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Abstract

This paper presents a coupling technique for integrating the element-free Galerkin method (EFGM) with the traditional finite element
method (FEM) for analyzing linear-elastic cracked structures subject to mode-I and mixed-mode loading conditions. The EFGM was used to
model material behavior close to cracks and the FEM in areas away from cracks. In the interface region, the resulting shape function, which
comprises both EFGM and FEM shape functions, satisfies the consistency condition thus ensuring convergence of the method. The proposed
method was applied to calculate mode-I and mode-II stress—intensity factors (SIFs) in a number of two-dimensional cracked structures. The
SIFs predicted by this method compare very well with the existing solutions obtained by all-FEM or all-EFGM analyses. A significant saving
of computational effort can be achieved due to coupling in the proposed method when compared with the existing meshless methods.
Furthermore, the coupled EFGM—-FEM method was applied to model crack propagation under mixed-mode loading condition. Since the
method is partly meshless, a structured mesh is not required in the vicinity of the cracks. Only a scattered set of nodal points is required in the
domain of interest. A growing crack can be modeled by simply extending the free surfaces, which correspond to a crack. By sidestepping
remeshing requirements, crack-propagation analysis can be dramatically simplified. A number of mixed-mode problems were studied to
simulate crack propagation. The agreement between the predicted crack trajectories with those obtained from existing numerical simulation
and experiments are excellent. © 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In recent years, a class of meshfree or meshless methods,
such as smooth particle hydrodynamics [1-3], the diffuse
element method [4], the element-free Galerkin method
(EFGM) [5-T7], h—p clouds [8], partition of unity [9], and
the reproducing kernel particle method (RKPM) [10-12]
has emerged to demonstrate significant potential for solving
moving boundary problems typified by growing cracks.
Fundamental to all meshless methods, a structured mesh is
not used, since only a scattered set of nodal points is
required in the domain of interest. This feature presents
significant implications for modeling fracture propagation,
because the domain of interest is completely discretized by a
set of nodes. Since no element connectivity data are needed,
the burdensome remeshing required by the finite element
method (FEM) is avoided. A growing crack can be modeled
by simply extending the free surfaces, which correspond to

* Corresponding author. Tel.: +1-319-335-5679; fax: +1-319-335-5669.
E-mail address: rahman@engineering.uiowa.edu (S. Rahman).
! Website: http:/www.engineering.uiowa.edu/~rahman.

the crack. By sidestepping remeshing requirements, crack-
propagation analysis can be dramatically simplified.
Although meshless methods are attractive for simulating
crack propagation, because of the versatility, the computa-
tional cost of a meshless method typically exceeds the cost
of a regular FEM. Furthermore, given the level of maturity
and comprehensive capabilities of FEM, it is often advanta-
geous to use meshless methods only in the sub-domains,
where their capabilities can be exploited to the greatest
benefit. In modeling crack propagation in a complex engi-
neering structure with stiffeners, connections, welds, etc., it
is more effective to apply meshless methods at the sites of
potential crack growth and FEM in the remainder of the
domain. Therefore, numerical methods need to be devel-
oped for combining meshless and finite element methods.
Several authors have already proposed different tech-
niques to couple meshless and finite element methods.
One technique, proposed by Krongauz and Belytschko
[13] encircled the EFGM domain with the FEM domain
and applied the boundary conditions to the finite element
nodes. This coupling technique dramatically simplifies the
enforcement of boundary conditions. These techniques,
however, require a linear ramp function, which involves
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substitution of finite element nodes with meshless nodes. In
addition, the transition length is of one finite element.
Subsequently, Hegen [14] employed Lagrange multipliers
to couple the finite element and meshless regions. Later Liu
et al. [11,12] proposed a method to adapt finite elements to
the RKPM and multiresolution analysis, using different
formulations. Recently, Huerta and Fernandez-Mendez
[15] have presented a mixed hierarchical approximation
for enrichment and coupling of the finite element and mesh-
less methods. Indeed, combination of a meshless method
and a FEM method continues to be a subject of great interest
to many researchers.

In this paper, a numerical technique integrating EFGM
with the traditional FEM is presented for analyzing linear-
elastic cracked structures subject to mode-I and mixed-
mode loading conditions. The EFGM is used to model mate-
rial behavior close to cracks and the FEM in areas away
from cracks. In the interface region, the resulting shape
function, which comprises both EFGM and FEM shape
functions, satisfies the consistency condition thus ensuring
convergence of the method. Several numerical examples are
presented to illustrate the proposed method by calculating
mode-I and mode-II stress—intensity factors (SIFs) in two-
dimensional cracked structures. For crack-propagation
analysis, a number of mixed-mode problems are also
presented to evaluate the accuracy and efficiency of the
proposed coupled EFGM—-FEM.

2. Element-free Galerkin method

Consider a function u(x) over a domain 2 C RX, where
K =1,2,0r3. Let {2, C 2denote a sub-domain describing
the neighborhood of a point x € R ¥ located in £2. Accord-
ing to the moving least-squares (MLS) [16], the approxima-
tion u"(x) of u(x) is

N
W'x) =Y B(xd; = @' (x)d (1)
=1

where d' = {d,,...,dy} and ®T(x) = {D(x), P,y(x),
...®,(x)} with d; representing the nodal parameter (not
the nodal values of uh(x)) for node I and ®,(x) representing
the MLS shape function corresponding to node I, given by

@,(x) = a" (X)p(x,)w;(x) 2)

where a(x) is a vector of unknown parameters, which can be
determined by imposing reproducibility or consistency
conditions, pT(x) = {p1(X), p2(X), ..., p,(X)} is a vector of
complete basis functions of order m, and w;(x) is the weight
function associated with node 7 such that w;(x) = 0 for all x
in the support (2, of w;(x) and zero otherwise, where x;
denotes the coordinates of node /. In Eq. (1), N is the total
number of meshless nodes.

According to the reproducibility conditions, x"(x) in Eq.
(1) approximates exactly polynomials of degree equal to or

less than m. Hence

N N
PX) =D pxN@;(x) = > px)N®; " (%) 3)
=1 =1
Substituting @;(x) from Eq. (2) in Eq. (3) gives
N
p(x) = [Zp(x,)pT<x,)w,(x)]a(x> )
I=1
From Eq. (4), a(x) can be obtained as
a(x) = A~ (x)p(x) Q)
where
N
AX) = px)p’ (x)w;(x) (6)
=1

is an m X m matrix. Substituting the expression of a(x) in
Eq. (2), the shape function @,;(x) can be obtained readily.
The partial derivatives of @;(x) can be obtained as

@, (x) = ai()Ppx)w;(x) + a" X){px)Iw;(X)}; )
where
a,(x) = A;'xpx) + A~ (0p,(x) 8)

In Eq. (8), A;l can be obtained as [17]

A'=-A""AA7! )
9
in which (); = Y
’ ax,-

3. Coupled meshless-finite element method

Consider the domain = Ogrgy U Ogpy,  which
comprises two non-overlapping subdomains (2gpgy and
ey and boundary I, as shown in Fig. 1. Depending on
the location of a point x € RX, the reproducibility condition
given by Eq. (3) can be written as follows:

Case 1. Ifx € Qgrgy and the shape function values of all

. . . . . . . . .
[ ] L] L] L] L] L] L] L] L]
X QEFGM

. . . . . ) . . .
. . . . . . . . . [
[ . . . . . >----9 .

' '

) )

in

FI:t 1—‘b
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Fig. 1. Domain containing meshless and finite element zones.
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FEM nodes are zero at X

N

= >

I=1x,€ Ogrm

p(x;) D;(x) (10)

in which the EFGM or MLS shape function ®;(x) and its
partial derivatives can be obtained as explained in Section 2.

Case 2. A node on the boundary I, such as node n; in
Fig. 1, is treated as an EFGM node or as a FEM node. Node
n, is treated as a FEM node if its FEM shape function value
obtained by forming a 4-noded quadrilateral element with
an another neighboring FEM node on the boundary I', along
with two other EFGM nodes as shown by the dotted line in
Fig.1, is nonzero at x. Otherwise, node n; is treated as an
EFGM node.

Hence, if x € Qgpgy and the shape function values of
some FEM nodes along the boundary I}, are nonzero at x

N

= >

M
pPx)P(x) + D> px)ON;(x) (11)

I=1.%,E Qpru J=1x,€T,
which can rewritten as
M
p(x) = A(x)a(x) + Z P(X;)N;(X) (12)
J=1x,€I,
Hence
M
ax)=A"'X)1px) — D pE)IN,X) (13)
J=1x,EI,

By substituting a(x) in Eq. (2), the shape function @;(x)
value can be obtained. The partial derivatives @, ;(X) can be
obtained as explained Section 2, using Eqs. (7)—(9).

Case 3. Ifx € OQppm

M

= >

J=1,x;€E Oy

P(X/)N,(x) (14)

where the FEM shape function N;(x) and its partial deriva-
tives can be obtained by Lagrange interpolation [18].
Note, in Egs. (10)—(14),1 = 1,..., N are the EFGM nodes
and J = 1,...,M are the FEM nodes.
Hence, the effective shape function for the coupled mesh-
less-finite element method, denoted by 103 ;(X), can be
defined as

[ D)(x),
N;(x),

0] (x) = 1 M
' {p(x) -y

J=1%, € Qg

L N/(%),

T
p(XJ)NJ(X)} AT 0p(xw,(x), if x; € Iy and N;(x) = 0

Differentiating Eq. (15), the partial derivatives of effec-
tive shape function @”(x) can be obtained. The effective
shape function @ ,(x) and its partial derivatives b 1i(X)
strongly depend on the type of basis function used. In this
study the following fully enriched basis function [17,19]
was used

6 (7]
px)= {1,x1,x2,\/;cos§, \/;sini,

(16)
.6 0 .
\/;smzsm 0, \/;cosz sin 6

where r and 6 are polar coordinates with the crack tip as the
origin.

4. Weight function

An important ingredient of EFGM or other meshless
methods is the weight function w(x). In this work, a weight
function based on student’s #-distribution [17], which repre-
sents the scaled probability density function of a standard
Gaussian random variable divided by the square root of a
chi-squared random variable with 8 degrees of freedom [20]
was used. It is given by [17]

2\ —(1+B)2
(1 +.32Z2—1) —(1 + gy arpn

_ Zmr
wi(x) = 1= (1 + g 0pn s U S Iy
0, 20 > Zmg
(17)

where S is the parameter controlling the shape of the weight
function, z; = |)x — x;|| is the distance from a sampling point
X to a node X;, z,,; is the domain of influence of node 7 such
that

Zml = ZmaxZel (18)

in which z; is the characteristic nodal spacing distance
which is chosen such that the node 7/ has enough number
of neighbors sufficient for regularity of A(x) in Eq. (6)
(which is used to determine the MLS approximation), and
Zmax 18 @ scaling parameter.

To avoid any discontinuities in the shape functions due to
the presence of cracks, a diffraction method [19,21] can be
used to modify z; in the weight function. According to this
method, when the line joining the node x; to the sampling

if Xy S ‘QEFGM
if x; € I, and N;(x) # 0
(15)

if Xy S QFEM
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point x intersects the crack segment and the crack tip is
within the domain of influence of the node x;, z; is modified
as [19]

A
= (M) SO(X) (]9)

so(x)

where 51 = [[x; = X[, 5:(%) = [[x — x[, 500 = [[x — x,], x
and x. are the coordinates of the sampling point and crack
tip, respectively, and 1 = A = 2 is a parameter for adjusting
the distance of the support on the opposite side of the crack.

5. Variational formulation and discretization

For small displacements in two-dimensional, homoge-
neous, isotropic, and linear-elastic solids, the equilibrium
equations and boundary conditions are

Vo+b=0 in 2 (20)
and

on=1{ on I, (natural boundary conditions)

ey
u=u on [, (essential boundary conditions)

respectively, where o = Ae is the stress vector, D, J the
material property matrix, € = Vu is the strain vector, u is
the displacement vector, b is the body force vector, # and @
are the vectors of prescribed surface tractions and displace-
ments, respectively, n is a unit normal to domain, {2, I'"; and
I', are the portions of boundary I" where tractions
and displacements are prescribed, respectively, V' =
{0/dx,, d/dx,} is the vector of gradient operators, and Viu
is the symmetric part of Vu. The variational or weak form of
Egs. (20) and (21) is

J GTBedQ—J bTBudQ—J '3udl —8W, =0
0 0 I,

(22)

where & denotes the variation operator and d3W, represents
a term to enforce the essential boundary conditions, defined
as

W, = > tTxplu,) — ax)] (23)

JET,

where fT(x,) is the vector of reaction forces at the
constrained node x; € I',,. Hence

W, = > 3t (xplulx) — a@(x)] + 1 (x)du(x;)  (24)
JET,

Consider a single boundary constraint, it;(x;) = g;(x;)
applied at node J in the direction of the x; coordinate.
Then, the variational form given by Eqs. (22) and (24) can
be expressed by

J o Tde d + fi(x))du;(x;) = J bToudQ + J 'oudl’
0 0 I,

(25)

ofi(xlu;(x;) — gi(x))] =0 (26)

where f;(x;) and u;(x;) are the ith component of f(x;) and
u(x;), respectively. Using the coupled meshless-finite
element shape function @ ;(x) the approximation of u;(x,)
can be written as

N A
Wx) =Y ,x)dj=d;'d @7)
I=1

where

q~)iT_{{(f)](xj)sos@Z(Xj)aoa---,(f’N(XJ),O}, wheni = 1
! (0, D,(x)),0, D,(x)),...,0, D y(x;)}, wheni=2
(28)
and

rdll p

d

di

2
d=14d 1\ (29)

dy

[ dY )

is the vector of nodal parameters or generalized displace-
ments, and N is the total number of nodal points in 2. The
shape function values are computed as described in Section
4. Using Egs. (27)—(29) into the discretization of Egs. (25)
and (26) gives [5-7]

kK @, { d } {fexl }
. = (30)
(D}T 0 fixy) 8i(xy)

where
kll klz cee klN
k21 k22 cen k2N

k=] e 2@ xR (31)
kNl kN2 cee kNN

is the stiffness matrix with

k, = JQ B/DB, dQ € Z(R* x R?) (32)

representing the contributions of the Jth node at node /
f?xl
ffzle

£ = e R (33)
joa
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is the force vector with

f?zj @mﬂm+J @, dIr € R? (34)
0 T,
D, 0
B,=1]0 @172 35)
4)1,2 (i)],]
and
( 1 v O
= v 1o ’ for plane stress
1= 1—v
00 5
D=
1—v v 0
# v 1-v O X
a1+ v -2p oo | for plane strain
0 0 5

(36)

is the elasticity matrix with £ and v representing the elastic
modulus and Poisson’s ratio, respectively.

A transformation method [17,22] was used for solving the
equilibrium equation (Eq. (30)).

6. Computational fracture mechanics
6.1. Calculation of stress—intensity factors

Consider a structure with a rectilinear crack of length 2a
that is subjected to external stresses. Let Kj and Kj; be the
SIFs for mode-I and mode-II, respectively. These SIFs can
be evaluated using the interaction integral [23] converted
into a domain form [24]. For example

El

K= —M"? 37)
2
where
E, plane stress
E' = E (38)
T2 plane strain

is the effective elastic modulus, and M (:2) is the interaction
integral. It includes the terms from the actual mixed
mode state for the given boundary conditions (superscriptl)
and the super-imposed near-tip mode I auxiliary state
(superscript 2). M9? s given by

o ou” 9
AW@:Li&Dl + @ %t _ngugiM

Yoox Yoox, 0x;

(39)
where o; and u; are the components of the stress tensor

and displacement vector, respectively, w2 s the
mutual strain energy from the two states and g is a

weight function chosen such that it has a value of
unity at the crack tip, zero along the boundary of the
domain and arbitrary elsewhere. Note that all the quan-
tities are evaluated with respect to a coordinate system
with crack tip as origin. Following similar considera-
tions Ky can be calculated from Egs. (37)-(39), except
that the near-tip mode II state is chosen as the auxiliary
state while computing M2

6.2. Simulation of crack propagation

In order to simulate crack growth under linear-elastic
condition, the crack-path direction must be determined.
There are a number of criteria available to predict the direc-
tion of the crack trajectory. They are based on: (1) maxi-
mum circumferential stress [25], (2) minimum strain energy
density [26], (3) maximum energy release rate [27], and (4)
vanishing in-plane SIF (Kj) in shear mode for infinite-
simally small crack extension [28]. The first two criteria
predict the direction of crack trajectory from the stress
state prior to the crack extension. The last two criteria
require stress analysis for virtually extended cracks in
various directions to find the appropriate crack-growth
directions. In this study, the crack-growth simulation was
based on the first criterion only. Other criteria, which are
not considered here, can be easily implemented into the
proposed coupled EFGM-FEM.

6.3. Crack trajectory prediction

According to the maximum circumferential stress criter-
ion [25], the initial direction of crack propagation 6, is the
solution of the equation

Kisin 6+ Ky(3cos0—1)=0 (40)

where K; and Ky are SIFs for any instant during the
crack growth. When the values of K; and Kj are
known, 6 can be easily solved using standard numerical
procedures.

6.4. Quasi-automatic crack propagation

A fully automatic strategy for crack propagation is one,
which requires no user interaction to predict both the extent
and direction of crack growth. The present approach is,
however, quasi-automatic because the user still needs to
provide a desired crack-length increment every time the
crack tip moves. The quasi-automatic simulation of crack
propagation involves a number of successive analyses. Each
analysis consists of the following steps:

1. A numerical analysis is performed to predict stress and
strain fields

2. SIFs are calculated from the results of step 1.

3. The direction of crack trajectory is calculated from
Eq. (40).

4. For a user-defined crack-length increment, the location of
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the new crack-tip is determined. The crack geometry is
updated.
5. The meshless node in the old crack-tip (if exists) is split
into two nodes locating on the opposite sides of the crack.
6. New meshless nodes are added for improved discretiza-
tion of the domain, if desired.

7. Numerical examples

The coupled meshless-FEM developed in this study was
applied to perform fracture-mechanics analysis of both
stationary and propagating cracks. Both single- (mode I)
and mixed-mode (modes I and II) conditions were consid-
ered and four examples are presented here. The diffraction
parameter value A = 1 was used in all examples. For numer-
ical integration, an 8 X 8 Gauss quadrature was used both
in the meshless region and the FEM region for all the
examples.

TR /YTy
L2
v Crack
-~
L2
w
(a)
TR

FEM Zone, L, /2

. EFGM Zone, L

EFGM/ 2

J-Integral Domain

(b)

Crack Tip

Fig. 2. Edge-cracked plate under mode-I loading: (a) geometry and loads;
(b) domain discretization.

Table 1
Mode-I SIF for different lengths of EFGM zone (Example 1)

Lgrgw/L K SIF ratio®
0.8 2.3441 0.994
0.7 2.3359 0.991
0.6 2.3423 0.993
0.5 2.3569 1.000
0.4 2.3724 1.006
0.3 2.3867 1.012
0.2 2.3701 1.005
0.1 2.1644 0.918

* SIF ratio = predicted SIF/reference value of SIF. Reference values:
K; = 2.358 units [29].

Example 1. Stationary crack under mode-I

Consider an edge-cracked plate under pure tension as
shown in Fig. 2(a), that has length L = 2 units, width W =
1 unit, and crack length a = 0.4 units. The far-field tensile
stress 0 = 1 unit. Due to symmetry, only half of the plate
was analyzed. The half plate model consisting of 121
uniformly spaced nodes is shown in Fig. 2(b), some of
which are treated as meshless nodes and the remainder are
treated as 4-noded quadrilateral finite elements. In the mesh-
less region the domain of the plate was divided into rectan-
gular cells with their nodes coincident with the meshless
nodes solely for numerical integration. A domain
010,050, of size 2b X b, required for calculating the J-inte-
gral is defined in Fig. 2(b). The domain size dimension b =
{min(0.4Lgrgm, @)}, where Lgpgy is the length of EFGM
zone as shown in Fig. 2(b) and a is the crack length. A
plane stress condition was assumed with E = 207,000
units and v = (.3.

Table 1 shows the values of Kj for different values of
Lgrgw/L. For the weight function, S =1 was used for
these calculations. For J-integral calculation domain size
was chosen such that the entire domain was in the meshless
region. When compared with the benchmark solution of
K; = 2.358 units, given by Tada et al. [29], the predicted
values of K; from the present study are accurate upto
Lgrgm/L = 0.2. The accuracy of the predicted value of K;
degrades when Lgrgy/L = 0.1, due to the smaller sizes of
meshless zone and the domain over which the J-integral
integral is evaluated. It is worth mentioning that for large
values of Lgrgwm/L, the predicted values of Kj from the

Table 2
Mode-I SIF using various integral domains (Lgrgy/L = 0.5) (Example 1)

Size of domain K; SIF ratio®
(2b X b)

0.80 X 0.40 2.3569 1.000
0.64 X 0.32 2.3406 0.993
0.60 X 0.30 2.3420 0.993
0.40 X 0.20 2.3005 0.976

* SIF ratio = predicted SIF/reference value of SIF. Reference values:
K; = 2.358 units [29].
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Table 3
Mixed-mode stress-intensity factor for different lengths of EFGM zone
(Example 2)

Table 4
Mixed-mode stress-intensity factor using various integral domains
(Lgrgm/L = 7/14) (Example 2)

Lgrom/L Mode-I Mode-IT
K, SIF ratio® Ky SIF ratio®

12/14 33.63 0.989 4.536 0.997
11/14 33.62 0.989 4.539 0.998
10/14 33.57 0.987 4.520 0.993
9/14 33.55 0.987 4.539 0.998
8/14 33.47 0.984 4.521 0.994
7/14 33.33 0.980 4.504 0.990
6/14 3342 0.983 4.491 0.987
5/14 33.39 0.982 4.004 0.880
4/14 34.89 1.026 4.694 1.032
3/14 34.65 1.019 3.681 0.809
2/14 36.12 1.062 4.968 1.092

* SIF ratio = predicted SIF/reference value of SIF. Reference values:
K7 = 34.0 units and Ky = 4.55 units [31].

present study matches well with the available results in the
literature involving EFGM analysis for the whole domain
[5,17,30].

Table 2 shows the effect of the J-integral domain size on
the predicted values of K; when Lgggy/L = 0.5. Very accu-
rate results of SIF were obtained regardless of the size of the
domain.

Example 2. Stationary crack under mixed-mode

This example involves an edge-cracked plate in Fig. 3(a),
which is fixed at the bottom and subjected to far-field shear
stress 7° = 1 unit applied on the top. The plate has length
L = 16 units, width W = 7 units, and crack length a = 3.5
units. A domain of size 2b, X 2b, required for calculating
M4 integral is also shown in Fig. 3(a) and (b) shows the
domain discretization involving 324 uniformly spaced
nodes, some of which are treated as meshless nodes and
the remainder are treated as 4-noded quadrilateral finite
elements. In the meshless region, a background mesh with
cell points coincident with the meshless nodes was used.
The elastic modulus and Poisson’s ratio were 30X 10°
units and 0.25, respectively. A plane strain condition was
assumed. The mode-I and mode-II SIFs were calculated
according to Egs. (37)—(39).

Table 3 shows the predicted K; and Ky for this edge-
cracked problem using 8 = 2 for various values of Lgrgm/
L. The domain size for M"? integral calculation was
chosen such that the entire domain was in the meshless
region. The domain size dimensions were chosen as follows:
b, = b, = {min(0.4Lgrgm, @)}, Where Lgrgy 1s defined as
shown in the Fig. 3(b) and a is the crack length. The refer-
ence solutions for this problem are: K; = 34 units and K3 =
4.55 units [31]. The predicted K; and Kj; values compare
very well with the reference SIF values upto Lgpgm/L =
6/14. However, the accuracy of the predicted values dete-
riorates and oscillates when Lgrgy/L = 5/14, possibly due
to the smaller meshless zone and size of the domain over

Size of domain Mode-I Mode-IT
(2by X 2b,)

K; SIF ratio® Ky SIF ratio®
2.8%4.0 33.27 0.979 4.562 1.003
5.6X6.0 33.37 0.981 4.522 0.994
7.0%7.0 33.36 0.981 4.518 0.993

* SIF ratio = predicted SIF/reference value of SIF. Reference values:
K; = 34.0 units and Ky = 4.55 units [31].

00

L/2
2b,
Crack{ |
—= |*
a l___[,__
L2 Integral Domain

FEM Zone. LFEMJ"Z

>

4

Integral Domain

EFGM Zone. LergMm

FEM Zone. LFEM/ 2

(b)

Fig. 3. Edge-cracked plate under mixed-mode loading: (a) geometry, loads,
and domain size; (b) domain discretization.
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which the M%) integral is evaluated. For large values of
Lgrom/L, the predicted K and Ky values from the present
study matches well with the results of [17,19] based on
EFGM analysis of the whole domain.

Table 4 shows the predicted K; and Ky for this edge-
cracked problem for various sizes of fracture integral
domain when Lgrg/L = 7/14. No major effects of domain
size are seen.

Fig. 4 plots variation of CPU ratio, defined as the ratio of
CPU time using coupled meshless-FEM method and CPU
time using meshless method for the whole domain. Fig. 4
includes both mode-I and mixed-mode cases. It is evident
from the plot that CPU time decreases with decrease in

02 03 04 05 06 07 08 09
L /L Lgrom/L, as expected. Hence combining the meshless method
EFGM/ . . . .
with FEM can significantly reduce computational effort for
Fig. 4. Comparison of CPU time.
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Fig. 5. Simulation of crack propagation: (a) meshless method for the whole domain (Lgggm/L = 1); (b) Lgggm/L = 1; (¢) Lgggm/L = 7/14; (d) Lgggm/L =
6/14; (e) Lgpgm/L = 5/14; (f) Lgrgm/L = 4/14.
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solving fracture mechanics problems, preserving the accu-
racy obtained by adopting EFGM for the whole domain.

Example 3. Propagating crack under mixed-mode

Consider the edge-crack problem as this example. In this
example, the accuracy of crack-path prediction using the
proposed technique is evaluated. A domain size of
0.9 X 0.9 units was used for meshless simulation. Otherwise,
all other input parameters are the same as in Example 2. For
crack-propagation analysis, the maximum circumferential
stress criterion was used.

Fig. 5 shows the evolution of crack trajectory using the
meshless method for the whole domain and the proposed
coupled meshless-finite element method for the four cases
Lgrgm/L = 7/14, 6/14, 5/14 and 4/14. The increment of
crack length during each step of crack propagation was
4% of the initial crack length. At each increment, a new
node was added at the crack tip. For comparison, a similar
crack-growth analysis was performed using the FEM for the
whole domain. The FEM involves quarter-point singularity
elements and an automatic remeshing procedure for updat-
ing the crack-tip mesh during the progression of crack
growth. Fig. 5(a) shows the comparison of the predicted
crack trajectory using the meshless method for the whole
domain with that obtained by using FEM for the whole
domain. Fig. 5(b) shows an enlarged view of the region
ABCD shown in Fig. 5(a). Fig. 5(c) through (f) shows the
enlarged view of the comparison of the predicted crack
trajectory using the proposed method with that obtained
by using FEM for the whole domain, for the four cases
Lgrom/L = 7/14, 6/14, 5/14 and 4/14, respectively. The
predicted crack path from the proposed method almost coin-
cides with the crack path from FEM for Lgggy/L = 7/14 and
6/14. Hence the accuracy of the crack trajectory is main-
tained without the burdensome remeshing required by FEM
and at the same time, curtailing the computational expense
of the meshless method. The proposed method can signifi-
cantly reduce the complexity of crack-propagation analysis.
The predicted crack path from the proposed method deviates
from the crack path from FEM for Lgggy/L = 5/14 and 4/
14. This result is expected, since some error is observed in
the predictions of K| and Kj; for these two cases using the
coupled meshless-FEM.

Example 4. Experimental validation

In this example, crack trajectories predicted by the
proposed method are compared with Pustejovsky’s experi-
mental data [32,33]. Pustejovsky performed a series of
uniaxial tension tests on isotropic Titanium Ti—-6Al-4V
plates with oblique center-cracks of length 2a = 13.5 mm
at y=43° and length 2a = 142 mm at y=30° The
reported dimensions and material properties of the speci-
mens were: length 2L = 304.8 mm, width 2W = 76.2 mm,
elastic modulus E = 110 GPa and Poisson’s ratio v = 0.29.
A far-field uniaxial tensile stress, o~ = 207 MPa was
applied on the top and the bottom of the specimen during
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Fig. 6. Center oblique cracked titanium Ti-6Al-4V plate under uniaxial
loading: (a) geometry, loads, and domain size; (b) domain discretization.

meshless analysis. Fig. 6(a) and (b) show the dimensions of
the specimen and the meshless discretization, respectively.
The domain discretization involves 1124 nodes, some of
which are treated as meshless nodes and the remainder are
treated as 4-noded quadrilateral finite elements. A hybrid
enrichment of basis function was adopted by using fully
enriched basis function for a small region close to the two
crack tip regions and by using linear basis function for the
rest of the meshless region. The inner radius of the coupling
region for hybrid enrichment was 0.25a and the outer
radius was 0.375a. As shown in Fig. 6(a), a domain size
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Fig. 7. Comparison of simulated crack trajectory with experimental data:
(a) y=43° and 2a = 13.5 mm; (b) y = 30° and 2a = 14.2 mm.

with b; = b, = 0.8 mm surrounding the crack tip was
chosen for evaluating the M integral for the initial
crack. During crack propagation, the domain was moved
the same way as explained in Example 3. A plane strain
condition was assumed during the analysis.

Fig. 7(a) and (b) shows the comparison of the predicted
crack trajectories by using the meshless method for the
whole domain and by the proposed method when
Lgreu/L = 11/16 and 7/16, with the experimental data in
a small region ABCD (see Fig. 6(b)) surrounding the crack.
The results in Fig. 7(a) corresponds to 2a = 13.5 mm and
v = 43° and the results in Fig. 7(b) corresponds to 2a =
142 mm and y=30° In both cases, the increment of
crack length at each crack tip during each step of crack
propagation was 2% of the initial crack length. The
predicted crack trajectories by the proposed method are in
good agreement with the experimental results.

8. Summary and conclusions

A coupled meshless-finite element method was devel-
oped for analyzing linear-elastic cracked structures subject
to mode-I and mixed-mode loading conditions. The EFGM
was used to model material behavior close to cracks and the
FEM in areas away from cracks. In the interface region, the

resulting shape function, which comprises both EFGM and
FEM shape functions, satisfy the consistency condition thus
ensuring convergence of the method. The proposed method
was applied to calculate mode-I and mode-II SIFs in a
number of two-dimensional cracked structures. The SIFs
predicted by this method compare very well with the exist-
ing solutions obtained by all-FEM or all-EFGM analyses. A
significant saving of computational effort can be achieved
due to coupling in the proposed method when compared
with the existing meshless methods. Furthermore, the
coupled EFGM-FEM method was applied to model crack
propagation under mixed-mode loading condition. Since the
method is partly meshless, a structured mesh is not required
in the vicinity of the cracks. Only a scattered set of nodal
points is required in the domain of interest. By sidestepping
remeshing requirements, crack-propagation analysis can be
dramatically simplified. A number of mixed-mode problems
were studied to simulate crack propagation. The agreement
between the predicted crack trajectories with those obtained
from existing numerical simulation and experiments are
excellent.
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