may overpredict the reliability of a piping system significantly and

(3) both correlation and probability distribution of input random vanables can affect predictions
of failure probability of TWC pipes based on EPFM-based performance criteria. These
effects can become significant when the applied loads are smaller, for which cases failure
probabilities are also smaller. However, when the faiture load is based on limit-load analysis,
they appear to have negligible effects due to fewer number and less uncertainty of the input
random variables.
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APPENDIX A: COEFFICIENTS 4;, B, AND C; FOR F-AND A&,-FUNCTIONS
A.l. Coefficients A, and B,

Let A={A4,,4;, 4.} and B={B,. B,, B;, B, be two vectors with the coefficients 4, and B, as their components,
respectively. A and B are given by:

A = {0.006215 0.013304 —0.018380}"

(AD)
B=/175577 91.69105 —5.53806 0.15116}".
A.2. Coefficients C,
Let C=[C,]. i. j = 0-3, be a matrix with the coefficients C, as its components. C is given by:
R/t=5
3.74009 1.43304 —0.10216  0.002297
~0.19759  —10.19727 —0.45312  0.04989
€= 36.42507 17.03413 3.36981 —0.21056 (A2)
L —70.4846  —14.69269 —2.90231 0.15165
R/t =10
3.39797 1.31474 —0.07898 0.00287
. —3.07265 4.34242 —2.48397 0.11476
€= I 131.7381 —79.02833 16.18829 —0.66912 (A3)
L* 234.6221 117.0509 —20.30173 0.79506
Rjt=20
4.07828 —1.55095 0.67206 —0.04420
—18.21195 69.92277  —18.41884 1.11308
C= 357.4929 —453.1582 108.0204  —6.56651 | (Ad)
L7602.7576 617.9074  —144.9435 8.90222

APPENDIX B: FORM/SORM AND IMPORTANCE SAMPLING
B.1. First- and Second-Order Reliability Methods (FORM /SORM)

Consider a transformation H:X —U. where U € RY denotes an N-dimensional independent standard Gaussian
random vector and R" represents an N-dimensional real vector space. The transformation A is necessary if originally, the
basic uncertainty vector X has an arbitrary joint distribution function Fx(x). For example, when the Rosenblatt
transformation [51] is used. the explicit form of above mapping from original x space to u space becomes

(=@ '[F(x)]
| =@ '[F(xlx)]

(BD)
u, =@ F(x,]x 0 v, )
m which F(x|x,x,....,x, ) is the cumulative distribution function of component X, conditional on X, =x,,
Xy=x,,...,X,_,=x_, and @(-) is the cumulative distribution function of a standard Gaussian random variable.
Fi(x;lx,, x5,....x;_,) can be obtained from
J S X s)ds
FAX X Xy, L o=t o e (B2)
] I Fa e X )
where f, ,_(x.x.000 Y, ) is the joint probability density function of {X,, X,, ..., X,_,}". The inverse transform-

ation can be obtained in a stepwise manner as
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x; = F7[@u)]
x,=F7'[@u)|x
g d BT e )
xn=F;l[¢(un)|xl’xZ"'"xn—]]9
which when substituted into eq. (19) yields
Pp = Prg, (U) < (0)]
=f ¢ (u) du, (B4)
gL <0

where ¢(u) is the standard multivariate Gaussian probability density function defined as
$(u) = (2n)" "2 exp(—ju'u) (B5)

and g, (u) is the new limit state surface in the Gaussian image u of the original space x. Note that eq. (B4) represents the
same N-dimensional integral of eq. (19) in a different space than the original space due to the change of variables described
earlier. The integral is still difficult to compute unless some approximations are sought for the domain of the integral.

B.1.1. First-Order Reliability Method (FORM). Consider a tangential linearization at the point u* of the limit state
surface g (n) = 0 which is given by

g (u)=a"(u—u*) =0, (B6)

where u* is the closest point (known as the design point, beta point, etc.) of g,,(u) = 0 to the origin of u space, and « € R"
is the vector of direction cosines. a can be obtained from

*
e vVgU w) (BT)
Vg, (u™)
in which
P A 53T
vl & ° , (B8)
Ou;  Cu, uy
with Vg, (u*) as the gradient of scalar field g, (u) at u*, and
N a 2
IVeoi= [T |2 W) (B9)
i=1 i

is the Euclidean L,-norm of an N-dimensional vector Vg, (u*). The distance fi;, of this point u* to the origin of u space
is referred to as the Hasofer-Lind Reliability Index [29]. B, can be obtained from a nonlinear optimization scheme which
can be mathematically formulated as

Bur= inf fuf
() =0

= fut|

=alu*, (B10)
which requires determination of the design point u*. When the linear approximation of the limit state in eq. (B6) is
substituted into eq. (B4), the estimate of P by FORM becomes [31]

P :j ¢(u) du
T(u - u*) < 0

=J @ (u) du
aTu - gL <0

=¢(*ﬂHL)< (B“)

B.1.2. Second-Order Reliability Method (SORM). Consider a suitable rotational transformation from u space to v
space so that the mapped design point v* in v space has the coordinates (0,0, ..., — By, ). Suppose, the transformed vector
v={v,,ty,..., 05} ={v,,v5}T where v, ={v,,v,,...,ty_,} is the reduced vector and v, = A, (¥,) which is the root of the

mapped limit state surface gy(v,.vy) =0 in v space. In this way, the limit state surface gy(v) = gy(¥,,vy) =0 can be
alternatively represented by v, = h,(v,) in the v space. Consider now a second-order approximation gq(v) = 0 or rather an
approximation v, = hy(v,) in the v space. Consider now a second-order approximation gq4(v) = 0 or rather an approximation
vy = ho(v,) to vy = hy(v,) of the limit state surface. If the quadratic approximant is of special form, e.g. the rotational
hyperparaboloid, it can be shown that
lN 1 N
ho(v,) = —/}HL+§ Y Kl (B12)
=1

where «k; is the ith principal curvature of the limit state surface at the design point. The above quadratic is equivalent to
the actual v, = Ay (v,) in the sense that

ho (V) =hy(v}) (BL3)
ehy oh

=200 (B14)
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h o*hy
S0 (yry = Ty, (B15)
dr, or, e, e,
for i, j=1,2..... N — . When the actual limit state surface is approximated by the hyperparaboloid in eq. (B12), the
estimate of Py by SORM becomes [34]

N
Prox @(=fu) J] 0= fu) (B16)
r=1
which is asymptotically exact when ff,, approaches infinity. An improvement over above probability estimate has also been
proposed by Hohenbichler [33] which gives

Voo
Pooxd(~fu) [T =5 ¥(=PFu 2 (B17)
=
where
@~ Pur)
Y=g )= (B18)
= D(—Pu)

Note that when fi,,, approaches infinity. ¥ (f,, ) approaches 5, and eq. (B17) degenerates to eq. (B16) as expected.

B.2. Imporiance sampling
Consider eq. (B4). which can be rewritten in the form
Prlg, ,(U)< 0
Pp = Prig,,(U) <0 x = L&y (U) < 01
Prig, ., (U) < 0]
= Prlg, (U < 0] x (¢ (B19)
where g,.(L) is ecither the linear or quadratic approximation of the limit state surface g,(U) and
C¢ = Pr{g, (U) < 0}Prlg,,.(L) < 0] is the correction factor improving the reliability estimate by g,,,(U). When the quadratic
approximation in eq. (B12) is used, C; can be approximated by simulation with importance sampling. According to
Hohenbichler [40]. it is given by

1 Ms
Cox= ¥ G (B20)
Ny, T
in which
P hy(w,) ‘ R .
= e expl —: ¥ (Bu) kewi, | (B21)
P @) A 2 s,
where w, = Dy own w, ‘T is the jth realization of the independent Gaussian random vector W e R* ~! with mean
E[W] and variance Var|W'] of /th component given by
E[W]=0 (B22)
1
Var[W#)] (B23)

B [1 - W(‘/{HL)]
and N is the total number of samples for this simulation. Thus. the estimates of Pg s by simulation with importance
sampling become

M Ll Plhg(w,)) 1 A N
Po=®(=f) [T 0 =w¥(=Bu] ", 5 0= Texpl = W) L Kewi, | (B24)
oo ‘NIS;V ! d)(ﬁHl) = k=1

APPENDIX C: SAMPLE GENERATION OF RANDOM VECTOR

A simple method is presented for generating samples of ¥ -dimensional generic random vector X = {X,, X,,.. ., X}t
with arbitrary joint distribution function Fy(x). The vector X may have independent and correlated components.

C.1. Independent random paramerters

Consider a random component X, with the cumulative probability distribution function F,, (x,). Let Z, be a random
variable uniformly distributed in the interval [0, 1]. It has the distribution function £, (z,} = z,. For a probability preserving
transformation with the distribution functions of X, and Z, being equal, the realization x; of random variable X, can be
obtained as

X =F,"z) (S)]
A two-step simulation technique can be developed based on this transformation. First. a sample =, of Z, is generated. e.g.
by using a standard random number generator available in any computer. Second. a sample of X, can be obtained from
eq. (C1). Thus, by generating independent samples of Z,. one can obtain from eq. (Cl) independent samples of X,.

Alternative simulation techniques are available and can be found in ref. [45]. They are based on characteristics of
various probability distributions.

C.2. Dependent random parameters

Consider an N-dimensional random vector X with a generic joint distribution function Fy(x). A three-phase method
can be applied to generate samples x of X. First, generate N independent uniformly distributed samples z,,z,....,zy in
the interval [0. I]. Second. map each of these samples into a sample u; of a standard Gaussian random variable U,. For
example. «, can be obtained from v, =@ '(z). i=1.2.. . .. : N where @( ) is the cumulative distribution function of a
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standard Gaussian random variable. Third, use the Rosenblatt transformation described in Appendix B to map the sample
of the standard Gaussian vector U = {U,, U,, ..., U, }T into corresponding samples of X = {X,, X,, ..., Xy} . For special
cases, when the random vector X is correlated Gaussian or correlated lognormal, the Rosenblatt transformation can be
sidestepped by using Cholesky decomposition of the covariance matrix. They are described below.

C.2.1. Multivariate normal distribution. Let X be an N-dimensional normal vector with mean vector g and covariance
matrix X. Consider a linear transformation of the form

X=D+QU. (C2)
where U is a standard Gaussian random vector, D is an N-dimensional transformation vector and Q is an N x N
transformation matrix. Applying a linear expectation operator on X and (X — p)(X — )7, it is elementary to show that
u=D
L =QQ".
From eq. (C3), D is equal to g and Q is a lower triangular matrix representing Cholesky decomposition of X. Standard
methods of linear algebra can be used to determine Q [27).

C.2.2. Muliivariate lognormal distribution. Let X be an N-dimensional lognormal vector with mean vector g and
covariance matrix X. Suppose that Y is an N-dimensional Gaussian random vector with component Y,=InX,,

(C3)

i=1.2,...,N. Let gy and X, denote the mean and covariance matrix of Y. From moment generating function of Y, it
can be shown that the mean and the covariance properties of Y are [52]

By, =Inp = in(l + ¥}) (C4)
and

I, =In(l + 1)

(C5)
2y, =In[l +p V. V],

where 4, is the ith component of . i1y , is the ith component of g . X, is the (i, j)th element of T, Zy ; is the (i, j )th element
of L, . V. = \/Z“ /i, is the coefficient of variation of X, and p,, = Z,,/(\/Z“ \/27”) is the correlation coefficient between random
variables X, and X,. Following calculations of statistics of Gaussian vector Y from eqs (C4) and (CS5), the same type of

linear mapping described in Section C.2.1 [e.g. eq. (C2)] can be applied for transforming Y into standard Gaussian random
vector U.



