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Probabilistic fracture analysis of cracked pipes

with circumferential flaws
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This paper describes the development of a probabilistic fracture-mechanics
model for analyzing circumferential through-walled-cracked pipes subject to
bending loads. It involves elastic~plastic finite element analysis for estimating
energy release rates, J-tearing theory for characterizing ductile fracture, and
standard structural reliability methods for conducting probabilistic analysis.
The evaluation of the J-integral is based on the deformation theory of
plasticity and power-law idealizations of stress-strain and fracture toughness
curves. This allows J to be expressed in terms of non-dimensional influence
functions {F- and #,-functions) that depend on crack size, pipe geometry, and
material hardening constant. New equations were developed to represent these
functions. Both analytical and simulation methods were formulated to deter-
mine the probabilistic characteristics of J. The same methods were used later
to predict the failure probability of pipes as a function of applied load.
Numerical examples are provided to illustrate the proposed methodology. The
validity of the J-integral based on the proposed equations for predicting the
crack driving force in a through-wall-cracked pipe was evaluated by com-
parison with available results in the current literature. Probability densities of
the J-integral were predicted as a function of applied loads. Failure prob-
abilities corresponding to three different performance criteria were evaluated
for stainless steel nuclear piping from a boiling water reactor plant. The results
suggest that large differences may exist in the failure probability estimates
produced by these performance criteria. © 1997 Elsevier Science Ltd. All
rights reserved.
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1 INTRODUCTION

Many structural systems are comprised of piping
systems which can be found in nuclear power plants,
off-shore drilling platforms, gas transmission lines,
fossil power generation plants and others. The
unavoidable existence of cracks in some components
may lead to increased safety concerns about the loss
of structural strength and possibly failure of structural
systems. The traditional approach to safety assessment
and design lies in a deterministic model which
invariably involves a large safety factor usually
assigned from heuristic and somewhat arbitrary
decisions. This approach has almost certainly been
reinforced by the very large extent to which
conventional engineering design is codified and the
lack of feedback about the actual performance of the
structure. Use of large safety factors can lead to the
view that "absolute’ safety can be achieved. Absolute
safety is of course undesirable if not unobtainable,
since it could only be approached by deploying infinite
resources.

A realistic evaluation of structural performance can
be conducted only if the uncertainty in structural
loads, flaw sizes, and material properties, and hence
responses are taken into consideration. Typical
response parameters of piping systems that undergo
plastic deformation due to applied loads are the
J-integral, crack tip opening displacement, and others.
While the load and the resistance are not determinis-
tic, they nevertheless show statistical regularity and
the statistical information, which are necessary to
describe their probability laws, and are available from
the existing literature. For example, the material
properties of base and weld metals typically used in
nuclear piping can be obtained from the PIFRAC
database,' the Degraded Piping Program® and the
International Piping Integrity Research Group
(IPIRG) Programs,” and others.*® A systematic
search of the above database from these research
programs can provide a wealth of data for statistical
characterization of the strength (stress-strain curve)
and the toughness (J-resistance) properties of typical
pipe materials. These suggest that the probability
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theory and structural reliability methods can be
applied to assess performance of piping and piping
welds subjected to in-service (normal operational
loads) and extreme (seismic loads) loading
environments.

This paper presents a stochastic fracture-mechanics
model to evaluate the structural performance of
circumferential through-walled-cracked (TWC) pipes
subject to bending loads. The model involves; (1)
elastic—plastic finite-element analysis for estimating
the energy release rate; (2) J-tearing theory for
characterizing ductile fracture; and (3) standard
methods of structural reliability theory for conducting
probabilistic analysis. The evaluation of the J-integral
is based on the deformation theory of plasticity and
constitutive law characterized by power-law equation
for stress—strain curve. This permits the J-integral to
be expressed in terms of non-dimensional influence
functions that depend on crack geometry, pipe
geometry, and material hardening constant. Closed-
form equations were developed for these functions
(and hence, J) based on recent results of elastic—
plastic finite element analysis. This makes the
subsequent stochastic analysis computationally feas-
ible to evaluate probabilistic characteristics of the
J-integral and the failure loads. Both analytical and
computational methods e.g. first- and second-order
reliability methods and simulation methods, e.g.
Monte Carlo simulation, and importance sampling
were formulated to determine the relevant probability
measures for pipe fracture evaluations. Numerical
examples from nuclear plant piping are presented to
illustrate the proposed methodology.

2 ELASTIC-PLASTIC FRACTURE ANALYSIS

It is now well established that elastic—plastic fracture
mechanics (EPFM) provides more realistic measures
of fracture behavior of cracked piping systems when
compared with the elastic methods. The use of EPFM
becomes almost necessary for piping materials with
high toughness and low strength which generally
undergo extensive plastic deformation around a crack
tip. Recent analytical, experimental and computa-
tional studies on this subject indicate that the energy
release rate (also known as the J-integral) and crack
tip opening displacement (CTOD) are the most viable
fracture parameters for characterizing crack initiation,
stable crack growth, and subsequent instability in
ductile materials.”® This clearly suggests that the
global parameters like J and/or CTOD can be
conveniently used to assess structural integrity for
both leak-before-break and in-service flaw acceptance
criteria in degraded piping systems. It is, however,
noted that the parameter J still possesses some
theoretical limitations. For example, the Hutchinson-
Rice-Rosengren (HRR) singular field,”"'” may not be
valid in the case of certain amounts of crack extension
where J ceases to act as amplifier for this singular

field. Nevertheless, possible error is considered
tolerable if the relative amount of crack extension
stays within a certain limit and if elastic unloading and
non-proportional plastic loading zones around a crack
tip are surrounded by a much larger zone of nearly
proportional loading controlled by the HRR field.
Under this condition of J-dominance, both the onset
and limited amount of crack growth can be correlated
to the critical values of J and the J-resistance curve,
respectively."'

Consider a pipe, shown in Fig. 1, which has mean
radius R, wall thickness ¢, and a circumferential
through-wall crack of total angle 26 and mean length
2a =2R@. 1t is assumed that the constitutive law
characterizing the material’s stress—strain response
can be represented by the well-known Ramberg-

Osgood model
£ _Y_ a<£> (1)
£ 0Oy To

in which o, is a reference stress, which can be
arbitrary, but is usually assumed to be the yield stress,
E is the modulus of elasticity, &,= oo/E is the
associated reference strain, and a and n are model
parameters usually chosen from best fit of actual
laboratory data. Also, the J-resistance curve from the
compact tension specimen is deemed to be adequately
characterized by a power-law equation

Jr(Aa) = J, + c(ék—”)m (2)

in which Aa=RA@ is the crack length extension
during crack growth, Ji. is the fracture toughness at
crack initiation, and C and m are model parameters
also obtained from best fit of experimental data. In
eqn (2), k is a dummy parameter with a value of 1
introduced here only to dimensionalize C (e.g. when
Aa is expressed in mm, if k=1 mm, C has the same
dimensions as J). Note that ‘Aa” here is the physical

o

Fig. 1. A pipe with a circumferential through-wall crack
subject to pure bending.
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crack extension, i.e. without blunting. This is because
blunting is automatically accounted for in the pipe
estimation schemes as well as finite element analysis.

2.1 The J-integral

The J-integral defines the amplitude of the HRR
singularity field, just as the stress intensity factor
characterizes the amplitude of the stress field in
linear-elastic fracture mechanics (LEFM). Thus J
completely describes the conditions within the plastic
zone. A cracked structure in small-scale yielding has
two singularity-dominated zones: one in the elastic
region, where stress varies as "2 and one in the
plastic zone, where stress varies as r~ """ (r is a
polar co-ordinate with crack tip as the origin). In
EPFM, the latter often persists long after the linear
elastic singularity zone has been destroyed by crack
tip plasticity.

Under elastic—-plastic conditions and deformation
theory of plasticity when the stress—strain curve is
modeled by eqn (1), the total crack driving force J can
be obtained by adding the elastic component J. and
the plastic component J,, i.e.

J=J.+1, 3)

For a TWC pipe under pure bending, closed-form
expressions can be developed for both J, and J,. They
are described below.

2.1.1 Elastic solution
The elastic component J, is given by Refs 12-14
KZ
J,=—
E

4)

where K; is the mode-/ stress intensity factor in which
the plane stress condition is assumed for a TWC pipe.
From LEFM theory, K, can be obtained as

K M F(% ?)\fzzﬁé (5)

" R

where F(6/m, R/t) is a dimensionless function that
depends on pipe and crack geometry. Hence, the
elastic J is

8 /6 RV M?
‘Ic:_F(_y_) 3 6
T \rn' t/ ERY ©)

2.1.2 Plastic solution

For the J controlled condition, the loading must be
proportional, i.e. the local stresses must increase in
proportion to the remote applied load, M. Therefore,

for the pipe crack problem, the plastic J can be
expressed as'*'*

2 n+1
= — _— — — | — 7
= R9<1 M 7

in which A,(6/m, n, R/t) is another dimensionless
function that depends on pipe geometry, crack
geometry, and material constant, and

6 1
M“: 40()R21[COSE_'2_SIH 9] (8)

is a conveniently defined reference load that
represents the limit-load for a TWC pipe under pure
bending if o, is the collapse stress. Thus, for a given
TWC pipe if F and A, are known, the crack driving
force J can be predicted readily.

2.2 Evaluation of F- and h,-functions

2.2.1 Finite element analysis

The influence functions, F(8/rm, R/t) and h,(8/n, n,
R/t), can be computed by using the finite element
method (FEM). Computations of this kind for
through-wall-cracked pipes were first reported by
Kumar et al.'*'* The finite element analyses by Kumar
et al.'"'* involved 9-noded shell elements with three
displacement and two rotational degrees of freedom at
each node. The elements had only one node in the
thickness direction. No special elements were needed
to account for plastic incompressibility since the TWC
pipe under tension or bending is essentially a plane
stress problem.'™'* J was calculated by the virtual
crack extension technique.'”™'* In Kumar er al'*'*
these influence functions are cataloged at several
discrete values of parameters 8/r, n and R/t For a
given pipe with arbitrary values of these parameters,
the corresponding F- and h,-functions can be
determined via interpolation or extrapolation of these
tabulated values.

In a recent study at Battelle, these influence
functions were examined to determine their adequacy
for flaw evaluation of pipes with circumferential
through-wall cracks. From preliminary evaluation, it
was found that: (1) the compiled values of h,, and
hence J,, were too large especially when the material
hardening exponent » is large and/or the crack size
O/m is small; (2) for small crack sizes, the pipe
rotations due to cracking were negative for both
elastic and plastic solutions; and (3) no solutions were
made available for n = 10 and some of the n =7 cases
due to reported numerical difficultics. Some of these
difficulties may be due to the use of simple 9-noded
shell elements that could have produced overly stiff
results.”™'® In consequence, the above influence
functions were recomputed with particular attention
to pipes with short through-wall cracks (e.g. when
8/m<1/8)." In these new calculations several load
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Fig. 2. Finite element idealization for a quarter pipe with a
through-wall crack.

cases, such as tension, bending, and combined bending
and tension, were considered. Figure 2 shows a typical
finite element mesh for a TWC pipe. Due to
symmetry, only a quarter of the pipe needed to be
modeled. In all cases, 20-noded isoparametric brick
elements were used with adequate refinement at the
crack tip. Only one element through the pipe wall
thickness was used and as such, the results should be
viewed as average values through the pipe wall. The
elastic solutions were developed using the -elastic
properties of the pipe. A deformation theory of
plasticity algorithm in the ABAQUS finite element
code'” was used to generate the plastic solution. A
reduced 2 X 2 Gauss quadrature integration rule was
utilized. J was calculated by the contour integral
definition."””"™ The calculations were carried out for
0/r=1/16, 1/8, 1/4and 1/2, n=1, 2, 3, 5, 7 and 10,
and R/r =35, 10 and 20. No numerical difficulties were
encountered. Further details are available in the
papers by Brust et al.®'®

2.2.2 Analytic approximations

Following explicit finite element (ABAQUS) calcula-
tions of F- and h-functions at the pre-determined
values of 8/m, n and R/:, multi-variate response
surface approximations were recently developed by
the author.' The proposed equations for F(8/r, R/t)
and h\(6/x, n, R/t) are

0 R
F<_,_):l+{A1 A, Az}
Tt

e

« 4 (g)> (8, 8, B, BY (K 4 o

=N

2 8= ()

C‘()() CI() CZ() C}()

1
% Cy Cn Cyn Cy ”2 (10)
Cp Cpn Cyn Cyp n
n

Cl 13 C 13 C23 C'B

where the coefficients A4, (i=1,2,3), B;(i=1,2,3,4),
and C;(i,j=0,1,2,3) were calculated from the
best-fit of FEM results. Note that the coefficients A;
and B, are both constant while the coefficient C;
depends on the R/t ratio. The values of these
coefficients are provided in Appendix A. Using these
values, Figs 3 and 4 show the surface plots of F- and
h,-functions (for R/t =10) defined by eqns (9) and
(10), respectively. The points with the droplines in
these figures represent the numerical values from the
ABAQUS finite element calculations.'®'® Further
details and similar plots of A;-functions for other
values of R/t are available in Rahman."”

2.2.3 Comparisons with other solutions

Other solutions of F- and h,-functions available in
the literature were compared with eqns (9) and (10) to
evaluate their adequacy. They involved analytical
solutions by Sanders’ energy release rate (elastic)
formula,”*?! analytical solutions by Klecker et al.** and
Zahoor,” and extensive finite-clement calculations by
Kumar et al.,'*"* and Brust et al.'®'® Figure 5 shows
the comparisons of proposed F with these solutions as
a function of crack size 8/n for R/t =5, 10 and 20. As
expected, eqn (9) agrees very well with all FEM
calculations by Brust er al. There is little difference
between the FEM results by Brust ef a/. and Kumar et
al. when the crack size is smaller (e.g. 8/m=1/8).
However, for large crack size and large R/t =20, the
FEM values of F produced by Brust et al. are slightly
greater than those generated by Kumar er al. The
Sanders™ solutions provide accurate results for large

F(8/m,R/t)

Fig. 3. Surface plot of proposed F-function.
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Fig. 4. Surface plot of proposed A, -function for R/r = 10.

cracks, but can be overly unconservative for small
cracks. In the limit when 6/m approaches zero, the
Sanders’ solutions do not converge to unity. The
solutions by Klecker er al., which were developed
based on Sanders’ solutions with corrections for small
cracks, are closer to the Kumar et al. solutions. The
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Fig. 6. Comparisons of h,-functions by various methods.

solutions by Zahoor appear to fall in between the
FEM results of Brust ef al. and Kumar et al.

Figure 6 shows similar plots of /4, as a function of
material constant n for several cases of crack size
6/n=1/16, 1/8, 1/4 and 1/2, and R/t =5, 10 and 20
by various methods. As before, the solutions include
finite element calculations by Brust et al'®' and
Kumar er al'*'* However, no analytical solutions
were available for calculating k2, due to the complexity
of the problem. From Fig. 6, there are some
differences between the FEM results of Brust et al.
and Kumar er al. when the crack size is small (e.g.
0/m =1/8) and/or material hardening exponent n is
large (e.g. n=3). In those cases, the values of A,
produced by Kumar et al. are always greater than
those generated by Brust er al. Hence, for short TWC
cracked pipes with ferritic steel or ferritic/austenitic
welds (which are usually associated with large n), the
prediction of load-carrying capacity based on Kumar
et al. influence functions can be somewhat conserva-
tive. This is consistent with the author’s past experi-
ence during analyses of full-scale pipe fracture ex-
periments.'***2* Also, for large R/t (e.g. R/t=20),
some differences may also exist between these FEM
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solutions. Further details on the comparisons of
results for other influence functions for crack-opening
displacement, pipe displacement and pipe rotation are
discussed in Brust ef al.'®'

The F- and h;-functions developed by the author
(eqns (9) and (10)) should be applicable for
1/16<=68/x<1/2, 1=n=10, and 5=R/t=20. For
the parameter values outside these ranges, they were
not verified in this study since no corresponding FEM
results were available. Also, the adequacy of these
functions should be further evaluated by comparing
with more elastic—plastic FEM results when available.

3 FAILURE LOAD

In order to evaluate structural integrity, it is required
to know the load-carrying capacity of a piping system.
These are several means by which it can be estimated.
They are based on various definitions of failure
criteria such as, initiation of crack growth and
unstable crack growth in elastic—plastic fracture
mechanics, and the net-section collapse in limit-load
analysis. They are briefly described below.

3.1 Initiation load

The initiation load M, can be defined as the bending
moment which corresponds to initiation of crack
growth in a pipe. If J is a relevant crack driving force,
it can be estimated by solving the following nonlinear
equation

f(M)=J(M;,a) =], =0 (1)

in which J(M,, a) is the energy release rate (i.e.
J-integral) for load M, and crack size a = R6, which
can be obtained from eqns (3), (6) and (7), and Jy. is
the plane strain mode-I fracture toughness at crack
initiation. J;. can be determined from standard
compact tension test at the laboratory.'*?* Standard
numerical methods, such as the bisection method,
Newton—-Raphson method, and others, can be applied
to solve eqn (11).7

3.2 Maximum load

In applications of nonlinear fracture mechanics,
particularly for nuclear power plants, the J-tearing
theory is a very prominent concept for calculating the
maximum load-carrying capacity of a pipe. It is based
on the fact that fracture instability can occur after
some amount of stable crack growth in tough and
ductile materials with an attendant higher applied load
level at fracture. Let J and Ji denote the crack driving
force and toughness of a ductile piping material as a

function of load and crack size. The limit state
characterizing fracture instability based on J-tearing
theory is given by

fl(Mmaxs a*) :J(Mmax» a*) - JR(a* - a) =0 (12)

and
aJ dJ
F(Moa @) = — (Mg a*) — == (a* —a) =0 (13)
da da

where M, and a* represent load and half the crack
length when crack growth becomes unstable. Equa-
tions (12) and (13) are two nonlinear simultaneous
equations with the independent variables M,,,, and a*.
Once again, they can be solved by standard methods,
such as the Newton-Raphson method.”

3.3 Net-section collapse load

The net-section collapse analysis is a simple,
straightforward failure prediction method for TWC
pipes in pure bending. In this analysis, it is assumed
that: (1) the failure load occurs when the pipe section
containing the crack becomes fully plastic; (2) there is
insignificant crack growth from crack initiation to
failure; and (3) the toughness of the material is
sufficiently high so that failure is governed by the
strength of materials (i.e. the flow stress or collapse
stress). The collapse stress is a value between the yield
and ultimate strengths of a material and represents an
average critical net-section stress throughout the
remaining ligament of the structure. Based on these
assumptions, the net-section collapse load M, is
given by*®

e 1
M., = 40,~th(cos 572 sin 6) (14)

where o is the flow stress or the collapse stress. In
this paper, o; is assumed to be the average of yield
and ultimate strengths of the pipe material.

4 RANDOM PARAMETERS AND SYSTEM
RESPONSE

Consider a cracked pipe with uncertain mechanical
and geometric characteristics that is subject to random
loads. Denote by X an N-dimensional random vector
with components X, X,, ..., Xy characterizing un-
certainty in the system and load parameters. For
example, when a TWC pipe is considered, the possible
random components are: crack size 6/m, pipe
radius-to-thickness (R/t) ratio, elastic modulus E,
basic strength parameters ¢, and o,, Ramberg-
Osgood constitutive parameters o and n, fracture
toughness parameters Ji., C and m, and applied
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bending moment M. All or some of these variables
can be modeled as random variables. Hence, any
relevant response, such as the J-integral, should be
evaluated by the probability

Gy PO <i® [ w9

or the probability density f(j,) = dF,(j,)/dj, where
E(j,) 1s the cumulative probability distribution
function of J and fx(x) is the known joint probability
density function of random vector X.

The above fracture parameter J can also be applied
to determine the load-carrying capacity of TWC pipes.
Several fracture criteria based on this J-integral
parameter and net-section collapse are discussed in
Section 3. In a generic sense, let M{(X) denote the
failure moment for a given TWC pipe under pure
bending. Note that M{(X) is always random because it
depends on input vector X which is random. It can be
evaluated when a relevant crack driving force from
deterministic fracture (e.g. J-integral from finite
element analysis or eqns (9) and (10)) and an
appropriate fracture criteria (e.g. eqn (11) or eqns
(12) and (13)) are known. Suppose that the design
requires M¢(X) to be always greater than the applied
load M (M can be random as well). This requirement
cannot be satisfied with certainty because both the
system and the load parameters are uncertain. Hence,
the performance of the pipe should be evaluated by
the reliability P or its complement, the probability of
failure, Pr (Ps =1 — Py) defined as

REPA0 <0 Amax (16)
£(x)<O

where the g(X) is the performance function given by
gX)=M;—- M
=8(o,, 0, a,n 0, C,m, 0/m, R/t, EY—M (17)

in which § is a function (implicit) of random
parameters characterizing the pipe’s structural resis-
tance (only the random arguments are shown in eqn
(17)). A wide variety of failure probability, defined by
eqn (16), can be evaluated if the appropriate fracture
criterion is known. For example, when M(X) is equal
to the initiation load M;(X), P in eqn (16)
corresponds to the probability of initiation of crack
growth which provides a conservative estimate of the
pipe’s structural performance. A more realistic
evaluation of a pipe’s reliability can be evaluated if
My(X) is equal to the maximum load M, (X) (which
allows the crack to grow until it becomes unstable) in
which case Py represents failure probability due to the
exceedance of the pipe’s maximum load-carrying
capacity. When EPFM-based failure criteria are not
necessary, a simple performance function based on
limit-load analysis [i.e. M{(X) = M, (X)] can also be
used to determine failure probability of pipes.

Numerical efforts are often required to compute
M{(X) particularly when M(X)= M(X) or M,(X).
This is true in spite of analytical representations of F-
and A -functions to compute J. and J,, respectively. In
this paper, the Newton-Raphson method is used to
solve for M;(X) and M,,.(X).

5 STRUCTURAL RELIABILITY ANALYSIS

The generic expression for both probabilities in
eqns (15) and (16) involves multi-dimensional prob-
ability integration for their evaluation. In this
regard, standard reliability methods, such as
first- and second-order reliability methods (FORM/
SORM)!*?** and simulation methods, such as
importance sampling (IS),'’***" Monte Carlo Simula-
tion (MCS),'"*" and others, can be applied to com-
pute these probabilities. Some of these methods have
been successfully applied to various probabilistic frac-
ture-mechanics  evaluations.”™ In this paper,
FORM/SORM, importance sampling and MCS
methods are used for structural reliability analysis.
They are briefly described here to compute the
probability of failure Py in eqn (16) assuming a generic
N-dimensional random vector X and the performance
function g(x) defined by eqn (17). The same methods
can be applied to determine the probability F(j,)
defined by eqn (15).

5.1 First- and second-order reliability methods
(FORM/SORM)

First- and second-order reliability methods are based
on linear (first-order) and quadratic (second-order)
approximations of the limit state surface g(x)=0
tangential to the closest point of the surface to the
origin of the space. The determination of this point
involves nonlinear constrained optimization and is
performed in the standard Gaussian image of the
original space. The FORM/SORM algorithms involve
several steps. First, the space of uncertain
parameters x is transformed into a new N-dimensional
space w consisting of independent standard Gaussian
variables. The original limit state g(x)=0 then
becomes mapped into the new limit stage g, (u) =0 in
the u space. Second, the point on the limit stage
gu(u) = 0 having the shortest distance to the origin of
the u space is determined by using an appropriate
nonlinear optimization algorithm. This point is
referred to as the design point or B-point, and has a
distance By to the origin of the u space. Third, the
limit state g, (w)=0 is approximated by a surface
tangent to it at the design point. Let such limit states
be g, (w)=0 and g,(u)=0, which correspond to
approximating surfaces as hyperplane (linear or
first-order) and hyperparaboloid (quadratic or second-
order), respectively. The probability of failure Pr (eqn
(16)) is thus approximated by Pr[g; (u) <0] in FORM
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and Pr[g,(u)<0] in SORM. These first-order and

second-order estimates Pr; and P, are given by'%2%*
Pe = ®(—Buy)
No (18)
Pio=®(=Bu) l_[ (1- KiBHLYL2
i=1
where
d(u) = L J“ exp( — 3&%) dé (19)
Von . P 2 &

is the cumulative distribution function of a standard
Gaussian random variable, and «;s are the principal
curvatures of the limit state surface at the design
point. FORM/SORM are analytical probability
computation methods. Each input random variable
and the performance function g(x) must be con-
tinuous. Depending on the solver for nonlinear
programming, additional requirements regarding
smoothness i.e. differentiability of g(x) may be
required. Further details of FORM/SORM equations
are available in Ref. 19.

5.2 Monte Carlo simulation (MCS)

Consider a generic N-dimensional random vector X
which characterizes uncertainty in all load and system
parameters with the known joint distribution function
Fx(x). Suppose x‘", x*, ... x") are L realizations of
input random vector X which can be generated
independently. Rahman'® provides a simple method to
generate X from its known probability distribution.
Let gV, g, ..., g™ be the output samples of g(X)
corresponding to the input x', x*, ..., x™ that can
be obtained by conducting repeated deterministic
evaluations of the performance function in eqn (17).
Define L; as the number of trials which are associated
with negative values of the performance function.
Then, the estimate Pr ;s by simulation becomes

L.
Piyes = zl (20)

which approaches the exact failure probability £
when [. approaches infinity. When L is finite, a
statistical estimate of the probability estimator may be
needed. In general, the required sample size must be
at least 10/Minimum(P;, Ps) for a 30% coefficient of
variation of the estimator.*'

5.3 Importance sampling

In importance sampling, the random variables are
sampled from a different probability density, known as
the sampling density. The purpose is to generate more

outcomes from the region of interest, e.g. the failure
set  F={x:g(x)<0}. Using information from
FORM/SORM analyses, good sampling densities can
be constructed. According to Hohenbichler,” the
failure probability estimate Pg;s by importance
sampling based on SORM improvement is given by

N—1
Prs= CD(—BHI_) []1 (1—= Ki‘b(_BHL))‘I/Z

L W P(ho(w;)) 1 AN 2
X le,; (b—(BHL)_eXP[ 2 (Br) AZ1 Kka./]
(21)

where $(—Bui) = ¢(—Bu)/P(—Bu) with ¢(-) and
®(-) representing probability density and distribution
functions, respectively, of a standard Gaussian
random variable, w; = {w, ;, wa,, ..., wy_, }" is the jth
realization of an N —1 dimensional independent
Gaussian random vector W with the mean and
variance of the ith component being zero and 1/[1 —
U(—Bu)l, ho(w;) is the quadratic approximant in the
form of a rotational hyperparaboloid, and N is the
sample size for importance sampling. Further details
are available elsewhere.'"*5%

6 NUMERICAL APPLICATIONS
6.1 Description of the problem

For a numerical example, consider a TWC side riser
pipe made of Type 304 stainless steel from a boiling
water reactor (BWR) plant. The pipe had outer
diameter D, =709-17 mm (27-92in.), wall thickness
1=3377mm (1-33in.) [i.e. R/t=10], and elastic
modulus E = 182,700 MPa (26,500 ksi). These para-
meters were treated as deterministic variables since no
significant statistical variabilities were found from
their actual measurements. The operating temperature
at BWR condition was assumed to be 288°C (550°F).
The random parameters included crack size 8/x, yield
strength o, ultimate strength o,, Ramberg-Osgood
constitutive parameters « and n, and fracture
toughness parameters J,.,, C and m. The statistical
properties of these variables are described below.

6.1.1 Statistical characteristics of material properties

The samples of raw data for the stress—strain and
J-resistance curves of a specific pipe material (e.g.
Type 304 stainless steel) at 288°C (550°F) were
obtained from Hiser and Callahan,' Wilkowski et al.,”
Schmidt er al.,” Chopra et al.,* Landes ef al.’ and Van
Der Sluys.® Each of these were then fitted with the
eqns (1) and (2) to determine the constitutive model
parameters « and #n, and fracture toughness
parameters, Ji., C and m. (This is a standard practice
in the deterministic pipe fracture evaluations.) The
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basic strength parameters, such as yield strength o,
(0-2% offset) and ultimate strength o, were
determined as well. These provided the independent
measurements of the random vectors {o,,o,}", and
{/i C, m}" representing pipe material properties.
Following standard statistical analyses, conducted in
Rahman et al,**" Table 1 shows the mean and
covariance for each of these random vectors. It was
assumed that the joint probability distribution of each
vector was lognormal. This was justified wvia
comparisons with actual data in Fig. 7 which indicate
that the marginal probability of each component of
the above vectors follows lognormal distribution
reasonably well. A Gaussian distribution also seems to
be a good choice, but there are some concerns on the
possible negative realizations of some of these positive
random variables which have large coefficients of
variation. Hence, X was modeled with lognormal
probability although no rigorous proof was provided
here to validate this assumption by comparing the
multivariate joint probability distributions. Also, no
correlations were permitted between the strength and
toughness properties because each set of laboratory
data did not always include simultaneous measure-
ment of all properties. However, the components
within each vector were correlated and their
correlation characteristics were defined in the
covariance matrices provided in Table 1. See
Rahman'® for the effects of correlation among random
inputs on the piping reliability.

In general, a substantial amount of data is needed
to obtain an accurate probability distribution of the
material properties. The lognormal distribution of
material properties was chosen based on the statistical
analysis of a limited amount of data.*>™* It is primarily
used here to illustrate the probabilistic model
developed in this study. If additional data are
available or developed, they should be applied to
verify this lognormal hypothesis. Also, it is useful to

conduct some sensitivity calculations to probability
distribution of input. For example, see Rahman' for
variations in the input distribution of X and their
effects on pipe fracture probability.

6.1.2 Statistical properties of initial flaw size

In order to perform probabilistic analysis, the
probability distribution of initial crack size 6/z needs
to be specified as well. In this example problem, it was
assumed that the TWC crack was located in the base
metal of the pipe with the anticipated cracking
mechanism being intergranular stress corrosion
cracking (IGSCC). During a recent study by the
authors on probabilistic leak-before-break analysis
(LBB), it was found that the leakage size flaw can be
modeled by the lognormal or the truncated normal
distributions.*>™” The distribution parameters of this
flaw size vary according to the leak-rate detection
capability and applied normal stresses in the pipe. The
analyses accounted for statistical variability of several
crack morphology variables (e.g. surface roughness,
number of turns or bends, path deviation factors, etc)
of IGSCC crack, which can affect the leak rate
through cracks typically found in nuclear piping.
Detailed results of these analyses are available in
Rahman et al.** Assuming that the initial crack is
the LBB detectable flaw (leakage size crack), it was
modeled here with a lognormal probability distribu-
tion. When the normal operating stress is 50% of
service level-A stress (service level-A stress limit is
equal to 1-55,,, where S, is the code-specified design
stress defined in the ASME Section III, Appendix I)*
and the leakage detection capability is 10 gpm, the
mean value of 6/m is 0-16 with the coefficient of
variation 9-69% for the side riser pipe considered in
this example.*>™*’ Comparisons of lognormal (and also
Gaussian) distribution with simulated (computed)
distribution of 6/n are also shown in Fig. 7. Further
details can be obtained from Rahman et al.**

Table 1. Mean and covariance of material properties for type 304 stainless steel
pipe at 288°C (550 F)

Random Mean Covariance

vector vector matrix

{Uy}” 151-526 220-881 118:615
o, {450-632} [118~615 652~654]

{a h 8-942 10-920 —1-202
n} {3-615} [-1-202 0-208 ]
L] 1059-56 2:024x10°  —-58937 —-25-530
C 345-087 —58937  1-006 X 10° 6-842
m 0-652 —25-530 6-842 0-0242

“Both o, and o, are in MPa unit.

"« and n are dimensionless: o, = 152 MPa; E = 182700 MPa (see eqn (1)).
“Both J,. and C are in k) m™ with k =1 mm (see eqn (2)); m is dimensionless; Aa

is to be expressed in mm.
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Fig. 7. Statistical characterization of random input variables.

The methods to generate samples of generic
random vector X, which are needed in FORM/SORM
and simulation analyses, require the Rosenblatt trans-
formation to obtain the standard Gaussian vector
U."3* For special cases, when X is either correlated

normal or correlated lognormal, the above transfor-
mation can be side-stepped by invoking the Cholesky
decomposition of the covariance matrix. Further
details on the sample generation of X, either generic
or normal/lognormal, are available in Ref. 19.
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6.2 Probabilistic characteristics of the J-integral

The second-order reliability method was applied to
determine the probabilistic characteristics of the
J-integral for the side riser pipe as a function of
applied load. Figure 8 shows the computed probability
densities [f;(j,)] for several values of applied load
M =1-0MNm, 1-25 MNm and 1-50 Mnm. They were
obtained by repeated FORM/SORM analysis for
various thresholds of J, i.e. by calculating the
probability in egn (15) as a function of j, and then
taking the numerical derivative of this probability with
respect to j,. As expected, the probability mass shifts
to the right when the applied loads are higher. Also
presented in the same figures are the corresponding
histograms of J-integral developed by conducting
direct Monte Carlo simulations for the same values of
applied loads.
The sample size for each Monte Carlo analysis was
10,000. The results indicate that SORM can predict
probabilistic characteristics of J with very good
accuracy when compared with the Monte Carlo
method for all values of applied load considered here.

Figure 9 shows the componential probability
densities (as well as total) of J-integrals computed for
several values of applied loads. Three load cases were
considered and they were: M =0-25MNm, M =
0-7MNm and M =1-5MNm representing small,
intermediate, and large load magnitudes, respectively.
For each load, the probability densities of J., J, and J
(=J. +J,) were computed by SORM. It appears that
when the applied moment is small (M = 0-25 MNm),
the elastic component of J is much greater than the
plastic component of J and hence, the fracture
behavior is significantly governed by the elastic
properties of pipe. On the other hand, when the
applied load is large (M =1:5MNm), the plastic
component of J is more pronounced and thus
nonlinear fracture mechanics become necessary to
evaluate piping integrity. Finally, when the load
magnitude is somewhat intermediate (M = 0-7 MNm),
both components of J are needed to predict the
fracture behavior of pipes.

10
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©
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Fig. 8. Accuracy of SORM results in computing probabilis-
tic characteristics of J.
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Fig. 9. Probabilistic characteristics of J.-, J,- and J-integrals
for various loads.

6.3 Piping reliability assessment

Figure 10 shows the plots of failure probability Pr vs
applied moment M for the side riser pipe obtained for
several definitions of the failure load defined earlier.
Various reliability methods, such as FORM and
SORM, and simulation methods, such as IS and MCS,
were used to determine the failure probability. They

Probability of Failure (Py)

Applied Load (M), MN-m

Fig. 10. Probability of failure by various methods.
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all consistently indicate that P increases as M
increases, and it approaches unity when M becomes
very large. Compared with the failure probability due
to the pipe instability, the failure probabilities based
on the initiation of crack growth and net-section-
collapse are found to be higher and lower,
respectively. Unless there is sufficient evidence that
the pipe will fail with a limit-load criterion, an analysis
based on the net-section-collapse load (without any
safety margin) may overpredict the reliability of pipes
significantly. However, further studies are needed to
verify this finding and determine if, indeed, this is a
general trend.

Figure 10 also shows that the results obtained by the
approximate methods, e.g. FORM and SORM
provide satisfactory probability estimates when com-
pared with the results from importance sampling and
MCS methods. No meaningful differences are found
between the results of FORM and SORM and their
probability estimates are virtually identical. During
the performance of MCS, the sample size was varied
according to the level of probability being estimated.
In all cases, the sample size was targeted to be
10/Min(Pg, Ps) [with a minimum of 500] for obtaining
a 30% coefficient of variation of the probability
estimator.

Figure 11 exhibits the relative effort and computa-
tional expenses required to determine above solutions
by FORM, SORM, IS, and MCS methods. They were
measured in terms of central processing units (CPU)
by executing computer codes for each of these
methods. The plots in this figure show how the ratio of
CPU time required by FORM, SORM, and IS (the
CPU ratio is defined as the ratio of the CPU by each
of these methods and the CPU by MCS) varies with
the range of probability estimates made in this study.
It appears that for values of failure probability
approaching 1, the CPU ratio also approaches 1
implying that the computational effort by each of
these four methods is very similar. However, when the
failure probabilities are smaller, a significant amount
of CPU time can be saved by using FORM, SORM,

10° g

CPU Ratio @

CPU by FORM or SORM or IS

*} CPU Ratio =

CPU by MCS

107 T R T R BT G T G WU T TT RN I AT Ty
10® 107 10® 10 10+ 102 102 10 10°
Computed Probability of Failure

Fig. 11. Computational efficiency of FORM/SORM and
importance sampling.

and IS methods instead of using MCS. A computa-
tional advantage in the order of 107° times the CPU
time required by MCS was observed in performing
these pipe specific probability calculations. Similar
efficiency of FORM/SORM was also reported by
Riesch—-Oppermann and Bruckner-Foit for other
probabilistic fracture-mechanics evaluations.** Also,
the differences in CPU times consumed by FORM,
SORM, and IS analyses are quite negligible when
compared with the magnitudes of CPU time required
by MCS. Clearly, the FORM/SORM algorithms and
importance sampling method are more efficient than
the direct MCS and are far superior particularly when
the failure probabilities are in the lower range.

7 SUMMARY AND CONCLUSIONS

A probabilistic model was developed for fracture
analysis of circumferential through-walled-cracked
pipes subject to bending loads. It involves elastic—
plastic finite element analysis for estimating energy
release rates, J-tearing theory for characterizing
ductile fracture, and standard structural reliability
methods for conducting probabilistic analysis. The
evaluation of the J-integral is based on the
deformation theory of plasticity and power-law
idealizations of stress—strain and fracture toughness
curves. This allows the J-integral to be expressed in
terms of non-dimensional influence functions that
depend on crack size, pipe geometry, and material
hardening constant. New equations were developed to
represent these influence functions. The validity of the
proposed equations for predicting crack driving force
in a TWC pipe was evaluated by comparing with
available results in the literature.

FORM/SORM and simulation methods were
formulated to determine the probabilistic characteris-
tics of the J-integral for a circumferential TWC pipe
as a function of applied bending moment. The same
methods were used later to compute the failure
probability of the cracked pipes. Several failure
criteria associated with crack initiation, unstable crack
growth, and net-section-collapse were used to
determine such probabilities. Numerical applications
are provided to illustrate the proposed methodology.
Nuclear piping made of Type 304 stainless steel (side
riser pipe) from a boiling water reactor plant was
chosen to evaluate its probabilistic performance. The
results showed that:

+ Current reliability methods, such as FORM and
SORM, provided accurate probabilistic characteris-
tics of J-integrals and failure loads for TWC pipes
under bending with much less computational effort
when compared with those obtained by direct MCS.
A computational speedup in the order of 107 times
the CPU time consumed by MCS was observed in
performing pipe specific probability calculations.
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Similar accuracy and computational efficiency were
also demonstrated by the importance sampling
method.

The failure probabilities due to the exceedance of
initiation load and net-section-collapse load were
higher and lower, respectively, when compared with
those due to the exceedance of maximum load of a
TWC pipe. Large differences may exist in the
results produced by each of the three failure
criteria, especially when the applied load levels are
smaller for which failure probabilities are also
smaller. Unless there is adequate evidence that the
pipe will fail with a limit-load criterion, an analysis
based on net-section-collapse load (without any
margin) may overpredict the reliability of a piping
system significantly. However, further studies are
needed to verify this finding and determine whether
this is a general trend.
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APPENDIX A: COEFFICIENTS A;, B; AND C;
FOR F- AND h,-FUNCTIONS

A.l1 Coefficients A; and B;

Lel A = {A] s Az, A}}T and B = {Bl» B2) B}r B4}T be
two vectors with the coefficients A; and B; as their
components, respectively. A and B are given by'’

A
B

={0-006215 0-013304
={175-577 91-69105

—0-018380}"

(A1)
—5-53806  0-15116}"

A.2 Coefficients C;

Let C=[C,), i,j=0,1,2,3, be a matrix with the

coefficients C;; as its components. C is given by
R/t=5
3-74009 1-43304 —0-10216  0-002297
| 019759 —10-19727 —0-45312  0-04989
| 3642507 17-03413 336981 —0-21056
—70-4846 —14-69269 —2-90231  0-15165
(A2)
R/t=10
3-39797 1-31474  —0-07898  0-00287
C —3-07265 434242 -2.48397  0-11476
131-7381 —79-02833  16-18829 —0-66912
—234-6221  117-0509 -20-30173  0-79506
(A3)
R/t=20
4-07828  —1-55095 0-67206 —0-04420
| 1821195 69-92277 —18-41884  1-11308
357-4929 —453-1582  108-0204 —6-56651
—602:7576  617-9074 —144-9435  8-90222

(A4)



