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A perturbation method for stochastic meshless
analysis in elastostatics
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SUMMARY

A stochastic meshless method is presented for solving boundary-value problems in linear elasticity that
involves random material properties. The material property was modelled as a homogeneous random
�eld. A meshless formulation was developed to predict stochastic structural response. Unlike the �nite
element method, the meshless method requires no structured mesh, since only a scattered set of nodal
points is required in the domain of interest. There is no need for �xed connectivities between nodes.
In conjunction with the meshless equations, classical perturbation expansions were derived to predict
second-moment characteristics of response. Numerical examples based on one- and two-dimensional
problems are presented to examine the accuracy and convergence of the stochastic meshless method. A
good agreement is obtained between the results of the proposed method and Monte Carlo simulation.
Since mesh generation of complex structures can be a far more time-consuming and costly e�ort than
the solution of a discrete set of equations, the meshless method provides an attractive alternative to �nite
element method for solving stochastic mechanics problems. Copyright ? 2001 John Wiley & Sons, Ltd.

KEY WORDS: moving least squares; element-free Galerkin method; meshless method; stochastic �nite
element; random �eld; �rst- and second-order perturbation methods

1. INTRODUCTION

In the stochastic mechanics community, the need to account for uncertainties has long been
recognized in order to achieve reliable design of structural and mechanical systems. There
is a general agreement that advanced computational tools have to be employed to pro-
vide the necessary computational framework for describing structural response and reliability
[1]. A current popular method is the stochastic �nite element method (SFEM), which in-
tegrates probability theory with standard �nite element method (FEM). Methods involving
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perturbation expansion [2; 3], Neumann series expansion [4; 5], �rst- and second-order reli-
ability algorithms [6–8], and Monte Carlo simulation (MCS) [9; 10] have been developed
and extensively used for probabilistic analysis of complex structures. However, all SFEMs
require a structured mesh for performing underlying �nite element analysis. It is gener-
ally recognized that successful meshing of complex geometric con�gurations can be di�-
cult, time consuming and expensive. For linear analysis, for example, mesh generation is
often much more time-consuming than the assembly and solution of FEM equations. This
issue is further exacerbated when solving solid mechanics problems characterized by a con-
tinuous change in geometry of the domain under analysis. Crack propagation in solids and
simulation of manufacturing processes involving large deformation, such as extrusion, molding,
metal forming, are prime examples where standard FEM today is still ine�ective in handling a
large number of remeshings and severe mesh distortion, respectively. These problems are not
well suited to traditional methods, such as �nite element or �nite di�erence methods. The un-
derlying structures of these methods, which rely on a mesh, are quite cumbersome in treating
moving cracks or mesh distortion. Consequently, the only viable option using the FEM is to
remesh during each discrete step of model evolution. This creates numerical di�culties even
in the deterministic analysis, often leading to degradation of solution accuracy, complexity in
computer programming, and a computationally intensive environment. Therefore, there is a
considerable interest towards eliminating or greatly simplifying the meshing task.
In recent years, a class of meshfree or meshless methods, such as smooth particle hydrody-

namics [11–13], the di�use element method [14], the element-free Galerkin method (EFGM)
[15–18], h–p clouds [19], partition of unity [20] and the reproducing kernel particle method
[21; 22], have been developed that do not require a structured mesh to discretize the problem.
These methods employ new approximation theories, which allow the resultant shape functions
to be constructed entirely in terms of arbitrarily placed nodes. Since no element connectivity
data are needed, the burdensome meshing required by FEM is avoided. Since mesh generation
of complex structures can be a far more time-consuming and costly e�ort than the solution of
a discrete set of linear equations, meshless method provides an attractive alternative to FEM.
However, all current developments in meshless methods have so far focused on determinis-
tic problems. Probabilistic models using meshless methods have not received much attention.
Hence, stochastic analysis involving meshless methods provides a rich, relatively unexplored,
area for future research.
This paper presents a stochastic meshless method for solving boundary-value problems in

linear elasticity that involves random material properties. The material property was mod-
elled as a homogeneous Gaussian random �eld. The random �eld was discretized into a set
of random variables with their properties obtained from the properties of random �eld. In
conjunction with the meshless equations, �rst- and second-order perturbation expansions were
derived to predict second-moment characteristics of structural response. Numerical examples
based on one- and two-dimensional (1D and 2D) elasticity problems are presented to examine
the accuracy and convergence of the stochastic meshless method.

2. MOVING LEAST-SQUARES APPROXIMATION

Consider a function, u(x) over a domain, 
⊆RK , where K =1; 2, or 3. Let 
x⊆
 denote a
sub-domain describing the neighbourhood of a point, x∈RK located in 
. According to moving
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least squares (MLS) [23], the approximation, uh(x) of u(x) is

uh(x)=
m∑
i=1
pi(x)ai(x)= pT(x)a(x) (1)

where pT(x)= {p1(x); p2(x); : : : ; pm(x)} is a vector of complete basis functions of order m
and a(x)= {a1(x); a2(x); : : : ; am(x)} is a vector of unknown parameters that depend on x.
The basis functions should satisfy the following properties: (1) p1(x)=1, (2) pi(x)∈Cs(
),
i=1; 2; : : : ; m, where Cs(
) is a set of functions that have continuous derivatives up to order
s on 
, and (3) pi(x); i=1; 2; : : : ; m constitute a linearly independent set. For example, in
two dimensions (K =2) with x1- and x2-co-ordinates

pT(x)= {1; x1; x2}; m=3 (2)

and

pT(x)= {1; x1; x2; x21 ; x1x2; x22}; m=6 (3)

representing linear and quadratic basis functions, respectively. They are commonly used in
solid mechanics.
In Equation (1), the coe�cient vector, a(x) is determined by minimizing a weighted discrete

L2 norm, de�ned as

J (x)=
n∑
I=1
wI (x)[ pT(xI)a(x)− dI ]2 = [Pa(x)− d]TW[Pa(x)− d] (4)

where xI denotes the co-ordinates of node I , dT = {d1; d2; : : : ; dn} with dI representing the
nodal parameter [not the nodal values of uh(x)] for node I , W=diag[w1(x); w2(x); : : : ; wn(x)]
with wI (x) denoting the weight function associated with node I such that wI (x)¿0 for all x
in the support 
x of wI (x) and zero otherwise, n is the number of nodes in 
x for which
wI (x)¿0, and

P=



pT(x1)
pT(x2)
...

pT(xn)


 ∈L(Rn×Rm) (5)

The stationarity of J (x) with respect to a(x) yields

A(x)a(x)=C(x)d (6)

where

A(x) =
n∑
I=1
wI (x)p(xI)pT(xI)=PTWP (7)

C(x) = [w1(x)p(x1); : : : ; wn(x)p(xn)]=PTW (8)
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Solving a(x) from Equation (6) and then substituting it in Equation (1) gives

uh(x)=
n∑
I=1
�I (x)dI =�T(x)d (9)

where

�T(x)= {�1(x);�2(x); : : : ;�n(x)}= pT(x)A−1(x)C(x) (10)

is a vector with its I th component

�I (x)=
m∑
j=1
pj(x)[A−1(x)C(x)]jI (11)

representing the shape function of the MLS approximation corresponding to node I . The
partial derivatives of �I (x) can be obtained as follows:

�I; i(x)=
m∑
j=1
{pj; i(A−1C)jI + pj(A−1; i C+A−1C; i)jI} (12)

where

A−1; i = −A−1A; iA−1 (13)

in which ( ); i= @( )=@xi.

3. WEIGHT FUNCTION

An important ingredient of EFGM or other meshless methods is the weight function, w(x).
The choice of the weight function can a�ect the MLS approximation of uh(x). In this work,
a new weight function based on the student’s t-distribution is proposed. It is given by

wI (x)=



(1 + �2z2I =z

2
mI)

−(1+�)=2 − (1 + �2)−(1+�)=2
1− (1 + �2)−(1+�)=2 ; zI6zmI

0; zI¿zmI
(14)

where � is a shape controlling parameter of the weight function, zI = ||x−xI || is the distance
from a sampling point, x to a node xI , zmI is the domain of in
uence of node I such that

zmI = zmax zcI (15)

In Equation (15), zcI is a characteristic nodal spacing distance which is chosen such that
the node I has enough number of neighbors su�cient for regularity of A(x) in Equation (7)
(which is used to determine the MLS approximant), and zmax is a scaling parameter. Note, the
t-distribution used in Equation (14) represents the probability density function of a standard
Gaussian random variable divided by the square root of a chi-squared random variable with
� degrees of freedom [24].
The smoothness of the shape function, �I (x), is governed by the smoothness of the weight

function and basis functions. If pi(x)∈Cs(
) and wI (x)∈C r(
), then it can be shown that
�I (x)∈Cmin(r; s)(
). To avoid poorly formed shape functions, w(x) should be unity at the
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centre and zero along the boundary of 
x. Also, appropriate values of � depending on the
basis function should be selected [18]. This new weight function has been successfully used
in solving various problems in linear-elastic fracture mechanics [18].

4. VARIATIONAL FORMULATION AND DISCRETIZATION

For small displacements in two-dimensional, isotropic, and linear-elastic solids, the equilibrium
equations and boundary conditions are

∇ · b+ b= 0 in 
 (16)

and

b · n= �t on �t (natural boundary conditions)
u= �u on �u (essential boundary conditions)

(17)

respectively, where b=DU is the stress vector, D is the material property matrix, U=∇su is
the strain vector, u is the displacement vector, b, is the body force vector, �t and �u are the
vectors of prescribed surface tractions and displacements, respectively, n is a unit normal to
domain, 
, �t and �u are the portions of boundary, � where tractions and displacements are
prescribed, respectively, ∇T{@=@x1; @=@x2} is the vector of gradient operators, and ∇su is the
symmetric part of ∇u. The variational or weak form of Equations (16) and (17) is∫



bT�U d
−

∫


bT�u d
−

∫
�t

�tT�u d�− �Wu = 0 (18)

where � denotes the variation operator and �Wu represents a term to enforce the essential
boundary conditions. The explicit form of this term depends on the method by which the
essential boundary conditions are imposed [17]. In this study, Wu is de�ned as

Wu =
∑
xJ∈�u

fT(xJ)[u(xJ)− �u(xJ)] (19)

where fT(xJ) is the vector of reaction forces at the constrained node J ∈�u. Hence,
�Wu =

∑
xJ∈�u

�fT(xJ)[u(xJ)− �u(xJ)] + fT(xJ)�u(xJ) (20)

Consider a single boundary constraint, �ui(xJ)= gi(xJ) applied at node J in the direction of xi
co-ordinate. Then, the variational form given by Equations (18) and (20) can be expressed
by ∫



bT�U d
 + fi(xJ)�ui(xJ) =

∫


bT�u d
−

∫
�t

�tT�u d� (21)

�fi(xJ)[ui(xJ)− gi(xJ)] = 0 (22)

where fi(xJ) and ui(xJ) are the ith component of f(xJ) and u(xJ), respectively. From Equation
(9), the MLS approximation of ui(xJ) is

uhi (xJ)=
N∑
I=1
�I (xJ)diI =�

iT
J d (23)
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where

�iT
J =

{
{�1(xJ); 0;�2(xJ); 0; : : : ;�N (xJ); 0} when i=1
{0;�1(xJ); 0;�2(xJ); : : : ; 0;�N (xJ)} when i=2

(24)

d=




d11
d21
d12
d22
...

d1N
d2N




(25)

is the vector of nodal parameters or generalized displacements, and N is the total number of
nodal points in 
. Using Equations (23)–(25) into the discretization of Equations (21) and
(22) gives [15–18] [

k �i
J

�iT
J 0

]{
d

fi(xJ)

}
=

{
f ext

gi(xJ)

}
(26)

where

k=



k11 k12 · · · k1N
k21 k22 · · · k2N
...

...
...

...
kN1 kN2 · · · kNN


 ∈L(R2N×R2N ) (27)

is the sti�ness matrix with

kIJ =
∫


BTI DBJ d
∈L(R2×R2) (28)

representing the contributions of J th node at node I ,

f ext =




f ext1

f ext2
...
f extN



∈R2N (29)

is the force vector with

f extI =
∫


�IbT d
−

∫
�t
�I�tT d�∈R2 (30)

BI =


�I;1 0
0 �I;2
�I;2 �I;1


 (31)
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and

D=




E
1− �2



1 � 0
� 1 0

0 0
1− �
2


 for plane stress

E
(1 + �)(1− 2�)



1− � � 0
� 1− � 0

0 0
1− 2�
2


 for plane strain

(32)

is the elasticity matrix with E and � representing the elastic modulus and Poisson’s ratio,
respectively.
In order to perform the numerical integration in Equations (28) and (30), a background

mesh is needed. This background mesh can be independent of the arrangement of meshless
nodes. However, in this study, the nodes of the background mesh coincide with the meshless
nodes. Standard Gaussian quadratures were used to evaluate the integrals for assembling the
sti�ness matrix and the force vector. In general, a 4× 4 quadrature is adequate, except in the
cells surrounding a high stress gradient (e.g. near a crack tip) where a 8× 8 quadrature is
suggested.

5. ESSENTIAL BOUNDARY CONDITIONS

Lack of Kronecker delta properties in the meshless shape functions, �I poses some di�culties
in imposing essential boundary conditions in EFGM. In this work, a full transformation method
[18; 25] is used here for stochastic mechanics applications.
Consider the transformation,

d̂=�d (33)

where

d̂=




uh1(x1)

uh2(x1)

uh1(x2)

uh2(x2)
...

uh1(xN )

uh2(xN )




∈R2N (34)
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is the nodal displacement vector, and

�=




�1T
1

�2T
1

�1T
2

�2T
2
...
�1T
N

�2T
N



∈L(R2N ×R2N ) (35)

is the transformation matrix. Multiplying the �rst set of matrix equation in Equation (26) by
�−T, one obtains [

�−Tk IiJ
�iT
J 0

]{
d

fi(xJ)

}
=

{
�−Tf ext

gi(xJ)

}
(36)

where

IiJ =�
−T�i

J =




0
...
0
1
0
...
0



← [2(J − 1) + i]th row (37)

Let,

k̂=



k̂T1
...
k̂T2N


 =�−Tk (38)

f̂ ext =�−Tf ext (39)

where k̂Ti = {k̂ i1; k̂ i2; : : : ; k̂ i(2N )}; i=1; 2; : : : ; 2N . Equation (36) can be re-written as


k̂T1 0
...

...
k̂TM−1 0

k̂TM 1

k̂TM+1 0
...

...
k̂T2N 0

�iT
J 0




{
d

fi(xJ)

}
=




f̂ext1
...

f̂extM−1
f̂extM

f̂extM+1
...
f̂ext2N
gi(xJ)




← [2(J − 1) + i]th row

← (2N + 1)th row

(40)
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where M =(2J − 1) + i. Exchanging the M th and the last row of Equation (40) leads to


k̂T1 0
...

...
k̂TM−1 0

�iT
J 0

k̂TM+1 0
...

...
k̂T2N 0

k̂TM 1




{
d

fi(xJ)

}
=




f̂ext1
...

f̂extM−1
gi(xJ)
f̂extM+1
...
f̂ext2N

f̂extM




← [2(J − 1) + i]th row

← (2N + 1)th row

(41)

which can be uncoupled as

Kd= F (42)
k̂TMd+ fi(xJ) = f̂

ext
M (43)

where

K=mi
J(k̂)=




k̂T1
...

k̂TM−1
�iT
J

k̂TM+1
...
...
k̂T2N




← [2(J − 1) + i]th row (44)

and

F= niJ(f̂
ext)=




f̂ext1
...

f̂
T
M−1
gi(xJ)

f̂extM+1
...
...
f̂ext2N




← [2(J − 1) + i]th row
(45)
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are the modi�ed sti�ness matrix and force vectors, respectively. Using Equation (42), the
generalized displacement vector, d can be solved e�ciently without needing any Lagrange
multipliers [15–17].
In Equations (44) and (45), mi

J is a matrix operator that replaces the [2(J − 1) + i]th row
of k̂ by �iT

J and niJ is another matrix operator that replaces the [2(J − 1) + i]th row of f̂ext

by gi(xJ), due to the application of a single boundary constraint at node J . For multiple
boundary constraints, similar operations can be repeated. Suppose, there are Nc number of
essential boundary conditions at nodes, J1; J2; : : : ; JNc applied in the directions, i1; i2; : : : ; iNc ,
respectively. Hence, the resulting modi�ed sti�ness matrix and force vector are

K=
Nc∏
l=1

mil
Jl(k̂) (46)

and

F=
Nc∏
l=1

nilJl(f̂
ext) (47)

respectively.

6. RANDOM FIELD AND DISCRETIZATION

In this study, the spatial variability of material property, such as the elastic modulus, E(x),
was modelled as a homogeneous random �eld. Let

E(x)=�E[1 + �(x)] (48)

where �E =E[E(x)] 6=0 is the mean of elastic modulus that is independent of x, and �(x) is
a zero-mean, scalar, homogeneous random �eld with its auto-covariance function

��(^)=E[�(x)�(x+ ^)]= 1
�2E
�E(^) (49)

�E(^) is the auto-covariance function of E(x); ^ is the separation vector between two points,
x∈RK and x+ ^∈RK both located in 
⊆RK , and E[·] is the expectation operator.
In SFEM applications, it is necessary to discretize a continuous-parameter random �eld

(e.g., the one in Equation (48)) into a vector of random variables. Various discretizations,
such as Karhunen–Lo�eve expansion [26; 27], polynomial chaos expansion [26; 27], midpoint
method [6], local averaging method [28], shape function method [2], weighted integral method
[29], and optimal linear estimation method [30], have been developed. The accuracy and
convergence of stochastic response due to these discretizations (except the �rst two methods)
depend on the size of the �nite elements in comparisons with the correlation distance of
random �eld.
Consider a discretization of zero-mean random �eld, �(x), by M random variables associ-

ated with M discrete material points in structural domain. Let Y= {Y1; Y2; : : : ; YM}T denote an
M -dimensional random vector comprising these M random variables. In the meshless method,
there are no elements and hence, the discretization e�ort is not tied with any elements or
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Figure 1. Meshless and random �eld discretizations.

even nodes. Nevertheless, the value of M and the distribution of the material points depend
on the correlation distance of �(x). In the limit, when the correlation of �(x) approaches a
delta function, M→∞. However, in physical systems, the material properties are expected to
vary smoothly in the scale of interest. Hence, a �nite-dimensional random vector, Y, can cap-
ture most of the uncertainty in �(x). Also, for meshless analysis, it is not necessary that the
material points should coincide with the meshless nodes as shown in Figure 1. Hence, a large
value of M; if required for some correlation distance of �(x); does not necessarily increase the
size of linear equations for meshless analysis. This is in contrast with some stochastic �nite
element methods, where the correlation distance of random �eld can put a serious limitation
on the size of �nite elements.
The mean vector, ���=E[Y] and the covariance matrix, 


=E[(Y − ���)(Y − ���)T] of Y are

���= 0 (50)



= [�(^ij)] (51)

where ^ij=xj−xi is the separation vector between xi and xj representing the co-ordinates of
nodes i and j, respectively. Hence, the second-moment characteristics of Y can be de�ned from
the knowledge of the mean and covariance function of the randomly 
uctuating component
of E(x). Note, if �(x) is Gaussian, so is the random vector, Y.

7. PERTURBATION METHOD

Following discretization of the random �eld by the random vector, Y∈RM , let K(Y); d(Y),
and F(Y) denote the sti�ness matrix, generalized displacement vector, and load vector,
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respectively, that depend on Y. If Y represents uncertainty in material properties, F can-
not depend on Y. But, in this study, F was assumed to be a function of Y for the sake of
generality. The discrete equilibrium equation of the stochastic meshless system is

K(Y)d(Y)=F(Y) (52)

7.1. Perturbation expansion

A fundamental assumption in the perturbation method is that all components of Y are small.
The Taylor series expansion at Y= 0 gives

K(Y)=K0 +
M∑
i=1
K;iYi +

1
2

M∑
i; j=1

K;ijYiYj + · · ·

F(Y)=F0 +
M∑
i=1
F;iYi +

1
2

M∑
i; j=1

F;ijYiYj + · · ·

d(Y)= d0 +
M∑
i=1
d;iYi +

1
2

M∑
i; j=1

d;ijYiYj + · · ·

(53)

where

K0 =K(0) (54)

F0 = F(0) (55)

d0 = d(0) (56)

K;i =
@K
@Yi
(0) (57)

F;i =
@F
@Yi
(0) (58)

d;i =
@d
@Yi
(0) (59)

K;ij =
@2K
@Yi@Yj

(0) (60)

F;ij =
@2F
@Yi@Yj

(0) (61)

and

d;ij=
@2d
@Yi@Yj

(0) (62)
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Substituting Equation (53) into Equation (52) and then picking terms of same order gives the
following:

K0d0 = F0
K0d;i = F;i −K;id0
K0d;ij = F;ij −K;ijd0 −K;id;j −K;jd;i
...

...
...

(63)

Let ���d=E[d] and 


d=E[(d − ���d)(d − ���d)T] denote the mean vector and covariance matrix,
respectively, of the response vector, d. Applying the expectation operator on Equation (53)
(last row), the �rst-order perturbation solutions are

���d= d0 (64)

and




d=
M∑
i; j=1

d;idT; j
ij (65)

Similarly, the second-order perturbation solutions are

���d= d0 +
1
2

M∑
i; j=1

d;ij
ij (66)

and




d=
M∑
i; j=1

d;idT;j
ij +
1
4

M∑
i; j; k; l=1

d;ijdT; kl(
il
jk + 
ik
jl) (67)

where the second term on the right-hand side of Equation (67) is based on the assumption
that Y follows Gaussian distribution. If Y is not Gaussian, its third and fourth moments must
be furnished and more general form of Equation (67) is required [1]. Note, d0; d;i ; and d;ij
required in Equations (64)–(67), can be obtained by inverting K0 only once in Equation (63).

7.2. Modal decomposition

When M is large, the computational e�ort required to evaluate the second-moment charac-
teristics of response can become prohibitively large as can be seen in Equation (67). In that
case, a modal decomposition of 


 can be introduced to reduce the computational burden [2].
Consider the following transformation from Y∈RM to Z∈RM

Z=	TY (68)

where 	=[   1;    2; : : : ;    M ] is the modal matrix and    i is the ith eigenvector of 


 satisfying
the orthonormality condition

   Ti    j= �ij (69)

and �ij is the Kronecker delta. The eigenvector,    i corresponds to the eigenvalue, �i, such
that �1¿�2¿ · · ·¿�M . From Equation (68), Z is zero-mean since ���= 0. Also, the covariance
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matrix of Z is �=diag[�1; �2; : : : ; �M ]. Hence, Z becomes a vector of uncorrelated random
variables, if not independent. Note, all of the eigenvalues and eigenvectors are real since 


 is
a real, symmetric, positive-de�nite matrix.
Following similar expansions in the Z-space, the �rst-order perturbation solutions are

���d = dZ0 (70)




d =
M∑
i=1
dZ;id

Z
;i
T
�i (71)

and the second-order perturbation solutions are

���d = dZ0 +
1
2

M∑
i=1
dZ;ij�i (72)




d =
M∑
i=1
dZ; id

ZT
; i �i +

1
2

M∑
i; j=1

dZ; ijd
ZT
; ij �

2
i (73)

where

dZ0 = d0 = d(0) (74)

dZ; i =
@d
@Zi
(0) (75)

and

dZ; ij=
@2d
@Zi@Zj

(0) (76)

Note, the dimensions of the summations in Equations (71)–(73) are decreased due to diago-
nalization of the covariance matrix. This will signi�cantly reduce the computational e�ort in
calculating the response statistics. However, they involve gradients in the Z-space that must
be evaluated. Using the chain rule of di�erentiation,

@d
@Zi

=
M∑
j=1

@d
@Yj

@Yj
@Zi

=
M∑
j=1

@d
@Yj
	ji (77)

where 	ji= @Yj=@Zi from Equation (68) and noting that 	 is an orthogonal matrix (	T =	−1).
Hence,

dZ; i=
M∑
j=1
d; j	ji (78)

Following similar considerations,

dZ; ij=
M∑
k;l=1

d; kl	li	kj (79)
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Using Equations (74), (78) and (79) in Equations (70)–(73), one can now calculate the mean
and covariance of d readily.
Equations (70)–(73) are analogous to modal analysis in structural dynamics. If M is very

large, further reduction in computational e�ort can be achieved by replacing M with M∗ in
Equations (70)–(73), where M∗¡M is the reduced number of random variables that con-
tribute signi�cantly to the second-moment characteristics of d. Standard convergence criteria
can be applied to determine M∗.

7.3. Second-moment characteristics of nodal displacement

The generalized displacement vector, d represents nodal parameters—not the actual displace-
ments at the meshless nodes. Let \d̂=E[d̂] and 


d̂=E[(d̂ − \d̂)(d̂ − \d̂)T] denote the mean
vector and covariance matrix, respectively, of the nodal displacement vector, d̂. From the
linear relation between d̂ and d, given by Equation (33)

\d̂=�\d (80)

and




d̂=�


d�
T (81)

Note, similar perturbation expansions can be developed when calculating second-moment char-
acteristics of stresses and strains. For brevity, they are not explained here.

8. NUMERICAL EXAMPLES

Three numerical examples based on 1D and 2D problems are presented. In all examples,
the uncertain modulus of elasticity was modelled as a homogeneous Gaussian random �eld.
The Gaussian assumption implies that there is a non-zero probability of E(x) taking on a
negative value. To avoid this di�culty, the variance of input random �eld was con�ned to
a small value. Alternative representations involving truncated Gaussian distribution or other
distributions suitable for non-negative random �eld have been used by various researchers
[1]. They were not explored here, because the focus of this study was stochastic meshless
analysis. A linear basis function was used in all meshless calculations. The random �eld was
discretized using the same meshless nodes for the sake of simplicity (i.e., M =N ). For the
weight function, a value of �=2 was selected. Both perturbation and simulation methods
were used to calculate the second-moment characteristics of response. They are described in
the following.

8.1. Example 1: Bar with linear body force (1D Problem)

Consider a bar, AB of length, L=1 units, which is subjected to a linear body force distribution,
p(x)= x, in the x direction as shown in Figure 2(a). The point A of the bar is �xed and
the point B is free. The bar has a constant cross-sectional area, A=1 units. The modulus of
elasticity, E(x)=�E[1+ �(x)] is random with mean, �E =1 units and �(x) is a homogeneous
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Figure 2. A bar subjected to linear body force distribution: (a) geometry and loads; and
(b) meshless discretization (16 nodes).

Figure 3. Mean at distance along the bar. Figure 4. Standard deviation at distance
along the bar.

Gaussian random �eld with mean zero and auto-covariance function,

��(�)=E[�(x)�(x + �)]=�2E exp
(
−|�|
bL

)
(82)

where x and x+ � are the co-ordinates of two points in the bar, �E is the standard deviation
of �(x) or E(x), and b is the correlation length parameter. For numerical calculations, the
following values were used: �E =0:1 units and b=1. A meshless discretization involving
16 uniformly spaced nodes is shown in Figure 2(b). A background mesh with its nodes
coincident with the meshless nodes was used. The numerical integration involved four-point
Gauss quadrature.
The stochastic meshless method developed in this study was applied to determine the

second-moment characteristics of the axial displacement of the bar. Figures 3 and 4 show
the mean, �d̂ (x) and standard deviation, �d̂ (x), respectively, of the axial displacement as a
function of x. Both �rst- and second-order perturbation methods using modal decomposition
were used to predict these results. Figures 3 and 4 also show the corresponding results from
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Figure 5. Convergence of mean at free
end of the bar.

Figure 6. Convergence of standard deviation at
free end of the bar.

Figure 7. Mean at free end of the bar
for various �E .

Figure 8. Standard deviation at free end of the
bar for various �E .

Monte Carlo simulation using 5000 samples. The perturbation results agree very well with
the simulation results when �E =0:1 units.
To study the convergence properties of the predicted results, additional stochastic meshless

analyses were performed by increasing N (number of nodes) from 6 to 26. For each value
of N , a uniform spacing was used for the meshless discretization of the bar. Also, the same
inputs de�ned earlier were used for each analysis. Figures 5 and 6 show the predicted mean
[�d̂(L)] and standard deviation [�d̂ (L)] of the axial displacement at the free end (point B) as a
function of N . The results of both �rst- and second-order perturbations of meshless equations
are shown. Indeed, the stochastic meshless method generates convergent solutions of mean
and standard deviation of response.
Figures 7 and 8 show the results of �d̂ (L) and �d̂ (L) when the standard deviation of E(x)

is varied from zero to 0.2 units. The results of both perturbation and simulation methods are
presented. When �E is large, the perturbation method underpredicts the response statistics by
simulation, particularly �d̂(L). In that case, the implementation of the second-order perturba-
tion method did not signi�cantly improve the results of �rst-order perturbation method. This
trend is expected since the fundamental assumption of the perturbation method is that the
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Figure 9. A square plate subjected to uniformly distributed tension: (a) geometry and loads; and
(b) meshless discretization (49 nodes).

uncertainties must be small. For �E¿ 0:2 units, this assumption may be violated and hence,
any use of the perturbation methods using either meshless or �nite element methods must be
made with care. It is worth mentioning that the current results are consistent with the results
of perturbation methods using SFEM [2–5].

8.2. Example 2: Square plate under tension (2D Problem)

Consider a square plate shown in Figure 9(a). The plate has dimension, L=1 units and
is subjected to a uniformly distributed load of magnitude, p=1 units. The square domain
of the plate was discretized by equally spaced 49 nodes and is shown in Figure 9(b). The
Poisson’s ratio, was chosen to be 0.3. The modulus of elasticity, E(x) was represented by
E(x)=�E[1 + �(x)], where �E =1 units is the constant mean over the domain and �(x) is a
homogeneous Gaussian random �eld with mean zero and auto-covariance function

��(^)=E[�(x)�(x+ ^)]=�2E exp
[
−
( |�1|
b1L

+
|�2|
b2L

)]
(83)

where x≡ (x1; x2) and x+^≡ (x1 +�1; x2 +�2) are the co-ordinates of two points in the plate,
standard deviation, �E =0:12 units, and correlation length parameters, b1 = 1; and b2 = 2: The
background mesh was chosen such that its nodes coincide with the meshless nodes. A 8× 8
Gauss quadrature rule was used for all cells.
Figure 9(a) also shows the locations of �ve points A; B; C;D, and E of the plate. Using the

�rst- and second-order perturbation expansions of the proposed meshless method, the mean
and variance of horizontal [uh1(x)] and=or vertical [u

h
2(x)] displacements at C; D; and E were

calculated and are shown in Table I. The results of the Monte Carlo simulation using 5000
samples are also given in Table I. A good agreement is obtained between the results of the
perturbation methods and simulation. Similar accuracy of the perturbation method is observed
in predicting second-moment characteristics of normal [�11(x)], �22(x)] and=or shear [�12(x)]
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Table I. Mean and variance of displacements by various methods (Example 2).

First-order perturbation Second-order perturbation Monte Carlo simulation
Location Response(a) Mean Variance Mean Variance Mean Variance

C u1 −1:459× 10−1 7:504× 10−4 −1:477× 10−1 8:394× 10−4 −1:479× 10−1 8:468× 10−4
u2 4:995× 10−1 3:524× 10−3 5:056× 10−1 3:772× 10−3 5:062× 10−1 3:951× 10−3

D u1 −1:559× 10−1 5:310× 10−3 −1:577× 10−1 5:868× 10−3 −1:578× 10−1 5:908× 10−3
u2 9:901× 10−1 1:250× 10−2 1.002 1:308× 10−2 1.003 1:382× 10−2

E u2 9:815× 10−1 9:288× 10−3 9:935× 10−1 9:561× 10−3 9:948× 10−1 1:043× 10−2
(a) u1 and u2 represent horizontal and vertical displacements, respectively.

Table II. Mean and variance of stresses by various methods (Example 2).

First-order perturbation Monte Carlo simulation
Location Response(a) Mean Variance Mean Variance

A �11 3:610× 10−1 1:360× 10−4 3:606× 10−1 1:436× 10−4
�22 1.164 1:407× 10−3 1.163 1:486× 10−3
�12 2:227× 10−1 5:273× 10−5 2:224× 10−1 5:592× 10−5

B �11 2:785× 10−1 8:146× 10−5 2:788× 10−1 8:375× 10−5
�22 9:421× 10−1 9:358× 10−4 9:429× 10−1 9:620× 10−4

C �22 9:449× 10−1 1:734× 10−3 9:437× 10−1 1:796× 10−3
(a) �11 and �22 represent normal stresses in x1 and x2 directions, respectively; and �12 represents shear stress.

stresses at A; B and C as shown in Table II. Due to negligible di�erences between the
results of �rst- and second-order perturbations, only the statistics of stresses by the �rst-order
perturbation method are shown in Table II.
Figures 10 and 11 show the variances of horizontal and vertical displacements, respectively,

at point D by the second-order perturbation method (closed points and mesh surface) when
the correlation distances b1 and b2 are varied from 0.5 to 4. The corresponding results of
simulation (open points), also shown in the same �gures, indicate that the proposed method
can predict accurate statistics of random response regardless of the correlation distances.

8.3. Example 3: Square plate with a hole under tension (2D problem)

Consider a square plate with a circular hole as shown in Figure 12(a). The plate has dimen-
sion, 2L=2L=40 units, a hole with diameter, 2a=2 units, and is subjected to a uniformly
distributed load of magnitude, �∞=1 units. The Poisson’s ratio, � was chosen to be 0.3. The
modulus of elasticity, E(x) was represented by E(x)= �E[1 + �(x)], where �E =1 units is the
constant mean over the domain and �(x) is a homogeneous Gaussian random �eld with mean
zero and exponentially decaying covariance function given by Equation (83). The values of
�E =0:12 units, b1 = b2 = 1 were selected. Furthermore, the elastic modulus was assumed to
be symmetrically distributed with respect to x1- and x2-axis [see Figure 12(a)]. Hence, only
a quarter of the plate needs to be analyzed. The domain of this quarter plate, represented by
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Figure 10. E�ect of correlation distance on
horizontal displacement at D.

Figure 11. E�ect of correlation distance on
vertical displacement at D.

Figure 12. A square plate with a hole subjected to uniformly distributed tension: (a) geometry and
loads; and (b) meshless discretization (176 nodes).

region ABEDC and shaded in Figure 12(a), was discretized by 176 nodes and is shown in
Figure 12(b).
Tables III and IV shows the mean and variance of various displacements and stresses,

respectively, at A; B; C;D, and E [see Figure 12(a)]. As before both perturbation and simulation
(1000 samples) methods were used. For displacements, the results of both �rst- and second-
order perturbation methods are shown (Table III), where as for stresses, only the results of
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Table III. Mean and variance of displacements by various methods (Example 3).

First-order perturbation Second-order perturbation Monte Carlo simulation
Location Response(a) Mean Variance Mean Variance Mean Variance

A u1 −9:580× 10−1 1:637× 10−2 −9:715× 10−1 1:958× 10−2 −9:793× 10−1 1:822× 10−2

B u1 −6:144 3:847× 10−1 −6:217 4:008× 10−1 −6:237 4:204× 10−1

C u2 2.817 9:682× 10−2 2.852 1:070× 10−1 2.858 1:074× 10−1

D u2 2:025× 101 3.567 2:049× 101 3.682 2:061× 101 3.965

E u1 −5:902 5:332× 10−1 −5:959 5:895× 10−1 −5:965 5:780× 10−1

u2 1:996× 101 3.650 2:019× 101 3.867 2:023× 101 3.903

(a) u1 and u2 represent horizontal and vertical displacements, respectively.

Table IV. Mean and variance of stresses by various methods (Example 3).

First-order perturbation Monte Carlo simulation
Location Response(a) Mean Variance Mean Variance

A �11 3:266× 10−1 7:398× 10−4 3:271× 10−1 7:382× 10−4
�22 1.290 7:413× 10−3 1.294 7:284× 10−3
�12 1:906× 10−1 1:578× 10−4 1:903× 10−1 1:641× 10−4

B �22 9:937× 10−1 3:517× 10−3 9:957× 10−1 3:831× 10−3
C �11 −5:858× 10−1 2:100× 10−3 −5:895× 10−1 2:189× 10−3

�22 1:127× 10−1 1:816× 10−4 1:116× 10−1 1:880× 10−4
�12 1:598× 10−1 1:774× 10−4 1:596× 10−1 1:735× 10−4

D �22 1.005 2:186× 10−5 1.005 2:499× 10−5
E �22 9:979× 10−1 3:549× 10−4 9:967× 10−1 3:955× 10−4
(a) �11 and �22 represent normal stresses in x1 and x2 directions, respectively; and �12 represents shear stress.

�rst-order perturbation method are presented (Table IV). The agreement between the results
of perturbation and simulation methods is excellent.

9. SUMMARY AND CONCLUSIONS

A new stochastic meshless method was developed for solving linear-elastic, boundary-value
problems involving random material properties. The material property was modelled as a
homogeneous random �eld. Unlike the �nite element method, the meshless method requires no
structured mesh, since only a scattered set of nodal points is required in the domain of interest.
There is no need for �xed connectivities between nodes. In conjunction with the meshless
method, classical perturbation expansions were derived to predict the mean and covariance
properties of stochastic response. Numerical examples based on 1D and 2D problems are
presented to examine the accuracy and convergence of the stochastic meshless method. A good
agreement is observed between the results of the proposed method and Monte Carlo simulation
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when the random 
uctuations are small. Furthermore, the stochastic meshless method provides
convergent solutions of random response. Since mesh generation of complex structures can be
a far more time-consuming and costly e�ort than the solution of a discrete set of equations,
the proposed meshless method provides an attractive alternative to �nite element method for
solving stochastic mechanics problems.
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