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Abstract—A new methodology is proposed to estimate energy release rates of through-wall cracked
(TWC) ductile pipe weldments subjected to pure bending loads. It is based on the deformation theory of
plasticity, the constitutive law characterized by the Ramberg-Osgood model, and an equivalence criterion
incorporating the reduced thickness analogy for simulating system compliance due to the presence of a
crack in weld metal. A closed form solution is obtained in terms of elementary functions for approximate
evaluation of the J-integral. The method utilizes the material properties of both base and weld metais,
which are not considered in the current estimation methods, It is very generai and can be applied in the
complete range between elastic and fully plastic conditions. Several numerical examples are presented to
illustrate the proposed technique. Comparisons of resuits with reference solutions from the finite element
method indicate satisfactory prediction of energy release rates.

L. INTRODUCTION

It 1s NOw well established that elastic—plastic fracture mechanics (EPFM) provide more realistic
measures of the fracture behavior of cracked engineering systems, The use of EPFM becomes
almost necessary for structural materials with high toughness and low strength which generally
undergo extensive plastic deformation around a crack tip. Recent analytical, experimental, and
computational studies on this subject indicate that the energy release rate (also known as the
J-integral) and crack opening displacement (COD) are the most viable fracture parameters for
characterizing crack initiation, stable crack growth, and the subsequent instability in ductile
materials (1, 2]. This clearly suggests that global parameters like J and/or COD can be conveniently
used to assess structural integrity for both leak-before-break and in-service flaw acceptance criteria
in degraded piping systems. It is, however, noted that the parameter J still possesses some
theoretical limitations. For example, the Hutchinson-Rice-Rosengren (HRR) singular field [3, 4]
may not be valid in the case of a certain amount of crack extension where J ceases to act as an
amplifier for this singular field. Nevertheless, the possible error is considered tolerable if the relative
amount of crack extension stays within a certain limit and if the elastic unloading and
nen-proporticnal plastic loading zones around a crack tip are surrounded by a much larger zone
of nearly proportional loading controlled by the HRR field. Under this condition of J dominance,
both the onset and timited amount of crack growth can be correlated to the critical values of J
and the J-resistance curve, respectively [9].

Evaluation of energy release rates in non-linear elastic bodies is usually performed by (1)
numerical analysis and (ii) estimation techniques. Traditionally, a comprehensive numerical study
has been based on the sophisticated finite element method (FEM) for non-linear stress analysis.
Although several general and special purpose computer codes are currently available for FEM, the
inconvenience with regard to its applicability as a practical analysis tool is not of minor nature.
The computational effort is still significant even with the recent development of numerical
techniques, and industry-standard computational facilities. In addition, the employment of the
FEM can be time-consuming and may require a high degree of expertise for its implementation.
These issues become particularly significant when numerous deterministic analyses are required in
a full probabilistic analysis.

For circumferential through-wall cracked (TWC) cylinders, Kumar et af. [6] have compiled a
series of FEM solutions for various crack sizes, gecmetries, and material properties in a handbook
form. For any arbitrary new problem, the solution is usually achieved from multiple interpolation
between tabulated results. Kanninen and Popelar {7] have summarized some general considerations
for developing such simplified yet empirically developed estimation approaches. For elastic—plastic
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cracked bodies, several approaches have also been developed for estimating energy release rates.
Paris and Tada [8] interpolate the value of J between the known elastic solution and the known
ngid plastic solution by using a modified Irwin plastic zone correction to the elastic solution. This
method does not include the effects of strain hardening. Later, Klecker et al. {9] modified the above
method to incorporate strain hardening effects using a semi-empirical approach. Brust [10] has
developed an estimation method based on reduced compliance simulation by Incorporating an
artificial uncracked pipe with varying cross-sectional sizes. This method results in a simple closed
form solution for various fracture parameters of intersst. Using semi-membrane theory of
cylindrical shells, Sanders [11] has developed a Dugdale model for TWC pipes. These soluticns are
also provided in a closed form in terms of elementary functions. All these simplified methods are,
however, primarily developed for flawed pipes with cracks in base metal. Currently, there are no
reliable estimation techniques available to evaluate the performance of pipes with cracks in weld
metal [12]. The energy release rate J for pipe weldment cases is typically estimated assuming that
the entire pipe is made up of all base material, This may provide unconservative results for
weldment evaluations [13]. Today, though, predictions are usually made using base metal
stress—strain data and weld metal J-resistance curves [14]. This can lead to overly conservative or
non-conservative predictions depending on the strength ratio of the base versus weld material.

In this paper, a new methodology is developed to predict the energy release rates of TWC
ductile pipe weldments subjected to remote bending loads. The method of analysis is based on (i)
the classical deformation theory of plasticity, (i) the constitutive law characterized by the
Ramberg-Osgood model, and (iii) equivalence criteria incorporating a reduced thickness analogy
for simulating system compliance due to the presence of a crack in weld metal [12]. The method
utilizes the material properties of both base and weld metals. The method is general in the sense
that it may be applied in the complete range between elastic and fully plastic conditions, Since it
is based on J-tearing theory, it is subject to the usual limitations imposed upon this theory, e.g.
proportional loading, etc. As explained earlier, this has the implication that the crack growth must
be small, although in practice, J-tearing methodology is used far beyond the limits of its theoretical
validity with acceptable results [14]. Several numerical examples are presented to illustrate the
proposed technique, which is verified with reference solutions from FEM.

2. THE PIPE WELD CRACK PROBLEM

Consider Fig. 1, which illustrates a typical butt-welded pipe with a circumferential through-
wall crack of totat angle 26. The pipe mean radius R and thickness 7 are shown. Figure 2 illustrates
the typical geometry for a butt weld in a pipe. Typically, the weld layers are deposited in sequence.
The example of Fig. 2 is an actual sequence from a 4-inch (102-mm) diameter Schedule 80 pipe
which required seven passes. The welding gives rise to a heat-affected zone (HAZ), which results
in material properties different from those in the weld metal or base metal alone. Often, cracks

Fig. 1. Circumfercntial crack in 2 pipe butt weld.
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Fig. 2. Typical butt weld sequence for a pipe and possible Fig. 3. Idealized pipe weld with a crack.
cracks (this is an actual sequence for a 4-in. diameter
Schedule 80 pipe).

develop in the HAZ of pipe and may grow in a skewed fashion to become a through-wall crack,
as also illustrated in Fig. 2. Figure 2 also shows a crack which grows through the weld metal, and
this is the type of crack assumed in the development of the method presented here. Figure 3 shows
the pipe weld geometric assumption made here. Note that the angular and irregular nature of the
actual weldment is assumed to be a straight radial bimaterial interface line for development of this
model. Residual stresses and altered HAZ properties are not included, aithough they could be
considered with rather minor modifications. The total length of the weldment is assumed to be an
average (Figs 2 and 3) length, L, which is often best approximated (as a rule of thumb) to be the
pipe wall thickness (i.e. L, = 1).

3. GENERAL BACKGROUND

Consider a simply supported TWC pipe under remote bending moment M in Fig. 4 which has
length L, mean radius R, thickness t, and crack angle 28, with the crack circumferentially located
in the weld material of length L. In the development of a J-estimation scheme, it is generally
assumed that the load point rotation due to the presence of a crack, ¢°¢, and the crack driving force,
J, admit additive decomposition of the elastic and plastic components:

P =¢:+¢; o
J=J,+7, (2)
where the subscripts “e” and “p" refer to the elastic and plastic contributions respectively. In the
elastic range, ¢¢ and M are uniquely related. In addition, if the deformation theory of plasticity
holds, a unique relationship also exists between ¢ and M. Once these relationships are determined,

the elastic component J, and the plastic component J, of the total energy release rate J can be
readily obtained.

4. ELASTIC SOLUTION

The elastic energy release rate J, can be defined as

3UT 8
Je= g = (U U™ =

oue

)

éd’

Weldment
/~Base material

Fig. 4. Schematics of pipe weldments with a circumferential flaw.
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where U7 is the total internal strain energy, U™ is the strain energy which would exist if there were
no crack present, U= U7 — U™ is the additional strain energy in the pipe due to the presence of
a crack, and 4 =2R0r is the crack area. When 1 — 0, i.e. for a thin-walled pipe with mode I crack
growth, J, can be obtained as

J==1 (4)
where £ is the elastic modulus of weld material and X is the mode I stress intensity factor. From
the theory of linear elastic fracture mechanics (LEFM), K; is given by

K, = o /(xR6)F,(9), (5)

in which 6 = M/nR" is the far-field applied stress and F5(8) is a geometry function relating X,
of a cracked shell to that for the same size of crack in an infinite plate. From egs (3)-(5), U* can
be integrated to yield

Mz
e _ I ,
v 2nR*E, »(6) ©
where
E
13(9)=4j $Fa(£) de. 7
0
Using Castigliano’s theorem,
eus
[ 8
M A (8)
which when combined with eq. (6) gives
EnRt
= . 9)
1® ° (

representing the relationship between moment and elastic rotation. Equations (4) and (5)
completely specify the elastic energy release rate J,, and hence the elastic solution is complete in
a closed form. Equation (9) provides the relationship between applied moment M and elastic
rotation ¢ which will be required for the calculation of J, explained in the next section. These
developments are based on the elastic solutions of Sanders[15, 16]. Explicit functional forms of
F5(0) and I,(f) are provided in Appendix A.

5. PLASTIC SOLUTION

The plastic energy release rate 4, can be defined as
dg, (10)

%M
S = —J FA—
o €A |,

where ¢ is a dummy variable representing instantaneous plastic rotation. The evaluation of J, in
eq. (10) requires determination of the M—¢; relationship as a function of crack size. When this
relationship is obtained, eq. (10) can be used to find J, and can then be added to J, to determine
the total J.

A widely used univariate constitutive law describing a material’s stress-strain (g—) relation
is the normalized Ramberg-Osgood model, given by

€ o o\
~=—+af(—~), ()
EO:’ dﬂl Foi

where gy, is some reference stress usually assumed to be flow stress and/or yield stress, ¢, = g,,/E,
is the associated strain with elastic modulus £, o; and n; are the model parameters usually chosen
to fit experimental data, and i = 1 or 2 representing base or weld malerials, respectively. In applying
the Ramberg-Osgood relation to the cracked pipe problem, it is necessary to relate the stresses with
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the rotations. Ilyushin [17] showed that the field solutions to the boundary value problem involving
a monotonically increasing load or displacement type parameter are “proportional™. Consequently.
eq. (11) applies (minus the elastic term) and the deformation theory plasticity is assumed 1o be valid.
Thus,

$iocam, (12)
giving
¢; =Da™, (13)
where the proportionality constant D can be expressed in a convenient form,
1,(0)
D =Lba 2" 14
8 &; 0_8, - |E2 ( )
to aliow for eq. (13) to be reformulated as
e\~ |
¢,= faﬁ.(—) (38 (15)
Oy;

in which the moment-elastic rotation relationship in eq. (9) is utilized. In eq. (15), L5 is an unknown
function which needs to be determined. For the crack problem, L% may be determined via a
numerical method. However, no analytical method exists to obtain L3 in closed form. Thus, the
main task in this methodology is to establish LY in eq. (15).

Evaluation of Ly

Suppose the actual pipe can be replaced by a pipe with reduced thickness 7, which extends for
a distance & > L, at the center (Fig. 5). Far from the crack plane, the rotation of the pipe is not
greatly influenced by whether a crack exists or some ather discontinuity is present as long as the
discontinuity can approximate the effects of the crack. The reduced thickness section, which
actually results in matenal discontinuity, is an attempt to simulate the reduced system compliance
due to the presence of a crack. This equivalence approach was originally suggested by Brust [10, 18]
and successfully implemented to evaluate the performance of TWC pipes consisting of one single
material under varicus loading conditions {10, 18, 19]. Tt is assumed here that the deformation
theory of plasticity controls the stress—strain response and that the beam theory holds.

Consider the equivalent pipe with material discontinuity in Fig. 5 which is subjected to bending
load M at both ends. Using classical beam theory, the ordinary differential equations governing
displacement of beams with the Ramberg-Osgood constitutive law can be easily derived. These
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Fig. 5. Reduced section analogy.
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equations, when supplemented by the appropriate boundary and compatibility conditions, can be
solved foliowing elementary operations of calculus. Details of the algebra associated with these
solutions are provided in Appendix B. The rotations [dy/dx in eqs (B2), (BS), and (B8}] provide
an explicit relationship between the far-field plastic rotation #3 due to material discontinuity and
the corresponding elastic rotations ¢¢, where the new superscript “d” refers to material
discontinuity. Each of these relationships can be expressed in a form analogous to eq. (15) as

n =1
$i= Lza.-(i) ¢2, (16)
Gy
in which L§ in general will depend on geometry, the material properties of base and weld materials,
1. and the spatial coordinate x. While no attempt is made here for a formal proof, it will be assumed
that L determined from the material discontinuity solution [eq. (16)] approaches the actual
unknown L% in eq. (15).
Since Lj evaluated at segment CD cannot account for base material properties [eq. (BS8)], the
appropriate choice is to write L4 at either segment AB or BC. More specifically, when the spatial
location is selected 10 be the point B (ie. x = 4/2), the explicit version of eq. (16) becomes

) G5 -G 56
¢ = My, 2 2 A, Mgl 2 \q, P (17)

Mc a L, t+ Me L.t °
MO\ 2 )T\ )

where M. = 6,I/R is the elastic bending load corresponding te flow stress 6y, and the other
parameters are zlready defined in Appendix B. Comparing eq. (17) with eq. (16) immediately gives

M\ a LN/ t\n M\ L, [\m

Ld=(M°l) (5“ 2)(’_) +(an) 2 (’_) x !

? M a LNt [M\ L.t My~
(M,)“" (5_ 2 )Z+(MZ)E°Z 21 “'(ﬂ,)

Equation (18) apparently indicates that L§ has explicit functional dependency on the external load
parameter M, thus violating the previously invoked Ilyushin theorem [cf. eq. (12)]. However, it can
be shown that for the variation of load magnitude in the practical range, the correlation between
L$and M is not of strong nature. This will be proved semi-empirically when this issue is further
investigated in the forthcoming numerical applications. Hence, the above equation can stil] be
treated as an expression for the invariant proportionality factor L4.

(18)

Determination of t,

The equivalent reduced thickness !, can be obtained by forcing the limit moment of reduced
pipe section,

M:=40nmnR21u (]9)

to be equivalent to the limit moment of cracked pipe section,

g 1
Mr = 4 . 2 ——
=40, R t(cos 373 sin 0), (20)
giving [10, 18]
0 1

t,=t(cos§—isin 6), (21)

which does not require any explicit description of the limit stress Tumic dU€ to its cancellation in
the equality of egs (19) and (20). However, in ref. [10], it has been observed that eq. (21) provides
fairly good approximation only for small crack angles (0° <28 < 90°). For large crack angles
(26 > 120%), ¢, is found to be better represented by

4 a 1.
t,= - t(cos 373 sin 6), (22)
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obtained when the limit moment of the reduced section pipe is calculated from the linear stress
variation with maximum stress oy, (giving M9 = noy, R%,) rather than a uniform stress block
as assumed in eqs (19) and (20). For cracks with angles in the intermediate range (90° < 26 < 120%),
I, can be found by linear interpolation between these limits [10, 18].

Estimation of J,

Having determined L and +,, the M—¢; relationship can be obtained from eq. (16) via the
M—¢; relation in eq. (9). When it is placed in eq. (10), it can be integrated out symbolically to
evaluate J, in a closed form. Following simple algebra, it can be shown that

2, 1 =R B M ]!
= i 23
% Egt~"'m+12 77 """[nRzz ’ 23
in which
121, 1 aL¢
Hy=+20e L 0L (24)

Lo Ly a8

where the derivatives ¢/;/06 and 213/26 are explicitly described in Appendix C. Equations (4) and
(23) provide closed form expressions for J, and J,. These analytic forms are very convenient for
both deterministic and probabilistic elastic—plastic fracture mechanics.

6. NUMERICAL EXAMPLES

Description of the problem

Consider two circumferential TWC pipe weldments, one with R = 52.87 mm and ¢ = §.56 mm
(Rt = 6), and the other with R = 55.88 mm and ¢ = 3.81 mm (R/t = 13), each of which is subjected
to constant bending moment M applied at the simply supported ends. In both pipes, it ts assumed
that 26 = 139° and L, = 5.59 mm. The constitutive laws for base and weld metals are assumed to
follow the Ramberg—Osgood model. The numerical values of flow stress o,,, modulus of elasticity
E, and the model parameters «, and n, are shown in Table 1.

Results of anaiyses

The pipes with the above input parameters are analyzed to calculate energy release rates
(J-integrals) by both the estimation method and the non-linear finite element method (FEM).
Approximate evaluation of the crack driving force J by the proposed estimation scheme is based
on eqs (2), {4) and (23). The FEM solutions, on the other hand, are based on three-dimensional
brick elements available in the fracture mechanics code BCLFEM, which was developed by
in-house expertise of the computational group at Battelle. Figure 6 shows a typical mesh
representing the finite element idealization of the quarter (due to symmetry) of TWC pipe with
cracked weld.

Figures 7 and 8§ show several plots of J versus M obtained from various levels of approxi-
mation for both pipes with R/t ~ 6 and R/t ~ 15, respectively. Also shown in the figures are the
results of the finite element method (FEM), which can be used as benchmark solutions for
evaluating the accuracy of analytical methods. Comparisons of the results of the approximate
method developed in ref. [18] solely based on all-base or all-weld material properties with those
of FEM suggest that they provide only upper and lower bounds of the actual energy release rate J
atany given load M. However, neither of them can be used to predict the actual values of J reliably.

Tabie [. Parameiers of the Ramberg—Osgood model

Materal Ty E,
(i) (MPa) (MPa) a, n,
Base metal 303.3 175,760 30.56 3.826

Weld metal 358.5 175,760 11.96 9.370
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Fig. 6. Finite element mesh of cracked pipe weld.

Figures 7 and 8 also exhibit the results of the proposed method for several values of 4,
representing the length of the reduced thickness section. They all show reasonably good agreement
with the solutions of FEM. Although 4 is treated here as a free parameter, an optimum value 4,
needs to be determined for obtaining the best estimate.
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Fig. 7. Comparisons of computed J versus M{R/t ~6).
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In all the example cases, the calculation of J, is performed here based on the proportionality
factor L§ in eq. (18). Although functionally dependent on the external foad parameter, the
weak correlation between L% and M can be verified from the approximate constancy
of L§ demonstrated in Fig. 9. This shows several plots of L§ versus applied moment M [eq. (18)]
for both cases of R/t ~6 and R/r =~ 15 in the above examples. As previously anticipaled, they
clearly indicate that for practical load ranges, L% remains essentially invariant for various
combinations of 4.

Quantification of 4,

Several finite element analyses are carried out to determine the optimum value of 4. Following
extensive comparisons with the results of finite element analysis, the optimum value 4,,, is found
to be relatively insensitive to the variations in the hardening parameters n, and n, of the
Ramberg-Osgood models for the base and weld metals, respectively. It is also found that the
optimum value of 4,,/L, is roughly in the neighborhood of 4, where L, is the average length of
weld metal in the pipe,

Figure 10 shows plots of crack driving force J versus applied bending moment M for some
of the combinations of », and n, considered in this study. Other input parameters are kept the same
as in the example problem with R/t ~ 6 illustrated previously. Both estimation and finite element
methods are applied to compute J for a given applied moment. Comparisons of the results suggest
that the estimation method with the calibrated value of dop /L, = 4 provides simple vet satisfactory
measures of the energy release rate J.

Note that the calibration procedure conducted here provides only a preliminary estimate of
dgp- More refined calibration will need to be performed to investigate dependency on geometry
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Fig. 10. Numerical calibration of 6. — estimation methods; W finite element analysis.
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Fig. 1. Circumferential through-wall crack in a weld showing plastic zone sizes.

factor (e.g. R/r ratio), crack size (e.g. 8/x ratio), flow stress ratio (e.g. 04/0y), and any other
2
pertinent parameters.

7. DISCUSSION

As discussed here and in refs [10], [18] and [19], the key to developing a J-estimation scheme
is to determine the reduced pipe compliance due to the presence of the crack. The reduced pipe
compliance has been estimated in a number of ways including using plastic zone correction methods
in elastic solutions[10] and reduced thickness sections as done here. The consequences of this
equivalence approach are described in the following.

Figure 11 shows the through-wall crack in the weld of a pipe. If the plastic zone is small in
comparison {o the weld width, L, then it is clear that an estimation scheme solution should depend
only on the weld material and the corresponding Ramberg-Osgood properties. However, as the
plastic zone reaches and penetrates the base metal, the far-field rotation due to the crack increases
(or decreases) depending on the ratio of weld to base metal strength properties. For many welded
nuclear pipings, the base metal is of lower strength, and can accommodate more plastic flow
compared to the weld metal. This additional softening or plastic flow which occurs in the base metal
would not occur if not for the presence of the crack. It is for this reason that the reduced thickness
section includes both weld and base material, i.e. the additional rotation due to the crack in the
base metal is caused by {(weld) crack-induced plasticity.

8. CONCLUSIONS

A new methodology is proposed to estimate the energy release rates of TWC ductile pipe
weldments subjected to remote bending loads. The method is based on the deformation theory of
plasticity, the constitutive law characterized by the Ramberg-Osgood model, and an equivalence
criterion incorporating the reduced thickness analogy for simulating system compliance due to the
presence of a crack in a weld metal. The method utilizes the material properties of both base and
weld metals, which are not considered in the current estimation methods. The method is very
general and it can be applied in the complete range between elastic and fully plastic conditions.

Several numerical examples have been presented to illustrate the proposed technique for
estimating the J-integral. Similar results from stress analysis based on finite element analysis are
also obtained to provide reference solutions for the above problems. Comparison of the results
predicted by this new method tc the finite element analyses indicated very good predictions of
energy release rates.

The equations for the J-integral in a non-linearly elastic cracked pipe weld are derived in a
closed form in terms of elementary functions. This makes the proposed scheme computationally
feasible and attractive for future development of probabilistic fracture mechanics by both analytical
and simulation models. These developments are the subject of current work.



428 S. RAHMAN and F. W. BRUST

Acknowledgemen!:v-fl'he authors would like to thank Dr. Gery Wilkowski of Battelle and Messrs. Michael Mayficld and
AHen Hiser of USNRC for their encouragement and support during this effort.

REFERENCES

(1] J. R. Rice, A path-independent integral and the approximate analysis of strain concentration by notches and cracks.
J. appl. Mech. 35, 376-386 (1968).

{2) J. W. Hutchinson, Fundamentals of the phenomenological theory of nonlinear fracture mechanics. J. appl. Mech. 49,
103-197 (1982).

[3] J.R. Rice and G. F. Rosengren, Plane strain deformation near a crack-tip in a power-law hardening material. J. Mech.
Phys. Solids 16, 1-12 (1968).

[4] J. W. Hutchinson, Singular behavior at the end of a tensile crack in a hardening material. J. Mech. Phys. Solids 15,
[3-31 (1968).

[5] P.C. Paris, H. Tada, A. Zahoor and H. Ernst, The theory of instability of the tearing mode of the elastic-plastic crack
growth. Elastic-Plastic Fracture, ASTM STP 668, 5-36 (1979).

[6] V. Kumar, M. German, W. Wilkening, W. Andrews, W. deLorenzi and D. Mowbray, Advances in elastic—plastic
fracture analysis. EPRI/NP-3607, Final Report (1984).

{7] M. Kanninen and C. Popelar, Advanced Fracture Mechanics. Oxford University Press, New York (1985).

[8] P. C. Paris and H. Tada, The appiication of fracture proof design methods using tearing instability theory to nuclear
piping postulating circumferential through-wall eracks. NUREG/CR-3464 (1983).

{91 R. Klecker er af., NRC leak-before-break (LBB.NRC) analysis method for circumferentially through-wall cracked
pipes under axial plus bending loads. NUREG/CR-4572 (1986).

[10] F. W. Brust, Approximate methads for fracture analysis of through-wall cracked pipes. NUREG/CR-4853 (1987).

[11] 1. L. Sanders, Ir., Dugdale mode! for circumferential through-cracks in pipes ioaded by bending. Mnt J. Fracture 34,
71-81 (1987).

[12] 5. Rahman, F. Brust, M. Nakagaki and P. Gilles, An approximate method for estimating energy release rates of
through-wall cracked pipe weldments. Proc. 1991 ASME Pressure Vessels and Piping Conf., Vol. 215, San Diego, CA
(1991).

[13] Proc. CSNI{NRC Workshop on Ductile Piping Fracture Mechanics (Compiled by M. F. Kanninen), held at the
Southwest Research Institute, San Antonio, TX (1984).

[14] G. M. Wilkowski er al., Degraded piping program—Phase II. NUREG/CR-4082, Final and Semiannual Reports
(1985-1989),

[15] J. L. Sanders, }r., Circumferential through-cracks in cylindrical shells under tension. J. appl. Mech. 49, 103-107 (1982).

[16] J. L. Sanders, Jr., Circumferential through-crack in a cylindrical shell under combined bending and tension. J, appi.
Mech. 50, 221 (1983).

[17] A. A. Tlyushin, The theory of small elastic-plastic deformations. Prikadnaic Matemarika i Mekhanika, PMM 10,
347-356 (1946).

[18] F. W. Brust and P. Gilles, An equivalence method for estimaling energy release rates with application to cracked
cytinders. J. Press. Vess. Technol. (in press).

[19] P. Gilles and F. W. Brusl, Approximate methods for fracture analysis of tubular members subjected to combined tensije
and bending loads. Proc. 8th OMAE Conf., The Hague, The Netherlands (1989).

APPENDIX A

Using Sanders’ solutions [15, 16] by shell theory and the energy integral technique, Paris and Tada [B] have developed
the fellowing approximations of Fa(B) and 1,(8):

[£] 15 4] 25 @ 13
F,(B)zI+A,,(;) +B,,(;) +Ch(;) (AD

with
R R\? RY?
A, = ~3.2654 + 1.5278(-7)— 0‘0727(7) +0‘0016(7)
R : RY?
B, =11.3632 - 3.9]41(7) +0. lBSZ(?) - 0.0041(—(—)
R R\? 4
Cy= —13.1861 + 3.8476(7) - 0.1830(7) + 00040(?) (A2)
and
0 1.5 9 3
1,(9):26‘[1 +8(1_r) I,,,+(;) (I,,J+.’¢,):'. (A3)
whera
2] 2
30500
7 n 11\n

35

g 4
r_t) . (Ad)

3(2)
A} A B8\ 24,C,+ B /9\?
L= A A(E)J,_b:g(;)
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APPENDIX B

Using classical beam theory for small deformation, the governing differential equations are (Fig. 5);

1. Segment AB (4/2<x < L2}
diy | (M)'"
—=—|— (Bh)

dxt R\M,,
dy 1/ M\"
izi(M—) x+C (B2)
ol
1 M -.xz
y =§(M—) Zicr+g ®
0],
2. Segment BC (L,/2< x €4/2)
&y 1 MY
24200
dy 1 { M\
G _LfMANYe 5
y.1 (Mm) (,) X +C, (85)

L] x}
) FHOIHC (B6)

dy 1/ M\ i\
2479

3. Segmenmt CD (0 x < L, /2)

dy 1/ M\ i\
E=E(F) r_) x+Cs (B8)
[ .
P/ M\ V= x?
y=§(M—) (’—) 7+C,x+C,,, (B9)
a .
where
AKIK
o E'R . (B10)
with
Ty
K, @l (B11)

——2 (B12)
2 r 3+ 1
27,
and the gamma function
r{")=J ¢ 'exp(—¢) deg, (B13)

in which 7 ~ nR* is the moment of inertia of the original pipe cross-section. Enforcing the appropriate boundary and
compatibility conditions, the constants C,~C, can be casily determined as

LGOI
S T ey Y P P R
-GS
TG

C,=0 (BI18)
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APPENDIX C
The expressions for the derivatives 31,/0 and 619/30 are given below:
6!
= = 46F)(8) «n
8LG _ A4GHBNHA G, (8) + 4,G,,(8)] - 4,G1(8)[4,G,, (8} + 4G, (9)] c2
2 [4:G,OF >
in which
g 1 —k
G.@) = (cosi— 3 sin 0)
G,’K(B)=A(sm + cos 9)6.,1(9) (C3)
TS
My, (Y
-(a.)

S

where C =1 or C = 4/n according to whether 0° < 26 < 90° or 26 2 120°, respectively. When 90° < 20 < 120°, C can be
interpolated from the above two limits [10, 18].
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