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A solution of the random eigenvalue problem by a dimensional
decomposition method
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SUMMARY

This paper presents a dimensional decomposition method for obtaining probabilistic descriptors of real-
valued eigenvalues of positive semi-definite random matrices. The method involves a novel function
decomposition allowing lower-variate approximations of eigenvalues, lower-dimensional numerical inte-
gration for statistical moments, and Lagrange interpolation facilitating efficient Monte Carlo simulation
for probability density functions. Compared with commonly-used perturbation and recently-developed
asymptotic methods, no derivatives of eigenvalues are required by the new method developed. Results
of numerical examples from structural dynamics indicate that the decomposition method provides
excellent estimates of moments and probability densities of eigenvalues for various cases including
closely-spaced modes and large statistical variations of input. Copyright � 2006 John Wiley & Sons,
Ltd.
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1. INTRODUCTION

Random matrix theory is concerned with determining probabilistic characteristics of eigenvalues
and eigenvectors of matrices defined by a statistical distribution. Since first introduced by
Wishart [1] in 1928, random matrices have fascinated both mathematicians and physicists with
far-reaching applications in many different areas. However, it was not until the early 1950s
when the subject gained prominence with Wigner’s pioneering work in nuclear physics [2]. The
mathematical foundation of the theory was later established in a series of landmark papers by
Wigner [3], Mehta [4], and Dyson [5]. An excellent exposition of the random matrix theory
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can be found in Mehta’s seminal work [6]. Nowadays, random matrices find applications in
fields as diverse as quantum physics, number theory, multivariate statistics, graph theory, signal
processing and communication, finance, computational biology, and of course, mechanics.

In random matrix theory much attention has been given to three important Gaussian (also
known as Hermite) ensembles: orthogonal, unitary, and symplectic [6, 7]. If an L × L random
matrix G, comprising of independent and identically distributed standard Gaussian elements
[Gij ], defines a Gaussian random matrix, then the symmetric L × L random matrix (G+GT)/2
is called the Gaussian orthogonal ensemble. There are complex and quaternion analogs of
the Gaussian orthogonal ensemble and are known as Gaussian unitary ensemble and Gaussian
symplectic ensemble, respectively. For all three Gaussian ensembles, the joint probability density
of eigenvalues can be derived exactly [6]. Closed-form solutions also exist for other classical
ensembles associated with the Wishart (or Laguerre) and the multivariate analysis of variance (or
Jacobi) random matrices [7]. While these analytical solutions provide significant insight, random
matrices encountered in engineering unfortunately do not follow specific matrix structures or
probability distributions of classical ensembles. Therefore, approximate methods involving sound
theoretical foundation and advanced computational techniques are required to solve a general
random eigenvalue problem.

In engineering, random matrices frequently appear in structural dynamics and structural sta-
bility, among others. The evaluation of modal frequencies and buckling of mechanical systems
involves solution of eigenvalue problems for stochastic differential operators and matrices. The
randomness in these operators or matrices comes from the statistical variability of material
parameters (e.g. mass, damping, stiffness) and geometry (e.g. size, shape, topology), and con-
straints (e.g. boundary conditions). Current approximate methods for solving random eigenvalue
problems include the Taylor series or perturbation method [8–10], the iteration method [8],
the Ritz method [11], the crossing theory [12], the stochastic reduced basis [13], the subspace
iteration [14], and the asymptotic method [15]. Among these methods, perturbation methods
have dominated the current literature. These methods involve first- or second-order Taylor
series expansions of the eigenvalue or eigenvector in terms of basic input random parameters
and application of standard stochastic operators to obtain second-moment properties of out-
put. Two major limitations of these methods are that both the uncertainty of random input
and the non-linearity of random eigenvalue or eigenvector with respect to random input must
be small. The errors in these methods can be bounded if higher-order partial derivatives of
the eigenvalue or eigenvector variable exist and are available. However, such bounds are rarely
used in engineering applications since they require expensive calculations of higher-order partial
derivatives. The direct Monte Carlo simulation can be applied to solve any random eigenvalue
problem. However, it usually is prohibitive when dealing with large matrices. Consequently,
the simulation method is useful only when alternative methods are inapplicable or inaccurate,
and has been traditionally employed as a yardstick for evaluating approximate methods.

This paper presents a new decomposition method for predicting statistical moments and
probability density functions of eigenvalues of real, positive semi-definite, stochastic matrices.
Section 2 formally defines the random eigenvalue problem involving matrix operators. Section
3 gives a brief exposition of a novel function decomposition that facilitates lower-dimensional
approximations of eigenvalues. Section 4 describes the proposed decomposition method and
associated computational effort for calculating statistical moments and probability density
functions of eigenvalues. Three numerical examples from structural dynamics illustrate the
method developed in Section 5. Comparisons have been made with alternative approximate and
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simulation methods to evaluate the accuracy and computational efficiency of the new method.
Finally, Section 6 provides conclusions and outlook from this work.

2. RANDOM EIGENVALUE PROBLEM

Let (�,F, P ) be a probability space, where � is the sample space, F is the �-algebra of
subsets of �, and P is the probability measure; RN be an N -dimensional real vector space;
and MS+0

L (R) be a set of all L × L, real-valued, symmetric, positive semi-definite matrices. De-
fined on the probability space endowed with the expectation operator E, consider a real-valued
N -dimensional random vector X = {X1, . . . , XN }T ∈ RN with mean vector �X ≡ E[X] ∈ RN ,
covariance matrix �X ≡ E[(X − �X)(X − �X)T] ∈ MS+0

N (R), and joint probability density func-
tion fX(x) : RN �→ R. For undamped or proportionally damped systems, let K(X) ∈ MS+0

L (R)

and M(X) ∈ MS+0
L (R) denote L × L, real-valued, symmetric, positive semi-definite, random

stiffness and random mass matrices, respectively, where elements [Kij (X) : RN �→ R] and
[Mij (X) : RN �→ R]; i, j = 1, . . . , L. The probabilistic characteristics of random matrices K(X)

and M(X) can be derived from the probability law of X.
The generalized linear random eigenvalue problem for a random matrix pair {K(X), M(X)}

is defined as

K(X)�(X) = �(X)M(X)�(X) (1)

where {�(i)(X), �(i)(X)}, i = 1, . . . , L is the ith eigenpair that includes random eigenvalue
�(i)(X) and random eigenvector �(i)(X). Based on the properties of K(X) and M(X), Equation
(1) yields real and non-negative eigenvalues {�(i)(X)}, i = 1, . . . , L with probability one, where
�(X) depends on random input X via solution of the matrix characteristic equation

det[K(X) − �(X)M(X)] = 0 (2)

A major objective in solving a random eigenvalue problem is to find probabilistic characteristics
of eigenpair {�(i)(X), �(i)(X)} when the probability law of X is arbitrarily prescribed.

The direct Monte Carlo simulation can be applied to solve any random eigenvalue problem.
It involves: (1) generating samples k(xk) and m(xk); k = 1, . . . , K from K input samples
xk; k = 1, . . . , K; (2) solving the corresponding characteristic equation det[k(xk)−�(xk)m(xk)]
= 0 to find samples of eigenpairs {�(i)

k , �(i)
k }; i = 1, . . . , L; k = 1, . . . , K; and (3) developing

statistics of {�(i), �(i)}; i = 1, . . . , L from {�(i)
k , �(i)

k }; i = 1, . . . , L; k = 1, . . . , K . The direct
simulation can provide full probabilistic description of the eigenvalues and eigenvectors of
{K(X), M(X)}, but it is computationally inefficient when K(X) and M(X) are large because it
requires solving the matrix characteristic equation for every realization of K(X) and M(X).

3. GENERAL EIGENVALUE DECOMPOSITION

Consider a continuous, differentiable, real-valued eigenvalue �(x) : RN �→ R that depends on
x = {x1, . . . , xN }T ∈ RN . A dimensional decomposition of a general multivariate function �(x),
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described by [16, 17]

�(x) = �0 +
N∑

i=1
�i (xi )︸ ︷︷ ︸

=�̂1(x)

+
N∑

i1,i2=1
i1<i2

�i1i2 (xi1 , xi2 )

︸ ︷︷ ︸
=�̂2(x)

+ · · · +
N∑

i1,...,iS=1
i1<···<iS

�i1···iS (xi1 , . . . , xis )

︸ ︷︷ ︸
=�̂S (x)

+ · · · + �12···N(x1, . . . , xN )

(3)

can be viewed as a finite hierarchical expansion of an output function in terms of its input
variables with increasing dimension, where �0 is a constant, �i (xi) : R �→ R is a univariate com-
ponent function representing individual contribution to �(x) by input variable xi acting alone,
�i1i2(xi1, xi2) : R2 �→ R is a bivariate component function describing cooperative influence of
two input variables xi1 and xi2 , �i1···iS (xi1, . . . , xiS ) : RS �→ R is an S-variate component func-
tion quantifying cooperative effects of S input variables xi1, . . . , xiS , and so on. The individual
contribution does not imply that input variables, if random, are required to be statistically
uncorrelated or independent. If

�̂S(x) = �0 +
N∑

i=1
�i (xi) +

N∑
i1,i2 = 1
i1<i2

�i1i2(xi1, xi2) + · · · +
N∑

i1,...,iS = 1
i1<···<iS

�i1···iS (xi1, . . . , xis ) (4)

represents a general S-variate approximation of �(x), the univariate (S = 1) and bivariate (S = 2)
approximations �̂1(x) and �̂2(x), respectively, provide two- and three-term approximants of the
finite decomposition in Equation (3). Similarly, trivariate, quadrivariate, and other higher-variate
approximations can be derived by appropriately selecting the value of S. The fundamental
conjecture underlying this work is that component functions arising in the eigenvalue function
decomposition will exhibit insignificant S-variate effects cooperatively when S → N , leading
to useful lower-variate approximations of �(x). In the limit, when S = N , �̂S(x) converges to
the exact function �(x). In other words, Equation (4) generates a hierarchical and convergent
sequence of approximations of �(x).

4. DIMENSIONAL DECOMPOSITION METHOD

4.1. Lower-variate approximations of eigenvalues

Consider univariate and bivariate approximations of �(x), respectively, defined by

�̂1(x) ≡ �̂1(x1, . . . , xN) ≡
N∑

i=1
�(c1, . . . , ci−1, xi, ci+1, . . . , cN)︸ ︷︷ ︸

=�i (xi )

−(N − 1)�(c︸ ︷︷ ︸)
=�0

(5)

�̂2(x) ≡ �̂2(x1, . . . , xN) ≡
N∑

i1,i2=1
i1<i2

=�i1i2 (xi1 ,xi2 )︷ ︸︸ ︷
�(c1, . . . , ci1−1, xi1, ci1+1, . . . , ci2−1, xi2 , ci2+1, . . . , cN)
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+
N∑

i=1
−(N − 2)�(c1, . . . , ci−1, xi, ci+1, . . . , cN)︸ ︷︷ ︸

=�i (xi )

+ (N − 1)(N − 2)

2
�(c)︸ ︷︷ ︸

=�0

(6)

where c = {c1, . . . , cN }T is a reference point in the input domain, �(c) ≡ �(c1, . . . , cN),
�i (xi) ≡ �(c1, . . . , ci−1, xi, ci+1, . . . , cN), �i1i2(xi1, xi2) ≡ �(c1, . . . , ci1−1, xi1, ci1+1, . . . , ci2−1,

xi2 , ci2+1, . . . , cN). Based on the author’s past experience, the mean point of random input de-
fines a suitable reference point. Nevertheless, these two approximations of �(x)

can be generalized to an S-variate approximation for any integer 1�S�N , given by

�̂S(x) ≡
S∑

i=0
(−1)i

⎛
⎝N − S + i − 1

i

⎞
⎠

×
N∑

k1,...,kS−i=1
k1<···<kS−i

�(c1, . . . , ck1−1, xk1, ck1+1, . . . , ckS−i−1, xkS−i
, ckS−i+1, . . . , cN) (7)

where �(c1, . . . , ck1−1, xk1, ck1+1, . . . , ckS−i−1, xkS−i
, ckS−i+1, . . . , cN) is an (S−i)th dimensional

component function representing (S − i)th dimensional cooperation among input variables
xk1, . . . , xkS−i

. Using a multivariate function theorem developed by Xu and Rahman [18], it can

be shown that �̂S(x) in Equation (7) consists of all terms of the Taylor series of �(x) that have
less than or equal to S variables. The expanded form of Equation (7), when compared with
the Taylor expansion of �(x), indicates that the residual error in the S-variate approximation
is �(x) − �̂S(x) =RS+1, where the remainder RS+1 includes terms of dimensions S + 1 and
higher. When S = 1 and 2, Equation (7) degenerates to univariate (Equation (5)) and bivariate
(Equation (6)) approximations, respectively.

It is worth noting that the univariate or bivariate approximations should not viewed as first-
or second-order Taylor series expansions nor do they limit the non-linearity of �(x). In fact, all
higher-order univariate or bivariate terms of �(x) are included in Equations (5) or (6), which
should therefore provide in general higher-order representation of eigenvalues than those by
commonly employed first- or second-order perturbation methods.

4.2. Statistical moments of eigenvalues

The lth statistical moment of a random eigenvalue �(X) is defined as

ml ≡ E[�l(X)] =
∫

RN
�l(x)fX(x) dx (8)
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In reference to Equations (5)–(7), the univariate, bivariate, and generalized S-variate approxi-
mations of �l(X) yield

ml
∼= E[�̂l

1(X)] =
N∑

i=1
E[�l(c1, . . . , ci−1, Xi, ci+1, . . . , cN)] − (N − 1)�l(c) (9)

ml
∼= E[�̂l

2(X)] = E

⎡
⎢⎣ N∑

i1,i2=1
i1<i2

�l(c1, . . . , ci1−1, Xi1, ci1+1, . . . , ci2−1, Xi2 , ci2+1, . . . , cN)

⎤
⎥⎦

− (N − 2)E

[
N∑

i=1
�l(c1, . . . , ci−1, Xi, ci+1, . . . , cN)

]

+ (N − 1)(N − 2)

2
�l(c) (10)

and

ml
∼= E[�̂l

S(X)] =
S∑

i=0
(−1)i

(
N − S + i − 1

i

)

× E

⎡
⎢⎣ N∑

k1,...,kS−i=1
k1<···<kS−i

�l(c1, . . . , ck1−1, Xk1, ck1+1, . . . , ckS−i−1, XkS−i
, ckS−i+1, . . . , cN)

⎤
⎥⎦

(11)

respectively. As with Equation (4), the expectation E[�̂l

S(X)] for S = 1, 2, . . . , N also represents
a hierarchical and convergent sequence of approximations of the lth moment of an eigenvalue.
Note that only one-, at most two-, and at most S-dimensional deterministic integrations are
involved in evaluating the expectations in Equations (9), (10), and (11), respectively. For
independent random vector X, the S-variate approximation of moments can be easily evaluated
using standard numerical quadratures, leading to

ml
∼= E[�̂l

S(X)] ∼=
S∑

i=0
(−1)i

(
N − S + i − 1

i

)
N∑

k1,...,kS−i=1
k1<···<kS−i

n∑
jS−i=1

· · ·
n∑

j1=1
w

(j1)
k1

· · · w(jS−i )

kS−i

× �l(c1, . . . , ck1−1, x
(j1)
k1

, ck1+1, . . . , ckS−i−1, x
(jS−i )

kS−i
, ckS−i+1, . . . , cN) (12)

where x
(j)
i is the j th integration point of the ith variable, w

(j)
i is the associated weight, and

n is the order of integration. For example, Gauss–Legendre or Gauss–Hermite quadratures
are frequently used when Xi follows uniform or Gaussian distributions, respectively. For an
arbitrary distribution, Xi can be transformed to a uniform or Gaussian variable, followed
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by Gauss–Legendre or Gauss–Hermite quadratures. If X consists of dependent variables, an
appropriate transformation, such as the Rosenblatt transformation [19], should be applied to
map the dependent random vector to an independent standard Gaussian random vector. Similar
approximations can be developed for obtaining moments of any functions of eigenvalues or
joint moments (e.g. correlation coefficients) of eigenvalues if desired.

The method for solving moments of eigenvalues employing Equations (9) or (10) and numer-
ical integrations are defined as the univariate or bivariate decomposition method in this paper.
The method developed does not require calculation of any partial derivatives of eigenvalues as
compared with the perturbation or asymptotic methods.

4.3. Probability density functions of eigenvalues

4.3.1. Lagrange interpolation. Consider the univariate component function �i (xi) ≡ �(c1, . . . ,

ci−1, xi, ci+1, . . . , cN) in Equation (5) or (6). If for sample points xi = x
(j)
i ; j = 1, . . . , n,

n distinct eigenvalues �(c1, . . . , ci−1, x
(j)
i , ci+1, . . . , cN); j = 1, . . . , n are given, the eigenvalue

for an arbitrary xi can be obtained by the Lagrange interpolation§

�i (xi) =
n∑

j=1
�j (xi)�(c1, . . . , ci−1, x

(j)
i , ci+1, . . . , cN) (13)

where

�j (xi) =
∏n

k=1,k �=j (xi − x
(k)
i )∏n

k=1,k �=j (x
(j)
i − x

(k)
i )

(14)

is the shape function. By using Equations (13) and (14), arbitrarily many values of �i (xi) can
be generated if n values of that component function are given. The same idea can be applied
to the bivariate component function �i1i2(xi1, xi2) ≡ �(c1, . . . , ci1−1, xi1, ci1+1, . . . , ci2−1, xi2 ,

ci2+1, . . . , cN) in Equation (6). If for xi1 = x
(j1)
i1

and xi2 = x
(j2)
i2

, n2 function values �i1i2(x
(j1)
i1

,

x
(j2)
i2

)≡ �(c1, . . . , ci1−1, x
(j1)
i1

, ci1+1, . . . , ci2−1, x
(j2)
i2

, ci2+1, . . . , cN); j1, j2 = 1, . . . , n are given,
the function value for an arbitrary point (xi1, xi2) can be obtained using the Lagrange interpo-
lation

�i1i2(xi1, xi2) =
n∑

j2=1

n∑
j1=1

�j1
(xi1)�j2

(xi2)�(c1, . . . , ci1−1, x
(j1)
i1

ci1+1, . . . , ci2−1, x
(j2)
i2

, ci2+1, . . . , cN) (15)

The same procedure is repeated for all univariate and bivariate component functions, i.e. for
all �i (xi), i = 1, . . . , N and for all �i1i2(xi1, xi2), i1, i2 = 1, . . . , N , leading to the univariate

§In general, integer n symbolizes the number of points at a given co-ordinate where deterministic eigenvalue
analyses are performed. It represents either the number of sample points required for evaluating probability
density or the integration order required for statistical moment analysis.
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approximation

�̂1(X) ∼=
N∑

i=1

n∑
j=1

�j (Xi)�(c1, . . . , ci−1, x
(j)
i , ci+1, . . . , cN) − (N − 1)�(c) (16)

and to the bivariate approximation

�̂2(X) ≡
N∑

i1,i2=1
i1<i2

n∑
j2=1

n∑
j1=1

�j1
(Xi1)�j2

(Xi2)�(c1, . . . , ci1−1, x
(j1)
i1

, ci1+1, . . . , ci2−1, x
(j2)
i2

ci2+1, . . . , cN) − (N − 2)
N∑

i=1

n∑
j=1

�j (Xi)�(c1, . . . , ci−1, x
(j)
i

ci+1, . . . , cN) + (N − 1)(N − 2)

2
�(c) (17)

Following a similar consideration, the generalized S-variate approximation can be de-
rived as

�̂S(X) =
S∑

i=0
(−1)i

⎛
⎝N − S + i − 1

i

⎞
⎠ N∑

k1,...,kS−i=1
k1<···<kS−i

n∑
jS−i=1

· · ·
n∑

j1=1
�j1

(Xk1) · · · �jS−i
(XkS−i

)

× �(c1, . . . , ck1−1, x
(j1)
k1

, ck1+1, . . . , ckS−i−1, x
(jS−i )

kS−i
, ckS−i+1, . . . , cN) (18)

which can be utilized to generate higher-variate approximations if desired. But, due to their
higher cost, only univariate and bivariate approximations are considered in this paper.
Nevertheless, Equation (18) provides a convergent sequence of lower-variate approximations
of �(X).

4.3.2. Monte Carlo simulation. Once the Lagrange shape functions �j (xi) and deterministic

coefficients �(c), �(c1, . . . , ci−1, x
(j)
i , ci+1, . . . , cN), �(c1, . . . , ci1−1, x

(j1)
i1

, ci1+1, . . . , ci2−1, x
(j2)
i2

,

ci2+1, . . . , cN), and �(c1, . . . , ck1−1, x
(j1)
k1

, ck1+1, . . . , ckS−i−1, x
(jS−i )

kS−i
, ckS−i+1, . . . , cN) are gener-

ated, Equations (16)–(18) provide explicit approximations of random eigenvalues {�(i)(X)},
i = 1, . . . , L in terms of random input X. Therefore, any probabilistic characteristics of eigen-
values, including the marginal or the joint probability density function of {�(i)(X)}, i = 1, . . . , L,
can be easily evaluated by performing Monte Carlo simulation on Equations (16)–(18). Since
Equations (16)–(18) do not require solving additional matrix equations, the embedded Monte
Carlo simulation can be efficiently conducted for any sample size. It is worth noting
that moments of eigenvalues can also be determined from samples generated using
Equations (16)–(18).
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The proposed method involving univariate (Equation (16)) or bivariate (Equation (17)) ap-
proximations, n-point Lagrange interpolation (Equations (13)–(15)), and associated Monte Carlo
simulation are also defined as the univariate or bivariate decomposition method in this paper.
Again, no partial derivatives of eigenvalues are required.

4.4. Computational effort

The univariate and bivariate approximations employed in calculating both moments and probabil-
ity density functions of eigenvalues require evaluation of �(c), �(c1, . . . , ci−1, x

(j)
i , ci+1, . . . , cN),

and �(c1, . . . , ci1−1, x
(j1)
i1

, ci1+1, . . . , ci2−1, x
(j2)
i2

, ci2+1, . . . , cN) for i, i1, i2 = 1, . . . , N and j,

j1, j2 = 1, . . . , n. Hence, the computational effort required by the proposed method can be
viewed as numerically solving the associated deterministic characteristic equations

det[k(c) − �(c)m(c)] = 0 (19)

det[k(c1, . . . , ci−1, x
(j)
i , ci+1, . . . , cN) − �(c1, . . . , ci−1, x

(j)
i , ci+1, . . . , cN)

× m(c1, . . . , ci−1, x
(j)
i , ci+1, . . . , cN)] = 0; i = 1, . . . , N; j = 1, . . . , n (20)

and

det[k(c1, . . . , ci1−1, x
(j1)
i1

, ci1+1, . . . , ci2−1, x
(j2)
i2

, ci2+1, . . . , cN)

− �(c1, . . . , ci1−1, x
(j1)
i1

, ci1+1, . . . , ci2−1, x
(j2)
i2

, ci2+1, . . . , cN)

× m(c1, . . . , ci1−1, x
(j1)
i1

, ci1+1, . . . , ci2−1, x
(j2)
i2

, ci2+1, . . . , cN)] = 0

i1, i2 = 1, . . . , N; j1, j2 = 1, . . . , n (21)

at several deterministic input defined by either integration points (moments) or user-selected
sample points (probability density functions). There are n and n2 numerical evaluations of �(x)

involved in Equations (13) and (15), respectively. Therefore, the total cost for the univariate
method entails a maximum of nN + 1 solutions of the matrix characteristic equation; and a
maximum of N(N − 1)n2/2+nN +1 solutions of the matrix characteristic equation are required
for the bivariate method. If the integration or sample points include a common point in each
co-ordinate xi (see the Example section), the numbers of such solutions reduces to (n−1)N +1
and N(N − 1)(n − 1)2/2 + (n − 1)N + 1 for univariate and bivariate methods, respectively.

The dimensional decomposition presented in this paper can be extended to evaluate stochastic
characteristics of eigenvectors. For example, the decomposition of a scalar function in Equation
(3) can also be employed to express an eigenvector as a finite sum of component vectors, which
are functions of input variables with increasing dimension. The probabilistic characterization of
eigenvectors and their use in stochastic dynamics are subjects of future work.
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5. NUMERICAL EXAMPLES

Three numerical examples involving linear dynamics of spring-mass systems and a cantilever
plate are presented to illustrate the decomposition method. Whenever possible, comparisons
have been made with commonly-used mean-centred perturbation methods, a recently devel-
oped asymptotic method, and the direct Monte Carlo simulation to evaluate the accuracy and
efficiency of the proposed method. The Gaussian assumption of random input in Example
1 was adopted mainly for comparing the decomposition method with existing methods that
employ Gaussian input with readily available results. The method developed does not require
the Gaussian assumption, as illustrated in Examples 2 and 3. For the first two examples, the
eigenvalues were calculated by an IMSL subroutine, which employs a hybrid double-shifted
LR-QR algorithm [20]. A Lanczos algorithm embedded in the finite element code ABAQUS
(Version 6.5) [21] was employed to obtain eigenvalues for the third example.

In all three examples, the univariate and/or bivariate decompositions were formulated in
the Gaussian image (u space) of the original space (x space) of random input. The reference
point c associated with the decomposition method was fixed at the mean input in the u space.
For moment analysis, a 5th-order (i.e. n = 5) Gauss–Hermite integration was employed in
obtaining the tabulated results of Example 1. In Examples 2 and 3, which involve calculation of
probability densities of eigenvalues, 5 (i.e. n = 5) sample points (c1, . . . , ci−1, u

(j)
i , ci+1, . . . , cN)

and (c1, . . . , ci1−1, u
(j1)
i1

, ci1+1, . . . , ci2−1, u
(j2)
i2

, ci2+1, . . . , cN) in the u space were chosen with

ci = 0 and uniformly distributed points u
(j)
i or u

(j1)
i1

or u
(j2)
i2

= −2, −1, 0, 1, 2. For both moment

and probability density analyses, (n−1)N+1 and (n − 1)2N(N − 1)/2+(n−1)N+1 solutions of
the matrix characteristic equation are involved in univariate and bivariate methods, respectively,
in all three examples.

5.1. Example 1—a two-degree-of-freedom undamped spring-mass system

As shown in Figure 1, consider a two-degree-of-freedom undamped spring-mass system with
a deterministic mass matrix

m =
[

m1 0

0 m2

]
∈ MS+0

2 (R) (22)

and a random stiffness matrix

K(X) =
[

K1(X) + k3 −k3

−k3 K2(X) + k3

]
∈ MS+0

2 (R) (23)

where masses m1 = 1 kg, m2 = 1.5 kg, and spring stiffnesses K1(X) = 1000(1 + 0.25X1) N/m,
K2(X) = 1100(1 + 0.25X2) N/m, and k3 = 100 N/m [15]. The input X = {X1, X2}T ∈ R2 is
a standard Gaussian random vector with mean �X = 0 ∈ R2 and covariance matrix �X = I
∈ MS+0

2 (R). The purpose of this example is to predict statistical moments of eigenvalues of
{K(X), m} by the univariate decomposition method and compare results with those obtained
from mean-centred perturbation methods and the asymptotic method [15].

Figures 2(a) and (b) present surface plots of two exact eigenvalues �(1) and �(2) of {K(X), m},
respectively, for −4�xi�4; i = 1, 2, obtained by solving the matrix characteristic equation
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m1 m2

K1 K2k3

Figure 1. A two-degree-of-freedom undamped spring-mass system.
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Figure 2. Exact eigenvalues for the two-degree-of-freedom system: (a) �(1); and (b) �(2).

(Equation (2)). Approximate eigenvalues by the univariate decomposition method
(Equation (5)) and mean-centred perturbation methods were also evaluated and compared with
the exact solution in terms of contour plots of �(1) and �(2) in Figures 3 and 4, respectively. The
first- (Figures 3(c) and 4(c)) and second-order (Figures 3(d) and 4(d)) perturbation methods,
which involve linear or quadratic approximations, yield contours containing significant discrep-
ancy with the exact contours in Figures 3(a) and 4(a). In contrast, the contours generated
by the univariate decomposition method (Figures 3(b) and 4(b)), which includes higher-order
univariate terms, show closer agreement to the highly curved exact contours. The difference
between contours by the exact method and by the univariate method is due to the absence
of bivariate terms in the latter method. Nevertheless, the univariate approximation produces
eigenvalue contours that agree with the exact contours better than those by either version of
the perturbation method.

The proposed moment equation (Equation (12)) with S = 1 was employed to calculate first
four moments of both eigenvalues �(1)(X) and �(2)(X) by the univariate method. Since X
is Gaussian, a Gauss–Hermite integration rule was selected with integration orders 1�n�10.
Figures 5(a) and (b), respectively, depict convergence of the first moment m

(i)
1 ≡ E[�(i)(X)];
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Figure 3. Contours of the first eigenvalue by various methods: (a) exact; (b) univariate
decomposition; (c) first-order perturbation; and (d) second-order perturbation.

i = 1, 2 and the fourth moment m
(i)
4 ≡ E[�(i)4

(X)]; i = 1, 2 with respect to n. The moments of
both eigenvalues rapidly converge as n reaches 4 or 5. Hence, a value of n = 5 was selected
for subsequent calculations in this paper.

Tables I and II list all four moments m
(i)
l ≡ E[�(i)l (X)]; i = 1, 2; l = 1, . . . , 4 calculated by the

univariate decomposition method, first- and second-order perturbation methods, and Adhikari’s
asymptotic method. A direct Monte Carlo simulation involving 5000 samples of eigenvalues by
repeatedly solving the matrix characteristic equation (Equation (2)) was performed to generate
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Figure 4. Contours of the second eigenvalue by various methods: (a) exact; (b) univariate
decomposition; (c) first-order perturbation; and (d) second-order perturbation.

the benchmark result. The results in Tables I and II indicate that the univariate method yields the
most accurate solution for this particular example. The maximum errors by the decomposition
method, the first-order perturbation method, the second-order perturbation method, and the
asymptotic method, measured with respect to the Monte Carlo prediction, are 3.22, 19.17,
11.17, and 5.48 per cent, respectively. It appears that the decomposition and asymptotic methods
provide more accurate solutions than those by the commonly-used perturbation methods.

5.2. Example 2—a three-degree-of-freedom undamped spring-mass system

A three-degree-of-freedom undamped spring-mass system [15], shown in Figure 6, was studied
to evaluate the proposed decomposition method when system eigenvalues are well-separated,
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Figure 5. Convergence of moments of eigenvalues: (a) 1st moment; and (b) 4th moment.

Table I. Four moments of the first eigenvalue for the two-degree-of-freedom system.∗

Univariate First-order Second-order Asymptotic Monte Carlo
decomposition perturbation perturbation method (5000

Moments† method method method [15] samples)

m
(1)
1 , (rad/s)2 7.496 × 102 7.792 × 102 7.631 × 102 7.616 × 102 7.457 × 102

(−0.52) (−4.49) (−2.34) (−2.12)

m
(1)
2 , (rad/s)4 5.909 × 105 6.371 × 105 6.128 × 105 6.028 × 105 5.831 × 105

(−1.33) (−9.25) (−5.09) (−3.38)

m
(1)
3 , (rad/s)6 4.858 × 108 5.422 × 108 5.132 × 108 4.930 × 108 4.749 × 108

(−2.29) (−14.17) (−8.06) (−3.80)

m
(1)
4 , (rad/s)8 4.139 × 1011 4.779 × 1011 4.458 × 1011 4.152 × 1011 4.010 × 1011

(−3.22) (−19.17) (−11.17) (−3.53)

∗Parenthetical values represent percentage of relative errors when compared with the Monte Carlo simulation.
†The lth moment of the first eigenvalue m

(1)
l

≡ E[�(1)l (X)]; l = 1, 2, 3, and 4.

closely spaced, or input uncertainties are large. The random mass and random stiffness matrices
are

M(X) =

⎡
⎢⎢⎢⎣

M1(X) 0 0

0 M2(X) 0

0 0 M3(X)

⎤
⎥⎥⎥⎦ ∈ MS+0

3 (R) (24)
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Table II. Four moments of the second eigenvalue for the two-degree-of-freedom system.∗

Univariate First-order Second-order Asymptotic Monte Carlo
decomposition perturbation perturbation method (5000

Moments† method method method [15] samples)

m
(2)
1 , (rad/s)2 1.150 × 103 1.121 × 103 1.137 × 103 1.133 × 103 1.157 × 103

(0.60) (3.16) (1.77) (2.14)

m
(2)
2 , (rad/s)4 1.369 × 106 1.311 × 106 1.348 × 106 1.332 × 106 1.384 × 106

(1.10) (5.23) (2.57) (3.77)

m
(2)
3 , (rad/s)6 1.682 × 109 1.597 × 109 1.663 × 109 1.625 × 109 1.707 × 109

(1.48) (6.47) (2.61) (4.85)

m
(2)
4 , (rad/s)8 2.133 × 1012 2.018 × 1012 2.127 × 1012 2.052 × 1012 2.171 × 1012

(1.76) (7.04) (2.02) (5.48)

∗Parenthetical values represent percentage of relative errors when compared with the Monte Carlo simulation.
†The lth moment of the second eigenvalue m

(2)
l

≡ E[�(2)l (X)]; l = 1, 2, 3, and 4.

M1

K1

K6

K3

K5K4

K2
M2

M3

Figure 6. A three-degree-of-freedom undamped spring-mass system.

and

K(X) =

⎡
⎢⎢⎣

K1(X) + K4(X) + K6(X) −K4(X) −K6(X)

−K4(X) K4(X) + K5(X) + K2(X) −K5(X)

−K6(X) −K5(X) K5(X) + K3(X) + K6(X)

⎤
⎥⎥⎦

∈ MS+0
3 (R) (25)

respectively, where masses Mi(X) = �iXi ; i = 1, 2, 3 with �i = 1.0 kg; i = 1, 2, 3, and spring
stiffnesses Ki(X) = �i+3Xi+3; i = 1, . . . , 6 with �i+3 = 1.0 N/m; i = 1, . . . , 5 and �9 = 3.0 or
1.275 N/m. The input X = {X1, . . . , X9}T ∈ R9 is an independent lognormal random vector with
mean �X = 1 ∈ R9 and covariance matrix �X = v2I ∈ MS+0

9 (R) with coefficient of variation
v = 0.15 or 0.3.
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Three cases involving combinations of the mean stiffness of spring 6 and the input coefficient
of variation were studied: (1) Case 1: �9 = 3.0 N/m, v = 0.15 (well-separated eigenvalues); (2)
Case 2: �9 = 1.275 N/m, v = 0.15 (closely-spaced eigenvalues); and (3) Case 3: �9 = 3.0 N/m,
v = 0.30 (large statistical variation of input). For all three cases a value of n = 5 was employed
for Lagrange interpolation in the decomposition method. The sample size for the direct Monte
Carlo simulation and the decomposition method was 100 000.

Case 1—well-separated eigenvalues: For Case 1, Figures 7(a)–(c) compare predicted marginal
probability densities of three eigenvalues �(i)(X); i = 1, 2, 3 obtained by univariate and bivariate
decomposition methods and the direct Monte Carlo simulation. The decomposition methods,
which entail Monte Carlo analysis employing the univariate and bivariate approximations in
Equations (16) and (17), permit inexpensive calculation of eigenvalues by sidestepping additional
solution of the original matrix characteristic equation. Compared with the direct Monte Carlo
simulation, both univariate and bivariate decomposition methods provide excellent estimates of
the probability density of eigenvalues. Note that there is little statistical overlap among three
eigenvalues.

Case 2—closely-spaced eigenvalues: Case 2 involves calculating probabilistic characteris-
tics of eigenvalues that overlap, which has practical relevance to the dynamics of rotating
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Figure 7. Probability densities of eigenvalues for Case 1: (a)�(1); (b) �(2); and (c) �(3).
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Figure 8. Probability densities of eigenvalues for Case 2: (a) �(1); (b) �(2); and (c) �(3).

machineries, flutter of aircraft wings, and others. Figures 8(a)–(c) present probability densities
of all three eigenvalues by both versions of the decomposition method and by the direct Monte
Carlo method. Indeed, there is a significant overlap between the second and the third eigenvalues
with their mean values close to each other. It is well known that modal properties of such
systems are parameter sensitive, leading to complicated prediction of eigenvalues [15]. From
Figure 8 the probability densities obtained by the univariate method and direct Monte Carlo
simulation match encouragingly well. The bivariate method yields significantly improved results,
which are in close agreement with those generated by the direct Monte Carlo simulation. This
improvement is possible due to hierarchical sequence of approximations in the dimensional
decomposition method.

Case 3—large statistical variation of random input: The final case (Case 3) involves a large
uncertainty of input, where the input coefficient of variation in Case 1 is doubled from 15 to
30 per cent. Figures 9(a)–(c) similarly compare probability densities of all three eigenvalues.
It is well known that perturbation methods are not applicable for such magnitudes of input
uncertainties [8–10]. However, the results in Figure 9 indicate satisfactory performance of the
decomposition method even for such large uncertainties of input. It is worth noting that a larger
uncertainty in input creates a larger scatter in eigenvalues, which also leads to closely-spaced
modes, as depicted in Figure 9. As expected, the bivariate method is more accurate than the
univariate method.
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Figure 9. Probability densities of eigenvalues for Case 3: (a) �(1); (b) �(2); and (c) �(3).

In each of the three cases, the univariate and bivariate decomposition methods, respectively,
require 37 and 613 solutions of the matrix characteristic equation, whereas 100 000 such
solutions (sample size) are involved in the direct Monte Carlo simulation. However, these
differences, although significant, are less meaningful given that the random matrices are only
3 × 3. An example where such difference has a major practical significance is demonstrated
next.

5.3. Example 3—modal analysis of a fixed cantilever plate

The final example of this paper involves calculation of natural frequencies of a vibrating fixed
cantilever plate with deterministic length l = 50.8 mm (2 in), deterministic width w = 25.4 mm
(1 in), and random thickness t , as shown in Figure 10(a). The elastic modulus E, Poisson’s
ratio �, and mass density � are independent lognormal random variables with respective
means �E = 206.8 GPa(30 × 106 psi), �� = 0.3, and �� = 7827 kg/m3 (7.324 × 10−4 lb-s2/in4);
and respective coefficients of variations vE = 0.15, v� = 0.05, and v� = 0.1. The thickness
t (�) = c exp[�(�)], which is spatially varying in the longitudinal direction (�), is an inde-
pendent, homogeneous, lognormal random field with mean �t = 0.254 mm (0.01 in), variance

�2
t = 2.58 × 10−3 mm2 (4 × 10−6 in2), and coefficient of variation vt =0.2; where c=�t /

√
1+v2

t

and �(�) is a zero-mean, homogeneous, Gaussian random field with variance �2
� = ln(1 + v2

t )
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Figure 10. A fixed cantilever plate: (a) geometry; and (b) a 10 × 20 finite element mesh.

and covariance function ��(	) ≡ E[�(�)�(� + 	)] = �2
� exp(−|	|/0.25l). The Karhunen–Loève

approximation was employed to discretize the random field �(�) into 12 standard Gaussian
random variables [22]. Therefore, a total of 15 random variables are involved in this example.

A 10 × 20 finite element mesh of the plate consisting of 200 8-noded second-order shell
elements (S8R5) and 661 nodes is shown in Figure 10(b). The univariate decomposition method
and the direct Monte Carlo simulation using the commercial finite element code (ABAQUS)
were employed for evaluating probabilistic characteristics of natural frequencies of the plate.
In both methods, the calculation of the matrix characteristic equation for a given input is
equivalent to performing a finite element analysis. Therefore, computational efficiency, even
for this simple plate model, is a major practical requirement in solving random eigenvalue
problems. For the decomposition method, a value of n = 5 was selected.

Figure 11 shows the first six mode shapes of the cantilever plate when the input is fixed at
mean. Using samples generated from univariate approximations of eigenvalues (i.e. Equation
(16)), Tables III and IV present means, standard deviations, and correlation coefficients of
the six natural frequencies, which are square-root of eigenvalues. The tabular results continue
to demonstrate the high accuracy of the univariate method when compared with the direct
Monte Carlo simulation employing 5000 finite element analyses (samples). In contrast, only
61 finite element analyses are required by the univariate method with largest errors of 0.35,
2.4, and 1.93 per cent in calculating means, standard deviations, and correlation coefficients,
respectively.

Figures 12(a) and (b) show marginal probability densities of the six natural frequencies
by the univariate method and the direct Monte Carlo solution. Due to the computational
expense inherent to ABAQUS analysis, the same 5000 samples generated for verifying the
statistics in Tables III or IV were utilized to develop the histograms in Figure 12. However,
since the decomposition method yields explicit eigenvalue approximations, an arbitrarily large
sample size, e.g. 50 000 in this particular example, was selected to perform the embedded
Monte Carlo analysis. Agreement between the results of the univariate decomposition method
and the direct Monte Carlo simulation is excellent even when there is a significant modal
overlap.
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Figure 11. First six mode shapes of the fixed cantilever plate for mean input.

Table III. Means and standard deviations of first six natural frequencies for the plate.

Mean (Hz) Standard deviation (Hz)

Univariate Monte Carlo Univariate Monte Carlo
Natural decomposition (5000 decomposition (5000
frequency∗ method samples) method samples)

�(1) 81.86 81.90 19.64 19.63
�(2) 356.82 357.07 66.70 68.15
�(3) 512.88 512.99 87.31 87.54
�(4) 1173.04 1172.95 181.77 186.29
�(5) 1445.47 1446.03 230.01 232.25
�(6) 2207.99 2215.81 345.85 347.82

∗The ith natural frequency �(i) =
√

�(i)/2
; i = 1, . . . , 6, where �(i) is the ith eigenvalue.
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Table IV. Correlation properties of first six natural
frequencies for the plate.

Correlation Univariate Monte Carlo
coefficient decomposition (5000
(�ij )∗ method samples)

�12 0.904 0.908
�13 0.733 0.742
�14 0.541 0.541
�15 0.617 0.620
�16 0.447 0.454

�23 0.891 0.888
�24 0.739 0.725
�25 0.822 0.812
�26 0.713 0.708

�34 0.902 0.900
�35 0.943 0.939
�36 0.865 0.854

�45 0.975 0.973
�46 0.958 0.953

�56 0.944 0.940

∗�ij = correlation coefficient between �(i) and �(j);
i, j = 1, . . . , 6; j>i.
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Figure 12. Probability densities of first six natural frequencies of the cantilever plate:
(a) �(1), �(2), and �(3); and (b) �(4), �(5), and �(6).

6. CONCLUSION AND OUTLOOK

A new decomposition method was developed for probabilistic descriptors of real-valued eigen-
values of positive semi-definite random matrices. The method is based on: (1) a novel func-
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tion decomposition allowing lower-variate approximations of eigenvalues; (2) lower-dimensional
numerical integration for statistical moments; and (3) Lagrange interpolation facilitating effi-
cient Monte Carlo simulation for probability density functions. The effort in finding prob-
abilistic characteristics of eigenvalues can be viewed as performing eigenvalue analyses at
selected deterministic input defined by integration points or sample points. Compared with
commonly-used perturbation and recently-developed asymptotic methods, no derivatives of
eigenvalues are required by the method developed. Hence, the method can be easily adapted
for solving random eigenvalue problems involving third-party commercial finite-element codes.
Results of numerical examples involving linear dynamics of spring-mass systems and finite
element analysis of a cantilever plate indicate that the decomposition method developed pro-
vides excellent estimates of moments and probability densities of eigenvalues for various cases
including closely-spaced modes and large statistical variations of input.

Although significant strides are made, further research is required on non-proportionally
damped systems with complex-valued eigensolutions and on probabilistic characteristics of
eigenvectors.
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