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SUMMARY

A new, generalized, multivariate dimension-reduction method is presented for calculating statistical
moments of the response of mechanical systems subject to uncertainties in loads, material properties,
and geometry. The method involves an additive decomposition of an N -dimensional response func-
tion into at most S-dimensional functions, where S>N ; an approximation of response moments by
moments of input random variables; and a moment-based quadrature rule for numerical integration. A
new theorem is presented, which provides a convenient means to represent the Taylor series up to a
specific dimension without involving any partial derivatives. A complete proof of the theorem is given
using two lemmas, also proved in this paper. The proposed method requires neither the calculation of
partial derivatives of response, as in commonly used Taylor expansion/perturbation methods, nor the
inversion of random matrices, as in the Neumann expansion method. Eight numerical examples involv-
ing elementary mathematical functions and solid-mechanics problems illustrate the proposed method.
Results indicate that the multivariate dimension-reduction method generates convergent solutions and
provides more accurate estimates of statistical moments or multidimensional integration than existing
methods, such as first- and second-order Taylor expansion methods, statistically equivalent solutions,
quasi-Monte Carlo simulation, and the fully symmetric interpolatory rule. While the accuracy of the
dimension-reduction method is comparable to that of the fourth-order Neumann expansion method, a
comparison of CPU time suggests that the former is computationally far more efficient than the latter.
Copyright � 2004 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many problems in computational statistics and stochastic mechanics involve calculating a mul-
tidimensional integral to determine the probabilistic characteristics of random output when
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GENERALIZED DIMENSION-REDUCTION METHOD 1993

input uncertainties are characterized either partially by moments or fully by probability den-
sity functions [1–6]. Current stochastic methods used to calculate this integral comprise three
major approaches: (1) analytical methods, (2) simulation methods, and (3) numerical integra-
tion. Analytical methods, which include Taylor expansion or perturbation methods [7–10], the
Neumann expansion method [11–15], the decomposition method [16, 17], the polynomial chaos
expansion method [14], the statistically equivalent solution [18], the point estimate method [19]
and others [1], are traditionally employed to predict second-moment characteristics of random
output. Presented in Reference [20], a brief review suggests that most analytical methods are
computationally inefficient or less accurate when the input–output relationship is highly non-
linear or when the number and/or uncertainty of input random variables is large. Simulation
and sampling methods, such as direct Monte Carlo simulation [21], quasi-Monte Carlo simula-
tion [22–24], importance sampling [25, 26], directional simulation [27, 28], and others [29–32],
are well known in the statistics and reliability literature. While simulation methods do not
exhibit the limitations of analytical methods, they generally require considerably more exten-
sive calculations than analytical methods. Consequently, simulation methods are useful when
alternative methods are inapplicable or inaccurate, and have been traditionally employed as a
yardstick for evaluating analytical methods. Methods involving numerical integration have also
been employed to calculate statistical properties of output. Various quadrature rules, such as
Gauss–Legendre, Gauss–Hermite, and others, can be utilized. In recent years, new interpolatory
rules have also been developed to evaluate the integral more accurately and efficiently [4–6].
Nevertheless, numerical integration is not economically feasible when (1) the number of input
random variables exceeds three or four and (2) expensive calculation of the output variable is
required. Hence, new stochastic methods that can handle arbitrarily large non-linearity, many
random variables, and arbitrarily large uncertainties of input, and yet predict both response
moments and reliability accurately, are highly desirable.

Recently, the authors proposed a univariate dimension-reduction method [20] for calculating
statistical moments of the response of mechanical systems subject to uncertainties in loads,
material properties, and geometry. This univariate method involves an additive decomposition
of a multidimensional response function into multiple one-dimensional functions; an approx-
imation of response moments by moments of single random variables; and a moment-based
quadrature rule for numerical integration. The resultant moment equations entail evaluation of
N one-dimensional integrals, which is substantially simpler and more efficient than perform-
ing one N -dimensional integration. Numerical results involving small to moderate uncertainties
of input, presented in Reference [20], indicate that the univariate dimension-reduction method
provides more accurate estimates of statistical moments or multidimensional integration than
most existing methods. However, for a system with arbitrarily large random variation and/or
high non-linearity, the univariate dimension reduction may not be adequate due to two- and
other higher-dimensional integrations contained in the residual error of this method. The error
can be reduced further, for example in the bivariate dimension-reduction method, if terms as-
sociated with bivariate integrations are retained in approximating the response. However, this
process requires two-dimensional integrations, as opposed to one-dimensional integrations in
the univariate method. Nevertheless, it is conceivable that bivariate and, in general, multivariate
dimension-reduction methods can be developed to reduce residual error to an arbitrarily small
value, which is the subject of the current paper.

This paper presents a new, generalized dimension-reduction method for predicting second-
moment characteristics of the response of mechanical systems subject to random loads, material

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 61:1992–2019



1994 H. XU AND S. RAHMAN

properties, and geometry. The method involves an additive decomposition of an N -dimensional
response function into 1-,2-,. . ., S-dimensional functions, where S>N ; an approximation of
response moments by moments of input random variables; and a moment-based quadrature rule
for numerical integration. A new theorem is presented, which provides a convenient means
of representing the Taylor series up to a specific dimension without needing to know any
derivatives. A complete proof of the theorem is given using two lemmas, also proved in this
paper. Finally, two sets of numerical examples illustrate the accuracy, computational efficiency,
and convergence of the proposed method.

2. BIVARIATE DIMENSION-REDUCTION METHOD

Consider a continuous, differentiable, real-valued function y(x) or y(x1, . . . , xN) that depends
on N independent variables x = {x1, . . . , xN }T ∈ RN . Let

I [y(x)] ≡
∫ 1

−1
· · ·
∫ 1

−1
y(x) dx (1)

denote an N -dimensional integration of y(x) on a symmetric domain [−1, 1]N . If the Taylor
series expansion of y(x) at x = 0 = {0, . . . , 0}T, expressed by

y(x) = y(0) +
∞∑

j=1

1

j !
N∑

i=1

�j
y

�x
j
i

(0)x
j
i

+
∞∑

j2=1

∞∑
j1=1

1

j1!j2!
∑

i1<i2

�j1+j2y

�x
j1
i1

�x
j2
i2

(0)x
j1
i1

x
j2
i2

+
∞∑

j3=1

∞∑
j2=1

∞∑
j1=1

1

j1!j2!j3!
∑

i1<i2<i3

�j1+j2+j3y

�x
j1
i1

�x
j2
i2

�x
j3
i3

(0)x
j1
i1

x
j2
i2

x
j3
i3

+ · · · (2)

is substituted in Equation (1), the integral becomes

I [y(x)] = I [y(0)] +
∞∑

j=1

1

j !
N∑

i=1

�j
y

�x
j
i

(0)I [xj
i ]

+
∞∑

j2=1

∞∑
j1=1

1

j1!j2!
∑

i1<i2

�j1+j2y

�x
j1
i1

�x
j2
i2

(0)I [xj1
i1

x
j2
i2

]

+
∞∑

j3=1

∞∑
j2=1

∞∑
j1=1

1

j1!j2!j3!
∑

i1<i2<i3

�j1+j2+j3y

�x
j1
i1

�x
j2
i2

�x
j3
i3

(0)I [xj1
i1

x
j2
i2

x
j3
i3

] + · · · (3)

Now consider two Taylor series expansions of the univariate function y(0, . . . , 0, xi, 0, . . . , 0)

at xi = 0 and the bivariate function y(0, . . . , 0, xi1, 0, . . . , 0, xi2 , 0, . . . , 0) at xi1 = xi2 = 0,

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 61:1992–2019



GENERALIZED DIMENSION-REDUCTION METHOD 1995

yielding

y(0, . . . , 0, xi, 0, . . . , 0) = y(0) +
∞∑

j=1

1

j !
�j

y

�x
j
i

(0)x
j
i (4)

y(0, . . . , 0, xi1, 0, . . . , 0, xi2 , 0, . . . , 0) = y(0) +
∞∑

j=1

1

j !
�j

y

�x
j
i1

(0)x
j
i1

+
∞∑

j=1

1

j !
�j

y

�x
j
i2

(0)x
j
i2

+
∞∑

j2=1

∞∑
j1=1

1

j1!j2!
�j1+j2y

�x
j1
i1

�x
j2
i2

(0)x
j1
i1

x
j2
i2

(5)

Summation of these two expansions with respect to i and i1 < i2, respectively, gives

N∑
i=1

y(0, . . . , 0, xi, 0, . . . , 0) = Ny(0) +
N∑

i=1

∞∑
j=1

1

j !
�j

y

�x
j
i

(0)x
j
i (6)

∑
i1<i2

y(0, . . . , 0, xi1, 0, . . . , 0, xi2 , 0, . . . , 0) = N(N − 1)

2
y(0) + (N − 1)

N∑
i=1

∞∑
j=1

1

j !
�j

y

�x
j
i

(0)x
j
i

+ ∑
i1<i2

∞∑
j2=1

∞∑
j1=1

1

j1!j2!
�j1+j2y

�x
j1
i1

�x
j2
i2

(0)x
j1
i1

x
j2
i2

(7)

Now consider a bivariate approximation

ŷ(x) ≡ ∑
i1<i2

y(0, . . . , 0, xi1, 0, . . . , 0, xi2 , 0, . . . , 0)

−(N − 2)
N∑

i=1
y(0, . . . , 0, xi, 0, . . . , 0) + (N − 1)(N − 2)

2
y(0) (8)

of y(x), where each term on the right-hand side is a function of at most two variables. The
integration of ŷ(x) is then

I [ŷ(x)] = ∑
i1<i2

I [y(0, . . . , 0, xi1, 0, . . . , 0, xi2 , 0, . . . , 0)]

−(N − 2)
N∑

i=1
I [y(0, . . . , 0, xi, 0, . . . , 0)] + (N − 1)(N − 2)

2
I [y(0)] (9)

Substituting Equations (6) and (7) into (9), and subsequently applying the integration operator,
yields

I [ŷ(x)] = I [y(0)] +
N∑

i=1

∞∑
j=1

1

j !
�j

y

�x
j
i

(0)I
[
x

j
i

]

+ ∑
i1<i2

∞∑
j2=1

∞∑
j1=1

1

j1!j2!
�j1+j2y

�x
j1
i1

�x
j2
i2

(0)I
[
x

j1
i1

x
j2
i2

]
(10)
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Note that Equation (3) contains all terms on the right-hand side of Equation (10), resulting in
a residual error of

I [y(x)] − I [ŷ(x)] =
∞∑

j3=1

∞∑
j2=1

∞∑
j1=1

1

j1!j2!j3!
∑

i1<i2<i3

�j1+j2+j3y

�x
j1
i1

�x
j2
i2

�x
j3
i3

(0)I
[
x

j1
i1

x
j2
i2

x
j3
i3

]
+ · · · (11)

which includes contributions from integrations of only dimensions three and higher. If partial
derivatives �j1+j2+j3y(0)/�x

j1
i1

�x
j2
i2

�x
j3
i3

are negligibly small, I [ŷ(x)] in Equation (10) provides a
convenient approximation of I [y(x)]. Note that I [ŷ(x)] represents a reduced integration, since
only one- and two-dimensional integrations are required, as opposed to one N -dimensional
integration in I [y(x)]. There is no need to calculate partial derivatives. Since each term of
the integrand in I [ŷ(x)] has at most two variables, this approximation is called the bivariate
dimension-reduction method. Furthermore, Equation (10) yields exact results when y(x) =∑

i<j yij (xi, xj ), i.e. when y(x) can be additively decomposed into functions yij (xi, xj ) of at
most two variables.

In order to integrate over a general non-symmetric domain
∏N

i=1[ai, bi], such as

I [y(x)] =
∫ bN

aN

· · ·
∫ b1

a1

y(x1, . . . , xN) dx1 · · · dxN (12)

where −∞ � ai �∞ and −∞ � bi �∞, a linear transformation

xi = bi + ai

2
+ bi − ai

2
�i , i = 1, . . . , N (13)

maps the original integral over a non-symmetric domain to

I [y(x)] =
N∏

i=1

bi − ai

2

∫ 1

−1
· · ·
∫ 1

−1
�(�1, . . . , �N) d�1 · · · d�N (14)

which represents an integral over a symmetric domain where �(�1, . . . , �N) is the transformed
function due to a change of variables from x to �-space. Hence, Equation (11) is applicable
to multidimensional integrations over non-symmetric domains as well.

3. GENERALIZED DIMENSION-REDUCTION METHOD

The bivariate dimension-reduction method described in the previous section can be generalized
to reduce the residual error to an arbitrarily small value. To accomplish this generalization, a
new theorem associated with the Taylor series is presented, which provides a convenient means
to represent the Taylor series up to a specific dimension without specific knowledge of any
derivatives. The theorem is proven using two lemmas, also proven herein, as follows.

Lemma 1
For any N -dimensional function y(x1, . . . , xN) having convergent Taylor series, let T (y, N) =∑N

i=0 ti represent the Taylor series expansion of y(x1, . . . , xN) at x = 0, where ti , 0 � i �N , is
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the summation of all terms with i variables, i.e.

t0 = y(0)

t1 = ∑
j1

1

j1!
N∑

i1=1

�j1y

�x
j1
i1

(0)x
j1
i1

t2 = ∑
j1,j2

1

j1!j2!
∑

i1<i2

�j1+j2y

�x
j1
i1

�x
j2
i2

(0)x
j1
i1

x
j2
i2

...
...

...

tN = ∑
j1,j2,...,jN

1

j1!j2! · · · jN !
∑

i1<i2<···<iN

�j1+j2+···+jN y

�x
j1
i1

�x
j2
i2

· · · �x
jN

iN

(0)x
j1
i1

x
j2
i2

· · · xjN

iN

(15)

If

yR = ∑
k1<k2<···<kR

y(0, . . . , 0, xk1, 0, . . . , 0, xk2 , 0, . . . , 0, xkR
, 0, . . . , 0), 0 �R �N (16)

defines a summation of terms that contain at most R variables, then

yR =
R∑

k=0

(
N − k

R − k

)
tk (17)

Proof
Using Taylor expansion at xk1 = xk2 = · · · = xkR

= 0,

y(0, . . . , 0, xk1, 0, . . . , 0, xk2 , 0, . . . , 0, xk3, 0, . . . , 0, xkR
, 0, . . . , 0)

= y(0) +∑
j1

1

j1!
R∑

i1=1

�j1y

�x
j1
ki1

(0)x
j1
ki1

+ ∑
j1,j2

1

j1!j2!
∑

i1<i2

�j1+j2y

�x
j1
ki1

�x
j2
ki2

(0)x
j1
ki1

x
j2
ki2

+ · · ·

+ ∑
j1,j2,...,jR

1

j1!j2! · · · jR!
∑

i1<i2<···<iR

�j1+j2+···+jRy

�x
j1
ki1

�x
j2
ki2

· · · �x
jR

kiR

(0)x
j1
ki1

x
j2
ki2

· · · xjR

kiR
(18)

Hence, Equation (16) becomes

yR = ∑
k1<k2<···<kR

y(0, . . . , 0, xk1, 0, . . . , 0, xk2 , 0, . . . , 0, xkR
, 0, . . . , 0)

= ∑
k1<k2<···<kR

[y(0)] + ∑
k1<k2<···<kR


∑

j1

1

j1!
R∑

i1=1

�j1y

�x
j1
ki1

(0)x
j1
ki1




+ ∑
k1<k2<···<kR


 ∑

j1,j2

1

j1!j2!
∑

i1<i2

�j1+j2y

�x
j1
ki1

�x
j2
ki2

(0)x
j1
ki1

x
j2
ki2


+ · · ·
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+ ∑
k1<k2<···<kR


 ∑

j1,j2,...,jR

1

j1!j2! · · · jR!
∑

i1<i2<···<iR

�j1+j2+···+jRy

�x
j1
ki1

�x
j2
ki2

· · · �x
jR

kiR

(0)x
j1
ki1

x
j2
ki2

· · · xjR

kiR




=
R∑

k=0

(
N − k

R − k

)
tk (19)

which completes the proof of Lemma 1. �

Lemma 2
For any integers S < N and k � S,

S−k∑
i=0

(−1)i

(
N − S + i − 1

i

)(
N − k

S − i − k

)
= 1 (20)

Proof
If k = S, proving Lemma 2 is trivial. If k < S,

S−k∑
i=0

(−1)i

(
N − S + i − 1

i

)(
N − k

S − i − k

)

=
S−k∑
i=0

(−1)i
(N − S + i − 1)!(N − k)!

i!(N − S − 1)!(S − i − k)!(N − S + i)!

=
S−k∑
i=0

(−1)i
1

(N − S + i)

(N − S)(N − k)!(S − k)!
i!(N − S)!(S − i − k)!(S − k)!

=
(

N − k

S − k

)
S−k∑
i=0

(−1)i
(N − S)

(N − S + i)

(
S − k

i

)

=
(

N − k

S − k

)
S−k∑
i=0

(−1)i
[

1 − i

(N − S + i)

](
S − k

i

)
(21)

Since
S−k∑
i=0

(−1)i

(
S − k

i

)
= (1 − 1)S−k = 0 (22)

Equation (21) simplifies to

S−k∑
i=0

(−1)i

(
N − S + i − 1

i

)(
N − k

S − i − k

)

=
(

N − k

S − k

)
S−k∑
i=0

(−1)i+1 i

(N − S + i)

(
S − k

i

)
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=
(

N − k

S − k

)
S−k−1∑

i=0
(−1)i

i + 1

(N − S + i + 1)

(
S − k

i + 1

)

=
(

N − k

S − k

)
(S − k)

(N − S + 1)

S−k−1∑
i=0

(−1)i
N − S + 1

(N − S + i + 1)

(
S − k − 1

i

)

=
(

N − k

S − k

)
(S − k)

(N − S + 1)

S−k−1∑
i=1

(−1)i
[

1 − i

(N − S + i + 1)

](
S − k − 1

i

)

=
(

N − k

S − k

)
(S − k)

(N − S + 1)

S−k−1∑
i=1

(−1)i+1 i

(N − S + i + 1)

(
S − k − 1

i

)

=
(

N − k

S − k

)
(S − k)(S − k − 1)

(N − S + 1)(N − S + 2)

S−k−2∑
i=0

(−1)i
(N − S + 2)

(N − S + i + 2)

(
S − k − 2

i

)

=
(

N − k

S − k

)
(S − k)(S − k − 1)...2 · 1

(N − S + 1)(N − S + 2)...(N − k)

=
(

N − k

S − k

)
(S − k)!(N − S)!

(N − k)! = 1 (23)

which completes the proof of Lemma 2. �

Theorem
For any N -dimensional function y(x) = y(x1, . . . , xN), if

ŷ ≡
S∑

i=0
(−1)i

(
N − S + i − 1

i

)
yS−i (24)

represents an S-variate approximation of y(x1, . . . , xN), where y0 = y(0), S �N , and yR

is already defined in Equation (16), then ŷ consists of all terms of the Taylor series of
y(x1, . . . , xN) that have less than or equal to S variables, i.e.

ŷ =
S∑

k=0
tk (25)

Proof
By Lemma 1

yS−i =
S−i∑
k=0

(
N − k

S − i − k

)
tk (26)
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which can be substituted in Equation (24) to obtain

ŷ =
S∑

i=0

S−i∑
k=0

(−1)i

(
N − S + i − 1

i

)(
N − k

S − i − k

)
tk (27)

Since
∑S

i=0
∑S−i

k=0 = ∑S
k=0

∑S−k
i=0 and invoking Lemma 2, Equation (27) reduces to

ŷ =
S∑

k=0

S−k∑
i=0

(−1)i

(
N − S + i − 1

i

)(
N − k

S − i − k

)
tk =

S∑
k=0

tk (28)

which completes the proof of the proposed theorem. �

The proposed theorem implies that the multivariate approximation ŷ, defined in Equation
(24), consists of all terms of the Taylor series expansion of y(x1, . . . , xN) that have no more
than S variables. Following application of the integral operator,

I [ŷ] =
S∑

i=0
(−1)i

(
N − S + i − 1

i

)
I [yS−i] (29)

which represents a reduced integration, since only 1-, 2-,. . ., S-dimensional integrations are re-
quired, as opposed to an N -dimensional integration in I [y]. If the integrations of series terms
with more than S variables are negligibly small, Equation (29) provides a convenient approxi-
mation of I [y]. When S>N , the computational effort in evaluating I [ŷ] becomes significantly
smaller than evaluating I [y]. Again, there is no need to calculate partial derivatives. Further-
more, Equation (29) yields exact results when y(x1, . . . , xN) can be additively decomposed
into functions of at most S variables.

4. APPLICATION TO STOCHASTIC PROBLEMS

4.1. Statistical moments of response

Consider a mechanical system subject to a zero-mean independent random input vector X =
{X1, . . . , XN }T ∈ RN , which characterizes uncertainty in loads, material properties, and geom-
etry. Let Y (X) represent a relevant response of interest, for which the lth statistical moment

ml ≡ E[Y l(X)] =
∫

RN
yl(x)fX(x) dx (30)

is sought, where fX(x) = fX1···XN
(x1, . . . , xN) is the joint probability density function of X

and E is the expectation operator. If Z(X) = Y l(X), the lth moment can also be evaluated
from

ml ≡ E[Z(X)] =
∫

RN
z(x)fX(x) dx (31)
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Following the S-variate dimension reduction procedure in Equations (24) and (29), the lth
moment can be approximated by

ml
∼=E[Ẑ(X)]

=
S∑

i=0
(−1)i

(
N − S + i − 1

i

)

× ∑
k1<k2<···<kS−i

E[Z(0, . . . , 0, Xk1, 0, . . . , 0, Xk2 , 0, . . . , 0, XkS−i
, 0, . . . , 0)] (32)

By definition,

E[Z(0, . . . , 0, Xk1, 0, . . . , 0, Xk2 , 0, . . . , 0, XkS−i
, 0, . . . , 0)]

≡
∫ ∞

−∞
z(0, . . . , 0, xk1, 0, . . . , 0, xk2 , 0, . . . , 0, xkS−i

, 0, . . . , 0)fX̃(x̃) dx̃ (33)

where x̃ = {xk1, . . . , xkS−i
}T ∈ RS−i , X̃ = {Xk1, . . . , XkS−i

} ∈ RS−i , and

fX̃(x̃) =
S−i∏
j=1

fXkj
(xkj

) (34)

is the joint probability density of X̃. Note that Equation (34) is valid for independent random
vector X. If X comprises dependent variables with its joint density fX(x) = fX1···XN

(x1, . . . , xN),
a multivariate transformation such as Rosenblatt transformation [33] should be applied to trans-
form the dependent random vector X to an independent standard Gaussian random vector U.
The Rosenblatt transformation is given by [33]

u1 = �−1[FX1(x1)]
u2 = �−1[FX2(x2|x1)]
...

...

uN = �−1[FXN
(xN |x1, x2, . . . , xN−1)]

(35)

in which FXi
(xi |x1, x2, . . . , xi−1) is the cumulative distribution function of component Xi

conditional on X1 = x1, X2 = x2, . . . , Xi−1 = xi−1 and �(Q) is the cumulative distribu-
tion function of a standard Gaussian random variable. The conditional distribution function
FXi

(xi |x1, x2, . . . , xi−1) can be obtained from

FXi
(xi |x1, x2, . . . , xi−1) =

∫ xi

−∞
fX1,X2,...,Xi

(x1, x2, . . . , xi−1, s) ds

fX1,X2,...,Xi−1(x1, x2, . . . , xi−1)
(36)

where fX1,X2,...,Xi−1(x1, x2, . . . , xi−1) is the joint probability density function of random vector
{X1, X2, . . . , Xi−1}T.
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Equation (33) only requires at most S-dimensional deterministic integration, which can be
more easily evaluated using standard quadrature rules. For example, Gauss–Legendre and Gauss–
Hermite quadratures are frequently used when Xj follows uniform and Gaussian probability
distributions, respectively [34]. For an arbitrary distribution of Xj , a moment-based quadrature
rule, described in authors’ previous work [20], can be used to evaluate the integral. Appendix A
provides a brief description of the moment-based quadrature rule.

The moment equation proposed herein entails evaluating at most S-dimensional integrals,
which is substantially simpler and more efficient than performing one N -dimensional integra-
tion when S>N . For practical problems involving a moderate to large number of input random
variables (e.g. N > 10), the moment equation presents a promising method. The method does
not require calculation of any partial derivatives of response and inversion of random matrices
as compared to, respectively, the commonly used Taylor/perturbation and Neumann expansion
methods. Hence, the computation effort in conducting probabilistic finite element or mesh-
less analysis is significantly reduced using the dimension-reduction method. The method is
coined ‘S-variate or multivariate dimension-reduction’, since it essentially reduces the calcula-
tion of an N -dimensional integral to that of an at most S-dimensional integral. When S = 1,
the method degenerates to the univariate dimension-reduction method [20]. When S = 2,
the method becomes the bivariate dimension-reduction method, as described in a previous
section of this paper. Similarly, trivariate, quadrivariate, and other higher-variate dimension-
reduction methods can be derived by appropriately selecting the value of S. In the limit, when
S = N , there is no dimension reduction and the proposed method converges to the exact
solution.

As described previously, the residual error in the multivariate dimension-reduction method
contains terms involving integration of Taylor series with variables of number greater than S.
The error, which decreases as S increases, can be made arbitrary small if S is larger and
closer to N . However, more computational effort is required. For example, when evaluating
Equation (29) or (32) by an n-order quadrature rule in each dimension, the total number

of function or response evaluations is
∑S

i=0

(
N

S−i

)
nS−i . In contrast, nN function evaluations

are required using direct numerical integration without any dimension reduction. Figures 1(a)

and (b) show how the ratio
∑S

i=0

(
N

S−i

)
nS−i/nN of these two function evaluation numbers

varies with respect to S for N = 10 and 30 when n = 3 and 4, respectively. A reduction of

computational effort is achieved when the ratio
∑S

i=0

(
N

S−i

)
nS−i/nN < 1. As can be seen in

Figures 1(a) and (b) the amount of reduction depends on both N and n. For example, univariate,
bivariate, and trivariate dimension-reduction methods reduce computational effort by factors of
2000 (= 1

5 × 10+4), 143 (= 1
7 × 10+3), and 17 (= 1

6 × 10+2), respectively, when n = 3 and
N = 10, and by factors of 25 000 (= 1

4 × 10+5), 1429 (= 1
7 × 10+4), and 125 (= 1

8 × 10+3),
respectively, when n = 4 and N = 10. Furthermore, the reduction is dramatically enhanced
when N is larger, as shown in Figures 1(a) and (b).

4.2. Discrete equilibrium equations

Consider a linear mechanical system subject to a vector of input random parameters X ∈
RN �→ (�, �) characterizing uncertainty in the system and loads. Following discretization, let
Y ∈ RM �→ (mY, �Y) represent a displacement (response) vector associated with M degrees of
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Figure 1. Reduction of computational effort: (a) n = 3; and (b) n = 4.

freedom of the system, satisfying the linear equilibrium equation

K(X)Y(X) = F(X) (37)

in which the stiffness matrix K and force vector F depend on X and represent an elementary
stochastic linear operator having random coefficients and involving only algebraic operations.
Equation (37) is common to finite-difference, finite-element, and recently developed mesh-free
methods when the system, loads, or both, are uncertain. From Equation (37), the solution

Y(X) = K(X)−1F(X) (38)

is random and depends on X. Using the multivariate dimension-reduction method, the mean
vector mY and covariance matrix �Y of Y can be derived as

mY = E[Y] ∼= E[Ŷ] =
S∑

i=0
(−1)i

(
N − S + i − 1

i

) ∑
k1<k2<···<kS−i

E[K(X̃i )
−1F(X̃i )] (39)

�Y = E[YYT] − mYmT
Y (40)

where X̃i = {0, . . . , 0, Xk1, 0, . . . , 0, XkS−i
, 0, . . . , 0}T ∈ RN and

E[YYT] ∼=
S∑

i=0
(−1)i

(
N − S + i − 1

i

) ∑
k1<k2<···<kS−i

E[K(X̃i )
−1F(X̃i )F(X̃i )

TK(X̃i )
−T] (41)

Note that the calculation of expected values on the right-hand side of Equations (39) and (40)
involves at most S-dimensional integrations.

5. NUMERICAL EXAMPLES

Two sets of numerical examples are presented to illustrate the proposed multivariate dimension-
reduction method. The first set (Examples 1–4) involves elementary mathematical functions and
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Table I. Mean of Y (X) = √
1 + XTX/2 by various dimension-reduction methods (� = 0.3).

N

S 3 4 5 6 7 8 9 10

(a) Dimension-reduction methods

1 1.065364 1.087152 1.108940 1.130728 1.152516 1.174303 1.196091 1.217879
2 1.064102 1.084629 1.104734 1.124420 1.143684 1.162528 1.180952 1.198955
3 1.064124 1.084716 1.104953 1.124857 1.144449 1.163752 1.182788 1.201578

(b) Numerical integration

1.064124 1.084714 1.104944 1.124831 1.144392 1.163641 1.182592 1.201257

the second set (Examples 5–8) involves solid-mechanics problems. The number (n) of integration
points in each dimension varies from 3 to 4. Whenever possible, comparisons with alternative
analytical methods, simulation, and direct numerical integration are provided to evaluate the
accuracy, computational efficiency, and convergence of the proposed method.

5.1. Example set I—mathematical functions

Example 1
Consider an elementary transformation

Y (X) =
√

1 + XTX/2 (42)

where Xj �→ N(0, �2), j = 1, . . . , N are independent and identically distributed Gaussian
random variables with mean zero and variance �2. The multivariate dimension-reduction method
was employed to determine the mean of Y and the relative error, defined as the absolute
difference between means obtained by the proposed method and direct numerical integration.
Table I shows the mean values of Y for � = 0.3 and N = 3–10 using the univariate (S =
1), bivariate (S = 2), and trivariate (S = 3) dimension-reduction methods. A 3rd-order (i.e.
n = 3) quadrature rule was employed for reduced integration in dimension-reduction methods.
Compared with the results of direct N -dimensional numerical integration, also listed in Table I
(last row), the approximate dimension-reduction methods provide satisfactory estimates of mean
for all values of N considered. Furthermore, the approximate means from the dimension-
reduction methods converge to the means from direct numerical integration as S increases.

For larger input uncertainty, Table II presents the relative errors in estimating mean values
of Y when � = 1 and N = 3–10. The errors, which are listed for various dimension-reduction
methods with S = 1, 2, 3, 4, 5, 6, and 7, consistently decrease with S. However, the com-
putational effort by dimension-reduction methods increases significantly with S, as shown in
Table III. For example, when N = 10, the pentavariate (S = 5) and heptavariate (S = 7)

dimension-reduction methods require 81 922 and 497 452 function evaluations to reduce rela-
tive errors to 0.003633 and 0.000066, respectively. In contrast, when the same problem is solved
using Genz’s fully symmetric interpolatory rules [4], 185 085 and 2 779 549 function evaluations
are required to reduce relative errors to 0.003741 and 0.000475, respectively. While the function
evaluation numbers are very large, it is necessary to point out that the large variation (� = 1)
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Table II. Relative errors by various dimension-reduction methods (� = 1.0).

N

S 3 4 5 6 7 8 9 10

1 0.033202 0.057051 0.083068 0.110301 0.138172 0.166316 0.194499 0.222567
2 0.002145 0.007381 0.016134 0.028578 0.044751 0.064625 0.088128 0.115170
3 0.000000 0.000448 0.001925 0.005132 0.010748 0.019458 0.031922 0.048783
4 0.000000 0.000101 0.000539 0.001700 0.004117 0.008469 0.015573
5 0.000000 0.000025 0.000157 0.000573 0.001576 0.003633
6 0.000000 0.000006 0.000047 0.000195 0.000600
7 0.000000 0.000002 0.000014 0.000066

Table III. The number of integrand values required by various dimension-reduction methods.

N

S 3 4 5 6 7 8 9 10

1 10 13 16 19 22 25 28 31
2 37 67 106 154 211 277 352 436
3 64 175 376 694 1156 1789 2620 3676
4 256 781 1909 3991 7459 12826 20686
5 1024 3367 9094 21067 43444 81922
6 4096 14197 41479 104680 235012
7 16384 58975 183412 497452

case was specifically studied in order to compare dimension-reduction methods with the fully
symmetric interpolatory rule, which constitutes one of the most efficient numerical methods
known for this problem [4]. For most engineering problems, however, the standard deviation
is much smaller; in which case, univariate or bivariate dimension-reduction methods usually
suffice in yielding accurate statistical results, as shown in Table I. More realistic examples are
presented in the following subsection.

Example 2
Let

I [y(x1, . . . , xN)] ≡
∫ 1

0
. . .

∫ 1

0

(
N∑

i=1
xi

)1/2 N∏
i=1

dxi (43)

denote another N -dimensional integral, for which Entacher [24] developed a quasi-Monte Carlo
formula involving a generalized Haar series to determine the integration error. From the reported
results in Reference [24], Table IV presents the integration errors for a quasi-Monte Carlo
analysis involving 32 768 integrand values. The error measures, which vary from 4.0 × 10−8 to
3.4 × 10−1, strongly depend on the dimension N and may differ by orders of magnitude when
N varies from 6 to 9. When using the univariate dimension-reduction method with n = 3,
only 19–28 function evaluations were required to solve this problem, with integration errors on
the order of 10−4. The integration errors yielded by the bivariate dimension-reduction method,
also shown in Table IV, suggest that errors as low as on the order of 10−5 can be achieved
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Table IV. Integration errors by quasi-Monte Carlo and dimension-reduction methods.

Integration error

Univariate Bivariate
Quasi Monte Carlo dimension-reduction dimension-reduction

method method method
Dimension (32 768 function (19–28 function (154–352 function
(N) evaluations) evaluations)∗ evaluations)†

6 4.0 × 10−8 3.6 × 10−4 4.1 × 10−5

7 1.5 × 10−5 2.6 × 10−4 2.7 × 10−5

8 1.7 × 10−4 2.0 × 10−4 1.9 × 10−5

9 3.4 × 10−1 1.6 × 10−4 1.3 × 10−5

∗Required 19, 22, 25, and 28 integrand values for N = 6, 7, 8, and 9, respectively.
†Required 154, 211, 277 and 352 integrand values for N = 6, 7, 8, and 9, respectively.
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Figure 2. Results of
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0 · · · ∫ 1
0 exp(

∑10
i=1 x2

i )1/2 ∏10
i=1 dxi by various dimension-reduction methods.

with 154–352 function evaluations, still significantly less than required by the quasi-Monte
Carlo method. The dimension-reduction method is not only computationally efficient, but more
importantly, yields error estimates that are relatively insensitive to the dimension of the integral.

Example 3
This 10-dimensional example illustrates the convergence properties of the proposed dimension-
reduction method. A multidimensional integral, given by

I [y(x1, . . . , x10)] ≡
∫ 1

0
. . .

∫ 1

0
exp

(√
10∑
i=1

x2
i

)
10∏
i=1

dxi (44)

was evaluated using various dimension-reduction methods with reduced dimension S = 1, 2, 3, 4,
and 5, and the order of integration n = 4. Figure 2 shows how the integration results vary when
1 � S � 5. From Figure 2, the proposed method yields a convergent solution as the reduced
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Figure 3. Standard deviations of output Y = 1/(1 +�
∑N

j=1 Xj) for increasing
values of input standard deviation.

dimension increases from 1 to 5. The relative difference, i.e. 1.11% between univariate and
bivariate dimension-reduction methods and 0.03% between bivariate and trivariate dimension-
reduction methods, indicates that univariate or bivariate dimension-reduction methods are often
sufficient to generate accurate results.

Example 4
The final example in this set entails calculating the standard deviation of the output

Y = Y (X1, . . . , XN) = 1

1 + �
∑N

j=1 Xj

(45)

where input Xj �→ N(0, �2), j = 1, . . . , N are independent and identically distributed Gaus-
sian random variables. The proposed dimension-reduction method was employed to determine
standard deviations �Y of Y for the case � = 0.1 and N = 10. The results are plotted
in Figure 3 for increasing values of input standard deviation. Both bivariate and trivariate
dimension-reduction methods provide very good approximations of �Y , when compared with
the results of direct numerical integration (the reference solution) even for a standard deviation
up to 0.625. The comparison with the first- and second-order Taylor expansions, the results of
which are also given in Figure 3, suggests that the dimension-reduction methods are superior
to the Taylor expansion methods when the standard deviation of input is large, as in this
particular problem. Furthermore, the dimension-reduction method can easily generate results of
higher accuracy by simply increasing the value of S. In contrast, it is difficult or impractical
to invoke higher-order expansions for Taylor expansion methods, since expensive calculations
of higher-order derivatives are required.

5.2. Example set II—solid-mechanics problems

In most of the following solid-mechanics examples, random fields were introduced to increase
the dimension of the stochastic problem. For example, lognormal random fields were employed
in Examples 5 and 8 to represent the spatial variability of material properties. However, in
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Figure 4. A stochastic beam on an elastic foundation: (a) geometry and loads;
and (b) discrete finite-difference model.

Example 6, the elastic modulus was modelled using a Gaussian random field, which although
somewhat unrealistic, was adopted here to permit direct comparison of the proposed method
with existing methods requiring the Gaussian assumption. The proposed method does not require
any specific distribution type of input random variables or fields.

Example 5 (stochastic finite-difference analysis (linear-elastic))
Consider a propped cantilever beam on an elastic foundation and its discrete model, as illustrated
in Figure 4. For this example, span L = 120 in, nodal spacing � = L/4 = 30 in, and constant
beam stiffness EI = 6.45 × 108 lb in2. A uniformly distributed load W = exp(V ) having a
lognormal probability distribution with mean �W = exp(�V + �2

V /2) = 1000 lb/in, variance
�2

W = �2
W [exp(�2

V )−1], and coefficient of variation vW = �W/�W , where �V and �2
V are mean

and variance of normal random variable V . Finally, the foundation modulus was modelled as
a homogeneous lognormal random field �(x) = exp[�(x)] with mean �� = exp(�� + �2

�/2) =
2000 lb/in2, variance �2

� = �2
�[exp(�2

�) − 1], and coefficient of variation v� = ��/��, where

�(x) is a stationary Gaussian random field with mean ��, variance �2
�, and covariance function

�(u) = E{[�(x + u) − ��][�(x) − ��]} = �2
� exp(−�|u|), � � 0. There is no dependence between

the applied load and foundation modulus.
The equilibrium equation for the discrete finite-difference model [see Figure 4(b)], including

boundary conditions, is




7 + �X1 −4 1

−4 6 + �X2 −4

1 −4 5 + �X3






Y1

Y2

Y3


 =




1

1

1


 �X4 (46)

where Yi = Y (i�), i = 1, 2, 3 is the displacement response at node i, � = �4/EI =
1.26 × 10−3 in2/lb; Xj = �(j�) = exp[�(j�)], j = 1, 2, 3; and X4 = W = exp(V ). The input
lognormal vector X = {X1, X2, X3, X4}T ∈ �4 has mean � = {��, ��, ��, �S}T and covariance
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matrix

� =




�2
� �2

�	
∗(�) �2

�	
∗(2�) 0

�2
�	

∗(�) �2
� �2

�	
∗(�) 0

�2
�	

∗(2�) �2
�	

∗(�) �2
� 0

0 0 0 �2
S




(47)

where 	∗(u) = [exp{�(u)}−1]/[exp(�2
�)−1]. The objective of this example, originally presented

by Grigoriu [18], is to determine the second-moment characteristics of the displacement response
Y = {Y1, Y2, Y3}T ∈ �3.

Table V presents the approximate mean and covariance of Y for �� = 0.1, obtained us-
ing the Monte Carlo simulation (100 000 samples) as well as the results from the univariate
dimension-reduction method, bivariate dimension-reduction method, and the statistically equiv-
alent solution [18]. The statistically equivalent solution was developed for stochastic-mechanics
problems and was found to be more accurate than first-order Taylor expansion or Neumann
expansion methods [18]. The results in Table V are given for three cases of input uncertainties:
(a) v� = 0.3, vS = 0.2; (b) v� = 0.6, vS = 0.2; and (c) v� = 0.6, vS = 0.01. Simulation re-
sults and statistically equivalent solutions were obtained from Reference [18]. In all three cases,
the statistically equivalent solution and dimension-reduction method provide almost exact (sim-
ulation) estimates of the response mean. However, the dimension-reduction method outperforms
the statistically equivalent solution when covariance properties are compared. For example, the
ratio of exact to approximate standard deviations lies in the range of (0.81, 1.26) for the
statistically equivalent solution, (0.99, 1.04) for the univariate dimension-reduction method and
(0.99, 1.01) for the bivariate dimension-reduction method. For each stochastic problem, only
13 and 67 deterministic analyses (n = 3) were, respectively, required by the univariate and
bivariate dimension-reduction methods.

Example 6 (stochastic mesh-free analysis (linear-elastic))
Consider a square plate with a centrally located circular hole, as shown in Figure 5(a). The
plate has a dimension of 2L = 40 units, a hole with diameter 2a = 2 units, and is subjected to
a uniformly distributed load of magnitude �∞ = 1 unit. The Poisson’s ratio 
 was selected to
be 0.3. The elastic modulus was assumed to be a homogeneous random field and symmetrically
distributed with respect to x1- and x2-axes [see Figure 5(a)]. The modulus of elasticity E(x)

was represented by E(x) = �E[1 + �(x)], where �E = 1 unit is the constant mean over the
domain �, and �(x) is a homogeneous Gaussian random field with mean zero and covariance
function

��(�) = E[�(x)�(x + �)] = �2
� exp

[
−‖�‖

bL

]
, ∀x, x + � ∈ � (48)

where �� = 0.1 unit and b = 0.5. Due to symmetry, only a quarter of the plate, represented by
the region ABEDC and shaded in Figure 5(a), was analysed. Figure 5(b) presents a meshless
discretization of the quarter plate with 90 nodes [8, 15].

The random field �(x) was parameterized using the Karhunen–Loève expansion [35]

�(x) ∼=
N∑

j=1
Xj

√
�j�j (x) (49)

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 61:1992–2019



2010 H. XU AND S. RAHMAN

Ta
bl

e
V

.
M

ea
n

an
d

co
va

ri
an

ce
of

di
sp

la
ce

m
en

t
ve

ct
or

Y
in

be
am

on
el

as
tic

fo
un

da
tio

n
fo

r
��

=
0.

1.

U
ni
va
ri
at
e

B
iv

ar
ia

te
M

on
te

C
ar

lo
si

m
ul

at
io

n
St

at
is

tic
al

ly
eq

ui
va

le
nt

di
m

en
si

on
-r

ed
uc

tio
n

di
m

en
si

on
-r

ed
uc

tio
n

[18
]

so
lu

tio
n

[18
]

m
et

ho
d

m
et

ho
d

(1
05

sa
m

pl
es

)

(a
)

v
�

=
0.

3;
v
S

=
0.

2

M
ea

n
ve

ct
or

(m
Y

)

  0.
29

5
0.

48
0

0.
39

1

  
  0.

29
7

0.
48

0
0.

39
1

  
  0.

29
7

0.
48

0
0.

39
2

  
  0.

29
7

0.
48

0
0.

39
2

  

C
ov

ar
ia

nc
e

m
at

ri
x

(�
Y

)

 0.
00

44
0.

00
85

0.
00

67
0.

01
68

0.
01

33
(s

ym
.)

0.
01

07

  0.
00

66
0.

01
13

0.
00

91
0.

01
98

0.
01

59
(s

ym
.)

0.
01

30

  0.
00

70
0.

01
20

0.
00

96
0.

02
11

0.
01

70
(s

ym
.)

0.
01

38

  0.
00

70
0.

01
21

0.
00

96
0.

02
12

0.
01

70
(s

ym
.)

0.
01

39

 
(b

)
v

�
=

0.
6;

v
S

=
0.

2

M
ea

n
ve

ct
or

(m
Y

)

  0.
32

8
0.

54
0

0.
44

1

  
  0.

32
8

0.
54

0
0.

43
9

  
  0.

32
8

0.
54

0
0.

43
9

  
  0.

32
8

0.
53

9
0.

43
9

  

C
ov

ar
ia

nc
e

m
at

ri
x

(�
Y

)

 0.
02

05
0.

03
88

0.
03

07
0.

07
46

0.
05

95
(s

ym
.)

0.
04

80

  0.
01

63
0.

02
92

0.
02

31
0.

05
35

0.
04

28
(s

ym
.)

0.
03

48

  0.
01

75
0.

03
16

0.
02

50
0.

05
81

0.
04

65
(s

ym
.)

0.
03

77

  0.
01

73
0.

03
12

0.
02

47
0.

05
73

0.
04

59
(s

ym
.)

0.
03

73

 
(c

)
v

�
=

0.
6;

v
S

=
0.

01

M
ea

n
ve

ct
or

(m
Y

)

  0.
32

7
0.

54
0

0.
44

1

  
  0.

32
8

0.
54

0
0.

44
0

  
  0.

32
8

0.
54

0
0.

44
0

  
  0.

32
8

0.
54

0
0.

43
9

  

C
ov

ar
ia

nc
e

m
at

ri
x

(�
Y

)

 0.
01

88
0.

03
53

0.
02

79
0.

06
69

0.
05

34
(s

ym
.)

0.
04

32

  0.
01

29
0.

02
38

0.
01

87
0.

04
51

0.
03

60
(s

ym
.)

0.
02

93

  0.
01

27
0.

02
35

0.
01

85
0.

04
46

0.
03

55
(s

ym
.)

0.
02

88

  0.
01

26
0.

02
33

0.
01

84
0.

04
42

0.
03

52
(s

ym
.)

0.
02

85

 

Copyright � 2004 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2004; 61:1992–2019



GENERALIZED DIMENSION-REDUCTION METHOD 2011

Circular
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Figure 5. A square plate with a hole subjected to uniformly distributed tension: (a) geometry and
loads; and (b) meshless discretization.

where Xj �→ N(0, 1), j = 1, . . . , N are standard and independent Gaussian random variables
and {�j , �j (x)}, j = 1, . . . , N are the eigenvalues and eigenfunctions, respectively, of the
covariance kernel. Mesh-free shape functions were employed to solve the associated integral
equation needed to calculate the eigenvalues and eigenfunctions [15]. Based on the correlation
parameter b = 0.5, a value of N = 12 was selected to adequately represent �(x). Based on
the Karhunen–Loève discretization, the input uncertainty was represented by a 12-dimensional
standard Gaussian vector X �→ N(0, I), where 0 ∈ �12 and I ∈ L(�12 × �12) are the null
vector and identity matrix, respectively.

Table VI presents standard deviations of displacements and strains at points A, B, C, D,
and E [see Figure 5(a)], predicted by the proposed dimension-reduction method (Equations
(39)–(41)), as well as results of a fourth-order Neumann expansion method and a Monte Carlo
simulation (5000 samples). The Neumann expansion solutions were obtained following the de-
velopment by Ghanem and Spanos [14]. As can be seen in Table VI, the Neumann expansion
and dimension-reduction methods provide satisfactory results for prediction of standard devia-
tions in comparison with simulation results. The accuracy of the response statistics from the
bivariate dimension-reduction method is slightly higher than Neumann expansion and univariate
dimension-reduction methods. More importantly, however, a comparison of CPU times, obtained
for two separate analyses for N = 6 and 12 as shown in Figures 6(a) and (b), respectively,
indicates that the univariate dimension-reduction method is far more efficient than the Neumann
expansion method. From Table VI and Figures 6(a) and (b), it can be seen that the bivari-
ate dimension-reduction method surpasses both the accuracy (marginally) and computational
efficiency of the fourth-order Neumann expansion method.
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Table VI. Standard deviations of displacement and strains in plate with a hole
by various methods (N = 12).

Standard deviation of response

4th-Order Univariate Bivariate Monte Carlo
Neumann dimension- dimension- simulation

Response expansion reduction reduction (5000
Location variable∗ method method method samples)

A u1 1.11 × 10−1 1.09 × 10−1 1.12 × 10−1 1.12 × 10−1

11 2.58 × 10−2 2.53 × 10−2 2.58 × 10−2 2.56 × 10−2

22 2.39 × 10−1 2.34 × 10−1 2.39 × 10−1 2.37 × 10−1

12 3.28 × 10−2 3.22 × 10−2 3.28 × 10−2 3.25 × 10−2

B u1 4.60 × 10−1 4.52 × 10−1 4.61 × 10−1 4.61 × 10−1

22 7.97 × 10−2 7.82 × 10−2 7.97 × 10−2 8.21 × 10−2

C u2 2.48 × 10−1 2.43 × 10−1 2.49 × 10−1 2.46 × 10−1

11 8.64 × 10−2 8.48 × 10−2 8.65 × 10−2 8.72 × 10−2

22 1.28 × 10−2 1.26 × 10−2 1.28 × 10−2 1.28 × 10−2

12 3.89 × 10−2 3.81 × 10−2 3.89 × 10−2 3.90 × 10−2

D u2 1.33 1.30 1.33 1.33
22 8.30 × 10−2 8.10 × 10−2 8.31 × 10−2 8.34 × 10−2

E u1 5.94 × 10−1 5.83 × 10−1 5.95 × 10−1 5.99 × 10−1

u2 1.37 1.35 1.37 1.38
22 8.36 × 10−2 8.17 × 10−2 8.37 × 10−2 8.37 × 10−2

∗u1 and u2 are horizontal and vertical displacements, respectively. 11 and 22 represent normal tensorial strains
in x1 and x2 directions, respectively; and 12 represents tensorial shear strain.
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Figure 6. Comparison of CPU time by various methods: (a) N = 6; and (b) N = 12.
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W
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L/2
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2b2

2b1
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(a) (b)

σ∞

τ∞

Figure 7. Edge-cracked plate subject to mixed-mode loading conditions: (a) geometry and loads;
and (b) finite-element discretization.

Example 7 (stochastic finite element analysis (linear-elastic))
A homogeneous, edge-cracked plate is presented to illustrate a mixed-mode probabilistic
fracture-mechanics analysis using the dimension-reduction method. As shown in Figure 7(a), a
plate of length L = 16 units was fixed at the bottom and subjected to a far-field normal stress
�∞ and a shear stress �∞ applied at the top. The plate was analysed using the finite element
method involving a total of 832 8-noded quadrilateral elements and 48 quarter-point triangular
elements at the crack-tip, as shown in Figure 7(b). The independent random variables are:
(1) uniformly distributed crack length a �→ U(2.8, 4.2) units; (2) uniformly distributed plate
width W �→ U(7, 8); (3) Gaussian normal stress �∞ �→ N(1, 0.12); and (4) Gaussian shear
stress �∞ �→ N(1, 0.12). The elastic modulus and Poisson’s ratio were 30×106 units and 0.25,
respectively. A plane strain condition was assumed.

Table VII presents the predicted means and standard deviations of stress-intensity factors
KI and KII obtained using the proposed univariate and bivariate dimension-reduction methods
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Table VII. Means and standard deviations of mixed-mode fracture parameters.

Univariate Bivariate
dimension-reduction dimension-reduction Numerical

method method integrationResponse and
computational Standard Standard Standard
effort Mean deviation Mean deviation Mean deviation

KI 39.302 7.828 39.328 8.081 39.328 8.083
KII 4.411 0.737 4.411 0.741 4.411 0.741
No. of analyses 13 67 81

(b)(a)

P

R = 100 mm

h = 2mm 
β = 14.04° 

Figure 8. A shallow arch subject to concentrated load: (a) geometry and loads;
and (b) finite-element discretization.

as well as results obtained from numerical integration. The results in Table VII clearly show
that the dimension-reduction methods can accurately calculate the statistical characteristics of
fracture parameters. Only 13 and 67 finite element analyses, respectively, were needed by the
univariate and bivariate dimension-reduction methods.

Example 8 (Stochastic finite element analysis (non-linear, large-deformation))
In this final example, the proposed dimension-reduction method was employed to solve a non-
linear problem in solid-mechanics. Figure 8(a) illustrates a shallow circular arch, with mean
radius R = 100 mm, rectangular cross-section with depth h = 2 mm, thickness t = 1 mm,
and arc angle 2� = 28.1◦. The arch, fixed at both ends, was subjected to a concentrated
load P = 200 N at the centre. The Poisson’s ratio was zero in this example. A finite element
mesh employing 30 8-noded quadrilateral elements was used to model the arch, as shown in
Figure 8(b). The stress analysis involved large-deformation behaviour for modelling the geo-
metric non-linearity of the arch. A plane stress condition was assumed.
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Table VIII. Statistical moments of central deflection of shallow arch by various methods.

1st-order 2nd-order Univariate Bivariate
Statistical Taylor Taylor dimension- dimension-
moments expansion expansion reduction reduction Numerical
(ml = E[Y l]) method method method method integration

(a) Case 1: �E = 8 kN/mm2

m1 1.6410 1.7192 1.7491 1.7423 1.7413
m2 2.7641 3.0573 3.1929 3.1808 3.1735
m3 4.7699 5.6679 6.1191 6.1348 6.1035
m4 8.4187 11.055 12.382 12.584 12.478
m5 15.176 22.908 26.567 27.533 27.229

(b) Case 2: �E = 16 kN/mm2

m1 1.7441 2.2288 2.1947 2.0129 2.0402
m2 3.4769 6.5935 5.3093 4.6199 4.7406
m3 7.5815 27.000 13.659 11.9604 12.333
m4 17.761 151.94 36.576 33.9896 34.904
m5 44.169 1112.7 101.08 102.920 104.581

(c) Case 3: �E = 24 kN/mm2

m1 1.9794 4.8551 2.3132 2.2093 2.2221
m2 6.5648 69.478 6.4170 5.6938 5.7778
m3 23.472 1531.9 19.967 16.646 17.009
m4 98.585 49219 66.074 53.260 54.574
m5 443.63 2016819 225.80 180.77 185.07

The modulus of elasticity E(x) was represented by a homogeneous, lognormal transla-
tion field E(x) = c� exp[�(x)], of mean �E = 80 kN/mm2 and standard deviation �E for
which �(x) is a zero-mean, homogeneous, Gaussian random field with standard deviation

�� =
√

ln(1 + �2
E/�2

E), an exponential covariance function represented by Equation (48), b =
0.1; and c� = �E exp(−�2

�/2) = �2
E/

√
�2

E + �2
E . The Karhunen–Loève expansion was employed

to discretize the random field �(x) into four-standard Gaussian random variables.
Due to uncertainty in the elastic modulus, any mechanical response of this arch is stochastic.

Table VIII presents estimates of the first five moments ml = E[Y l], l = 1, . . . , 5 of the deflection
Y at the central point of the arch, obtained using the first- and second-order Taylor expan-
sion methods, the univariate dimension-reduction method, and the bivariate dimension-reduction
method. The gradients required in the Taylor expansion were obtained using standard finite-
difference equations. To evaluate the approximate methods, direct, four-dimensional numerical
integrations were also performed to generate benchmark solutions. The results in Table VIII
pertain to three cases of statistical input: (a) �E = 8 kN/mm2; (b) �E = 16 kN/mm2; and (c)
�E = 24 kN/mm2, representing small, moderate, and large uncertainties of elastic modulus.
A deterministic load P = 200 N was applied since the arch demonstrates the largest instability
in the vicinity of this load [20]. The results presented in Table VIII indicate that the univariate
and bivariate dimension-reduction methods provide excellent estimates of statistical moments
for all three cases of input. For a given problem (case), the proposed univariate and bivariate
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dimension-reduction methods, respectively, required only 17 and 113 analyses (n = 4), as op-
posed to 44 = 256 analyses using numerical integration. The first- and second-order Taylor
expansion methods also yield good estimates of response moments, but only for the first case
when input uncertainties are small. However, for moderate uncertainties of input (second case),
the Taylor expansion methods are able to predict only lower-order moments, such as first and
second moments, reasonably fairly, but the statistical accuracy rapidly degrades when estimat-
ing higher-order moments. In the third case, when input uncertainties are large, the first-order
Taylor expansion method slightly underestimates the mean response, but grossly overestimates
higher-order moments. For the same case, due to large second-order gradients, the second-
order Taylor expansion method significantly overpredicts all statistical moments of response,
thus failing to generate acceptable results. In contrast, the dimension-reduction methods provide
excellent estimates of higher-order moments even for large variation of input, and therefore,
should provide a better approximation of the tail of the response distribution than the Taylor
expansion methods.

6. CONCLUSIONS

A new, generalized, multivariate dimension-reduction method was developed for calculating sta-
tistical moments of response of mechanical systems subject to uncertainties in loads, material
properties, and geometry. The method involves an additive decomposition of an N -dimensional
response function into at most S-dimensional functions, where S>N , an approximation of
response moments by moments of input random variables; and a moment-based quadrature rule
for numerical integration. A new theorem is presented, which provides a convenient means to
represent the Taylor series up to a specific dimension without the need for any partial deriva-
tives. A complete proof of the theorem has been presented using two lemmas, also proved in this
paper. Unlike commonly used Taylor expansion/perturbation methods and Neumann expansion
method, the proposed method respectively requires neither the calculation of partial derivatives
of response nor the inversion of random matrices. Eight numerical examples involving ele-
mentary mathematical functions and solid-mechanics problems have been presented to illustrate
the benefits of the proposed method. Results indicate that the multivariate dimension-reduction
method generates convergent solutions and provides more accurate estimates of statistical mo-
ments or multidimensional integration than existing methods, such as first- and second-order
Taylor expansion methods, statistically equivalent solutions, quasi-Monte Carlo simulation, and
fully symmetric interpolatory rule. While the accuracy of the dimension-reduction method is
comparable to that of the fourth-order Neumann expansion method, a comparison of CPU time
suggests that the former is computationally far more efficient than the latter.

APPENDIX A: MOMENT-BASED QUADRATURE RULE

Consider a transformation X̃ = X̃(U) that involves mapping a dependent random vector X̃ ∈
�I to an independent random vector U = {U1, . . . , UI }T ∈ �I , where I = S − i. If fUI

(uI )

represents the probability density function of Uj , j = 1, . . . , I , Equation (33) becomes

E[Z(0, . . . , 0, Xk1, 0, . . . , 0, Xk2 , 0, . . . , 0, XkI
, 0, . . . , 0)]

= E[Z̄(U1, . . . , UI )]
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=
∫ ∞

−∞
z̄(u1, . . . , uI )fU1(u1) · · · fUI

(uI ) du

∼=
n∑

i1=1
· · ·

n∑
iI =1

I∏
j=1

wj,ij z̄(u1,i1, . . . , uI,iI ) (A1)

where Z̄(U1, . . . , UI ) is the transformed function, uj,i , i = 1, . . . , n and wj,i are the integration
point and associated weight, respectively, for the uj co-ordinate selected using the moment-
based quadrature rule [20], as follows.

To construct a moment-based integration rule with n interpolation points uj,i , i = 1, . . . , n

in the direction of the uj co-ordinate, define a function

P(uj ) =
n∏

i=1
(uj − uj,i)fUj

(uj ) (A2)

which satisfies ∫ ∞

−∞
P(uj )(uj )

i duj = 0; i = 0, 1, . . . , n − 1 (A3)

If

rj,k =
n∑

i1=1

n∑
i2=1,�=i1

· · ·
n∑

ik=1,�=i1,i2,...ik−1

uj,i1uj,i2 · · · uj,ik ; k = 1, . . . , n (A4)

Equation (A3) yields a system of linear equations


�j,n−1 −�j,n−2 �j,n−3 · · · (−1)n−1�j,0

�j,n −�j,n−1 �j,n−2 · · · (−1)n−1�j,1

�j,n+1 −�j,n �j,n−1 · · · (−1)n−1�j,2

...
...

...
...

�j,2n−2 −�j,2n−3 �j,2n−4 · · · (−1)n−1�j,n−1







rj,1

rj,2

rj,3

...

rj,n




=




�j,n

�j,n+1

�j,n+2

...

�j,2n−1




(A5)

where the coefficient matrix consists of known moments of random variable Uj , given by

�j,i =
∫ ∞

−∞
(uj )

ifUj
(uj ) duj (A6)

After solving rj,i from Equation (A5), uj,i , i = 1, . . . , n can be obtained as the ith root of

un
j − rj,1u

n−1
j + rj,2u

n−2
j − · · · + (−1)nrj,n = 0 (A7)

For a shape function defined as

�(n−1)
j,i (tj ) ≡ fUj

(uj )
∏n

k=1,k �=i (uj − uj,k)

fUj
(uj,i)

∏n
k=1,k �=i (uj,i − uj,k)

(A8)
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it can be shown by polynomial approximation that

z̄(u1, . . . , uI )fUj
(uj )

∼=
n∑

i=1
�(n−1)

j,i (tj )z̄(u1, . . . , uj,i , uj+1, . . . , uI )fUj
(uj,i) +

n−1∑
i=0

�j,i(uj )
iP (uj ) (A9)

where �j,i ∈ (−∞, ∞), i = 0, n − 1 are constants. Hence, Equations (A3) and (A9) yield∫ ∞

−∞
z̄(u1, . . . , uI )fUj

(uj ) duj
∼=

n∑
i=1

wj,i z̄(u1, . . . , uj,i , uj+1, . . . , uI ) (A10)

where

wj,i =

∫ ∞

−∞
∏n

k=1,k �=i (uj − uj,k)fUj
(uj ) duj∏n

k=1,k �=i (uj,i − uj,k)
=
∑n−1

k=0(−1)k�j,n−k−1qj,ik∏n
k=1,k �=i (uj,i − uj,k)

(A11)

is the ith weight for the j th variable Uj , which is consistent with its moments, qj,i0 = 1, and
qj,ik = rj,k−uj,iqj,i(k−1). It should be noted that Equation (A7) generates integration points and
Equation (A11) yields the weights of Gauss–Legendre or Gauss–Hermite quadratures [34] when
the random variable Uj follows uniform or Gaussian probability distributions, respectively.
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In Example 6, the results listed in Table VI of the above article were obtained when the covari-
ance function ��(�) = �2

� exp[−(|�1| + |�2|)/(bL)], ∀x, x + � ∈ �. For the isotropic covariance
function described by Equation (48), the corrected Table VI should read:

Table VI. Standard deviations of displacement and strains in plate with a hole by
various methods (N = 12).

Standard deviation of response

4th-Order Univariate Bivariate Monte Carlo
Neumann dimension- dimension- simulation

Response expansion reduction reduction (5000
Location variable∗ method method method samples)

u1 1.17 × 10−1 1.15 × 10−1 1.17 × 10−1 1.19 × 10−1

�11 2.78 × 10−2 2.72 × 10−2 2.78 × 10−2 2.79 × 10−2

A �22 2.57 × 10−1 2.51 × 10−1 2.57 × 10−1 2.58 × 10−1

�12 3.52 × 10−2 3.45 × 10−2 3.52 × 10−2 3.54 × 10−2

u1 4.92 × 10−1 4.83 × 10−1 4.93 × 10−1 4.95 × 10−1

B �22 8.58 × 10−2 8.41 × 10−2 8.59 × 10−2 8.49 × 10−2

u2 2.64 × 10−1 2.58 × 10−1 2.64 × 10−1 2.66 × 10−1

�11 9.12 × 10−2 8.92 × 10−2 9.13 × 10−2 9.28 × 10−2

C �22 1.38 × 10−2 1.35 × 10−2 1.38 × 10−2 1.41 × 10−2

�12 4.06 × 10−2 3.97 × 10−2 4.07 × 10−2 4.13 × 10−2

u2 1.44 1.41 1.44 1.44
D �22 8.76 × 10−2 8.53 × 10−2 8.77 × 10−2 8.52 × 10−2

u1 6.03 × 10−1 5.91 × 10−1 6.04 × 10−1 5.98 × 10−1

E u2 1.46 1.44 1.47 1.46
�22 8.74 × 10−2 8.53 × 10−2 8.76 × 10−2 8.59 × 10−2

∗ u1 and u2 are horizontal and vertical displacements, respectively. �11 and �22 represent normal tensorial
strains in x1 and x2 directions, respectively; and �12 represents tensorial shear strain.
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