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This paper introduces a new generalized polynomial chaos expansion (PCE) 
comprising measure-consistent multivariate orthonormal polynomials in dependent 
random variables. Unlike existing PCEs, whether classical or generalized, no tensor-
product structure is assumed or required. Important mathematical properties of 
the generalized PCE are studied by constructing orthogonal decomposition of 
polynomial spaces, explaining completeness of orthogonal polynomials for prescribed 
assumptions, exploiting whitening transformation for generating orthonormal 
polynomial bases, and demonstrating mean-square convergence to the correct limit. 
Analytical formulae are proposed to calculate the mean and variance of a truncated 
generalized PCE for a general output variable in terms of the expansion coefficients. 
An example derived from a stochastic boundary-value problem illustrates the 
generalized PCE approximation in estimating the statistical properties of an output 
variable for 12 distinct non-product-type probability measures of input variables.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Polynomial chaos expansion (PCE) is an infinite series expansion of an output random variable involving 
orthogonal polynomials in input random variables. Introduced by Wiener [22] for Gaussian input variables, 
followed by a proof of convergence [2], the original PCE, referred to as the classical PCE in this paper, was 
later extended to a generalized PCE [23] to account for non-Gaussian variables. Approximations derived 
from truncated PCE, whether classical or generalized, are commonly used for solving uncertainty quantifi-
cation problems, mostly in the context of solving stochastic partial differential equations [11,21], yielding 
approximate second-moment statistics of an output random variable of interest. However, the existing PCE 
is largely founded on the independence assumption of input variables. The assumption exploits product-type 
probability measures, facilitating construction of the space of multivariate orthogonal polynomials via tensor 
product of the spaces of univariate orthogonal polynomials. In reality, there may exist significant correlation 
or dependence among input variables, impeding or invalidating many stochastic methods, including PCE. 
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The Rosenblatt transformation [18], commonly used for mapping dependent to independent variables, may 
induce very strong nonlinearity to a stochastic response, potentially degrading or even prohibiting conver-
gence of probabilistic solutions [16]. While the works of Soize and Ghanem [20] and Rahman [17] to cope 
with dependent variables are a step in the right direction, they, respectively, employ non-polynomial basis 
unamenable to producing analytical formulae for response statistics and focus strictly on Gaussian vari-
ables. Furthermore, the first of these studies does not address denseness or completeness of basis functions 
or account for infinitely many input variables. Therefore, innovations beyond tensor-product PCEs, capable 
of tackling non-product-type probability measures, are highly desirable.

This study delves into a number of mathematical issues concerning necessary and sufficient conditions 
for the completeness of multivariate orthogonal polynomials; convergence, exactness, and optimal analy-
ses; and approximation quality due to truncation – all associated with a generalized PCE for dependent, 
non-product-type probability measures. Therefore, the results of this paper are new in many aspects. The 
paper is organized as follows. Section 2 defines or discusses mathematical notations and preliminaries. A set 
of assumptions on the input probability measure required by the generalized PCE is explained. A brief 
exposition of multivariate orthogonal polynomials consistent with a general, non-product-type probability 
measure, including their second moment properties, is given in Section 3. The section also describes rel-
evant polynomial spaces and construction of their orthogonal decompositions. The orthogonal basis and 
completeness of multivariate orthogonal polynomials have also been established. Section 4 defines the poly-
nomial moment matrix, resulting in a variety of whitening transformations to produce measure-consistent 
orthonormal polynomials. The statistical properties of both orthogonal and orthonormal polynomials are 
presented. Section 5 formally introduces the generalized PCE for a square-integrable random variable. The 
convergence, exactness, and optimality of the generalized PCE are explained. In the same section, the 
approximation quality of a truncated generalized PCE is discussed. The formulae for the mean and vari-
ance of a truncated generalized PCE are derived, and methods for estimating the expansion coefficients 
are outlined. The section ends with an explanation on how and when the generalized PCE proposed can 
be extended for infinitely many input variables. The results from a simple yet illuminating example are 
reported in Section 6 with supplementary details in Appendix A. Finally, conclusions are drawn in Sec-
tion 7.

2. Input random variables

Let N := {1, 2, . . .}, N0 := N ∪ {0}, R := (−∞, +∞), and R+
0 := [0, +∞) represent the sets of positive 

integer (natural), non-negative integer, real, and non-negative real numbers, respectively. For a non-zero, 
finite integer N ∈ N, denote by AN ⊆ R

N a bounded or unbounded subdomain of RN . The set of N ×N

real-valued square matrices is denoted by RN×N .
Let (Ω, F , P) be a complete probability space, where Ω is a sample space representing an abstract set 

of elementary events, F is a σ-algebra on Ω, and P : F → [0, 1] is a probability measure. With BN :=
B(AN ) representing the Borel σ-algebra on AN ⊆ R

N , consider an AN -valued input random vector X :=
(X1, . . . , XN )T : (Ω, F) → (AN , BN ), describing the statistical uncertainties in all system parameters of a 
stochastic problem. The input random variables are also referred to as basic random variables. The integer 
N represents the number of input random variables and is referred to as the dimension of the stochastic 
problem.

Denote by FX(x) := P(∩N
i=1{Xi ≤ xi}) the joint distribution function of X, admitting the joint proba-

bility density function fX(x) := ∂NFX(x)/∂x1 · · · ∂xN . Given the abstract probability space (Ω, F , P), the 
image probability space is (AN , BN , fXdx), where AN can be viewed as the image of Ω from the mapping 
X : Ω → A

N , and is also the support of fX(x). Relevant statements and objects in one space have obvious 
counterparts in the other space. Both probability spaces will be used in this paper.

A set of assumptions used or required by the generalized PCE is as follows.
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Assumption 1. The random vector X := (X1, . . . , XN )T : (Ω, F) → (AN , BN )

(1) has an absolutely continuous joint distribution function FX(x) and a continuous joint probability density 
function fX(x) with a bounded or unbounded support AN ⊆ R

N ;
(2) possesses absolute finite moments of all orders, that is, for all j := (j1, . . . , jN ) ∈ N

N
0 ,

E
[
|Xj|
]

:=
∫
Ω

|Xj(ω)|dP(ω) =
∫
AN

|xj|fX(x)dx < ∞,

where Xj = Xj1
1 · · ·XjN

N and E is the expectation operator with respect to the probability measure P or 
fX(x)dx; and

(3) has a joint probability density function fX(x), which
(a) has a compact support, that is, there exists a compact subset AN ⊂ R

N such that P(X ∈ A
N ) = 1, 

or
(b) is exponentially integrable, that is, there exists a real number α > 0 such that

∫
AN

exp (α‖x‖) fX(x)dx < ∞,

where ‖ · ‖ : AN → R
+
0 is an arbitrary norm.

Item (1) of Assumption 1 is not essential to PCE, but it is commonly invoked in applications. Item (2) of 
Assumption 1 assures the existence of an infinite sequence of multivariate orthogonal polynomials consistent 
with the input probability measure. Item (3) of Assumption 1, in addition to Items (1) and (2), guarantees 
the input probability measure to be determinate,1 resulting in a complete orthogonal polynomial system and 
hence a basis of a function space of interest. The assumptions impose only mild restrictions on the probability 
measure. Examples of input random variables satisfying Assumption 1 are multivariate Gaussian, uniform, 
exponential, Laplace variables, including some endowed with rotationally invariant density functions [5]. This 
assumption, to be explained in the next section, is vitally important for the determinacy of the probability 
measure and the completeness of orthogonal polynomials. Examples where Items (1) and (2) are satisfied, 
but Item (3) is not, are lognormal distributions, select distributions from the Farlie–Gumbel–Morgenstern 
family, Kotz-type distributions, and cases involving nonlinear transformations of random variables with 
determinate distributions [13]. As noted by Ernst et al. [7] for the univariate case (N = 1), the violation of 
Item (3) leads to indeterminacy of the lognormal probability measure and thereby fails to form a complete 
orthogonal polynomial system.

3. Multivariate orthogonal polynomials

Let j := (j1, . . . , jN ) ∈ N
N
0 , ji ∈ N0, denote an N -dimensional multi-index. For x = (x1, . . . , xN ) ∈

A
N ⊆ R

N , a monomial in the variables x1, . . . , xN is the product xj = xj1
1 · · ·xjN

N and has a total degree 
|j| = j1+ · · ·+jN . A linear combination of xj, where |j| = l, l ∈ N0, is a homogeneous polynomial of degree l. 
Denote by

PN
l := span{xj : |j| = l, j ∈ N

N
0 }, l ∈ N0,

1 The density function of the probability measure, if it is uniquely determined by a sequence of moments, is called determinate or 
M-determinate. Otherwise, the density function is indeterminate or M-indeterminate. This is known as the moment problem with 
three prominent flavors, depending on the support of the density: Hausdorff moment problem (AN = [0, 1]N ), Stieltjes moment 
problem (AN = R

+N
0 ), and Hamburger moment problem (AN = R

N ).
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the space of homogeneous polynomials of degree l, by

ΠN
m := span{xj : |j| ≤ m, j ∈ N

N
0 }, m ∈ N0,

the space of polynomials of degree at most m, and by

ΠN := R[x] = R[x1, . . . , xN ],

the space of all real polynomials in x. It is well known that the dimensions of the vector spaces PN
l and 

ΠN
m, respectively, are [5]

dimPN
l = #

{
j ∈ N

N
0 : |j| = l

}
=
(
N + l − 1

l

)
=: KN,l (1)

and

dim ΠN
m =

m∑
l=0

dimPN
l =

m∑
l=0

(
N + l − 1

l

)
=
(
N + m

m

)
.

3.1. Orthogonal polynomials

Let fX(x)dx be a probability measure on AN , satisfying Assumption 1. For any polynomial pair 
P, Q ∈ ΠN , define an inner product

(P,Q)fXdx :=
∫
AN

P (x)Q(x)fX(x)dx = E [P (X)Q(X)] (2)

on ΠN with respect to the measure fX(x)dx and the induced norm

‖P‖fXdx :=
√

(P, P )fXdx =

⎛
⎝ ∫

AN

P 2(x)fX(x)dx

⎞
⎠

1/2

=
√
E [P 2(X)].

The polynomials P ∈ ΠN and Q ∈ ΠN are called orthogonal to each other with respect to fX(x)dx if 
(P,Q)fXdx = 0. Moreover, a polynomial P ∈ ΠN is said to be an orthogonal polynomial with respect to 
fX(x)dx if it is orthogonal to all polynomials of lower degree, that is, if [5]

(P,Q)fXdx = 0 ∀Q ∈ ΠN with degQ < degP. (3)

Under Items (1) and (2) of Assumption 1, moments of X of all orders exist and are finite, so that the inner 
product in (2) is well defined. As the inner product is positive-definite, clearly ‖P‖fXdx > 0 for all non-zero 
P ∈ ΠN . Then there exists an infinite set of multivariate orthogonal polynomials, say, {Pj(x) : j ∈ N

N
0 }, 

P0 = 1, Pj �= 0, which is consistent with the probability measure fX(x)dx, satisfying

(Pj, Pk)fXdx = 0 whenever |j| �= |k| (4)

for k ∈ N
N
0 . Here, the multi-index j of the multivariate polynomial Pj(x) refers to its total degree |j| =

j1 + · · · + jN . Clearly, each Pj ∈ ΠN is an orthogonal polynomial satisfying (3). This means that Pj
is orthogonal to all polynomials of different degrees, but it may not be orthogonal to other orthogonal 
polynomials of the same degree.
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Consider for each l ∈ N0 the elements of the set {j ∈ N
N
0 : |j = l}, l ∈ N0, which is arranged as 

j(1), . . . , j(KN,l) according to a monomial order of choice. The set has cardinality KN,l as defined in (1). 
Denote by

xl = (xj(1) , . . . ,xj(KN,l))T

the KN,l-dimensional column vector whose elements are the monomials xj for |j| = l and by

Pl(x) := (Pl,j(1)(x), . . . , P
l,j(KN,l)(x))T (5)

the KN,l-dimensional column vector whose elements are obtained from the polynomial sequence
{Pl,j(x)}|j|=l, both arranged in the aforementioned order. This leads to a formal definition of multivariate 
orthogonal polynomials.

Definition 2 (Dunkl and Xu [5]). Let (·, ·)fXdx : ΠN × ΠN → R be an inner product. A set of polynomials 
{Pj(x) : |j| = l, j ∈ N

N
0 }, Pj(x) ∈ ΠN

l , of degree l or its KN,l-dimensional column vector Pl(x), is said to 
be orthogonal with respect to the inner product (·, ·)fXdx, or alternatively with respect to the probability 
measure fX(x)dx, if, for l, r ∈ N0,

(
xr,PT

l (x)
)
fXdx :=

∫
AN

xrPT
l (x)fX(x)dx =: E

[
XrPT

l (X)
]

= 0, l > r, (6)

where

Sl :=
(
xl,PT

l (x)
)
fXdx :=

∫
AN

xlPT
l (x)fX(x)dx =: E

[
XlPT

l (X)
]

(7)

is a KN,l ×KN,l invertible matrix.

Using the vector notation, one can write

Pr(x) = Hr,rxr + Hr,r−1xr−1 + · · · + Hr,0x0, r ∈ N0,

where Hr,r−k, k = 0, 1, . . . , r, are various coefficient matrices of size KN,r ×KN,r−k. Then, using (6) and 
(7), the inner products (Pr(x),PT

l (x))fXdx = 0 when l > r and (Pr(x),PT
l (x))fXdx = Hl,lSl when l = r. 

Therefore, Definition 2 agrees with the usual notion of orthogonal polynomials satisfying (4). Perhaps the 
most prominent example of classical multivariate orthogonal polynomials is the case of multivariate Hermite 
polynomials, which are consistent with the measure defined by a Gaussian density on RN [6,10]. Readers 
interested to learn more about orthogonal polynomials in multiple variables are referred to the works of 
Appell and de Fériet [1], Erdelyi [6], Krall and Sheffer [14], and Dunkl and Xu [5].

For general probability measures, established numerical techniques, such as the Gram–Schmidt orthogo-
nalization process [9], can be applied to a sequence of monomials {xj}j∈NN

0
with respect to the inner product 

in (2) to generate a corresponding sequence of any measure-consistent orthogonal polynomials. However, an 
important difference between univariate polynomials and multivariate polynomials is the lack of an obvious 
natural order in the latter. The natural order for monomials of univariate polynomials is the degree order; 
that is, one orders monomials according to their degree. For multivariate polynomials, there are many op-
tions, such as lexicographic order, graded lexicographic order, and reversed graded lexicographic order, to 
name just three. There is no natural choice, and different orders will give different sequences of orthogonal 
polynomials from the Gram–Schmidt process. It is important to emphasize that the space of multivariate 
orthogonal polynomials for a generally non-product-type density function cannot be constructed by the 
tensor product of the spaces of univariate orthogonal polynomials.
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3.2. Orthogonal decomposition of polynomial spaces

Let VN
0 := ΠN

0 = span{1} be the space of constant functions. For each 1 ≤ l < ∞, denote by VN
l ⊂ ΠN

l

the space of orthogonal polynomials of degree exactly l that are orthogonal to all polynomials in ΠN
l−1, that 

is,

VN
l := {P ∈ ΠN

l : (P,Q)fXdx = 0 ∀Q ∈ ΠN
l−1}, 1 ≤ l < ∞.

Then VN
l , provided that the support of fX(x) has a non-empty interior, is a vector space of dimension [5]

KN,l := dimVN
l = dimPN

l =
(
N + l − 1

l

)
.

Many choices exist for the basis of VN
l ; the bases of VN

l do not have to be mutually orthogonal. Furthermore, 
with the exception of the monic orthogonal polynomials, the bases are not unique in the multivariate case. 
Here, to be formally proved in the next section, select {Pj(x) : |j| = l, j ∈ N

N
0 } ⊂ VN

l to be a basis 
of VN

l , comprising KN,l number of basis functions. Each basis function Pj(x) is a multivariate orthogonal 
polynomial of degree |j| as discussed earlier. Obviously,

VN
l = span{Pj : |j| = l, j ∈ N

N
0 }, 0 ≤ l < ∞.

According to (4), Pj is orthogonal to Pk whenever |j| �= |k|. Therefore, any two polynomial subspaces 
VN
l and VN

r , where 0 ≤ l, r < ∞, are orthogonal whenever l �= r. In consequence, there exist orthogonal 
decompositions of

ΠN
m =

m⊕
l=0

VN
l =

m⊕
l=0

span{Pj : |j| = l, j ∈ N
N
0 } = span{Pj : 0 ≤ |j| ≤ m, j ∈ N

N
0 }

and

ΠN =
⊕
l∈N0

VN
l =

⊕
l∈N0

span{Pj : |j| = l, j ∈ N
N
0 } = span{Pj : j ∈ N

N
0 } (8)

with the symbol ⊕ representing orthogonal sum.

3.3. Completeness of orthogonal polynomials and basis

An important question regarding orthogonal polynomials is whether they are complete and constitute 
a basis in a function space of interest, such as a Hilbert space. Let L2(AN , BN , fXdx) represent a Hilbert 
space of square-integrable functions with respect to the probability measure fX(x)dx supported on AN . 
The following two propositions show that, indeed, orthogonal polynomials span various spaces of interest.

Proposition 3. Let X := (X1, . . . , XN )T : (Ω, F) → (AN , BN ), N ∈ N, be an N -dimensional random vector 
with multivariate probability density function fX(x), satisfying Assumption 1. Then {Pj(x) : |j| = l, j ∈ N

N
0 }, 

the set of multivariate orthogonal polynomials of degree l consistent with the probability measure fX(x)dx, 
is a basis of VN

l .

Proof. Under Items (1) and (2) of Assumption 1, orthogonal polynomials with respect to the probability 
measure fX(x)dx exist. Let aT

l = (al,1, . . . , al,KN,l
) be a row vector comprising some constants al,i ∈ R, 
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i = 1, . . . , KN,l. Set aT
l Pl(x) = 0. Multiply both sides of the equality from the right by xT

l , integrate with 
respect to the measure fX(x)dx over AN , and apply transposition to obtain

Slal = 0, (9)

where Sl, defined in (7), is a KN,l × KN,l invertible matrix. Therefore, (9) yields al = 0, proving linear 
independence of the elements of Pl(x) or the set {Pj(x) : |j| = l, j ∈ N

N
0 }. Furthermore, the dimension 

KN,l of VN
l matches exactly the number of elements of the aforementioned set. Therefore, the spanning set 

{Pj(x) : |j| = l, j ∈ N
N
0 } forms a basis of VN

l . �
Proposition 4. Let X := (X1, . . . , XN )T : (Ω, F) → (AN , BN ), N ∈ N, be an N -dimensional random vector 
with multivariate probability density function fX(x), satisfying Assumption 1. Consistent with the probability 
measure fX(x)dx, let {Pj(x) : |j| = l, j ∈ N

N
0 }, the set of multivariate orthogonal polynomials of degree l, be 

a basis of VN
l . Then the set of polynomials from the orthogonal sum

⊕
l∈N0

span{Pj(x) : |j| = l, j ∈ N
N
0 }

is dense in L2(AN , BN , fXdx). Moreover,

L2(AN ,BN , fXdx) =
⊕
l∈N0

VN
l (10)

where the overline denotes set closure.

Proof. Under Items (1) and (2) of Assumption 1, orthogonal polynomials with respect to the probabil-
ity measure fX(x)dx exist. According to Theorem 3.2.18 of Dunkl and Xu [5] and related discussion, 
which exploits Items 3(a) and 3(b) of Assumption 1, the polynomial space ΠN is dense in the space 
L2(AN , BN , fXdx). Therefore, the set of polynomials from the orthogonal sum, which is equal to ΠN as per 
(8), is dense in L2(AN , BN , fXdx). Including the limit points of the orthogonal sum yields (10). �
4. Multivariate orthonormal polynomials

Once the multivariate orthogonal polynomials are obtained, they can be linearly transformed to generate 
multivariate orthonormal polynomials. The latter polynomials, while they are not required [17], result in 
concise forms of the generalized PCE and second-moment properties of an output random variable of 
interest.

4.1. Polynomial moment matrix

When the input random variables X1, . . . , XN , instead of the variables x1, . . . , xN , are inserted in the ar-
gument, Pl in (5) becomes a vector of random orthogonal polynomials. A formal definition of the polynomial 
moment matrix follows.

Definition 5. Let Pl(X) := (Pl,j(1)(X), . . . , P
l,j(KN,l)(X))T , l ∈ N0, be a KN,l-dimensional vector of constant 

or random orthogonal polynomials. The KN,l ×KN,l matrix, defined by

Gl := E[Pl(X)PT
l (X)], (11)
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with its (p, q)th element

Gl,pq = E[Pl,j(p)(X)Pl,j(q)(X)], p, q = 1, . . . ,KN,l,

is called the polynomial moment matrix of Pl(X).

When l = 0, KN,0 = 1 and P0(X) = (1)T = 1 regardless of N . Therefore, (11) from Definition 5 yields 
G0 = [1] to be a 1 ×1 matrix. When l > 0, Gl,pq represents the covariance between two random polynomials 
of degree l, as it will be shown later that E[Pl(X)] = 0 when l > 0. In this case, Gl is nothing but the 
covariance matrix of Pl(X).

Proposition 6. The polynomial moment matrix Gl is symmetric and positive-definite.

Proof. By definition, Gl = GT
l . From Proposition 3, the elements of Pl(x) are linearly independent. There-

fore, for any 0 �= αl ∈ R
KN,l , αT

l Pl(x) ∈ ΠN is a non-zero polynomial, satisfying

αT
l Glαl = E

[(
αT

l Pl(X)
)2] = ‖αT

l Pl(x)‖2
fXdx > 0,

as the inner product defined in (2) is positive-definite on ΠN . Therefore, Gl is a symmetric, positive-definite 
matrix. �
4.2. Whitening transformation

From Proposition 6, Gl is positive-definite and hence invertible. Therefore, for each l ∈ N0, there exists 
a non-singular matrix Wl ∈ R

KN,l×KN,l such that

WT
l Wl = G−1

l or W−1
l W−T

l = Gl. (12)

This leads to multivariate orthonormal polynomials as follows.

Definition 7. Let X := (X1, . . . , XN )T be a vector of N ∈ N input random variables fulfilling Assumption 1. 
Then, given the vector Pl(x) ∈ R

KN,l of multivariate orthogonal polynomials of degree l, the corresponding 
vector

Ψl(x) := (Ψl,j(1)(x), . . . ,Ψ
l,j(KN,l)(x))T ∈ R

KN,l

of multivariate orthonormal polynomials, also of degree l, is obtained from the whitening transformation

Ψl(x) = WlPl(x), l ∈ N0, (13)

where Wl ∈ R
KN,l×KN,l is a non-singular whitening matrix satisfying (12).

The whitening transformation in Definition 7 is a linear transformation that converts Pl(x) into Ψl(x)
in such a way that the latter has uncorrelated random polynomials, each with zero means for l > 0. The 
transformation is called “whitening” because it changes one random vector to the other, which has statistical 
properties akin to that of a white noise vector. However, the condition (12) does not uniquely determine 
the whitening matrix Wl. Indeed, there exists infinitely many choices of Wl that all satisfy (12). All of 
these choices result in a linear transformation, decorrelating Pl(x) but producing different random vectors 
Ψl(x). As demonstrated by Kessy et al. [12], the selection of Wl depends on the desired cross-covariance 
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Table 1
Five choices for the whitening matrix Wl.

Name Whitening matrix Wl Notes
Zero-phase component 

analysis (ZCA)
G−1/2

l G−1/2
l = UlΛ−1/2

l UT
l , where Ul and Λl contain eigenvectors 

and eigenvalues of Gl, respectively.

Principal component 
analysis (PCA)

Λ−1/2
l UT

l See notes in the second row from the top.

Cholesky 
decomposition

LT
l G−1

l = LlLT
l .

ZCA-correlation 
adjusted

Ḡ−1/2
l V−1/2

l Gl = V1/2
l ḠlV1/2

l .

PCA-correlation 
adjusted

Λ̄−1/2
l ŪT

l V−1/2
l Ḡ−1/2

l = ŪlΛ̄−1/2
l ŪT

l , where Ūl and Λ̄l contain eigenvectors 
and eigenvalues of Ḡl, respectively; Gl = V1/2

l ḠlV1/2
l .

or cross-correlation between Pl(x) and Ψl(x). Table 1 lists five commonly used whitening matrices from 
practical applications. Any of these whitening matrices and possibly others, in conjunction with (13), can 
be used to generate multivariate orthonormal polynomials.

The whitening transformation should not be confused with measure transformations commonly used for 
decorrelating dependent Gaussian variables with positive-definite covariance matrices. Such transformations 
are generally nonlinear for non-Gaussian probability measures. In contrast, the transformation introduced 
here is linear and decorrelates instead random orthogonal polynomials for any probability measure of X. 
Therefore, a wide variety of input variables, including non-Gaussian variables, can be dealt with when 
generating measure-consistent orthonormal polynomials.

4.3. Statistical properties

The polynomial vectors Pl(X) and Ψl(X) are functions of random input variables. Therefore, it is 
important to establish their second-moment properties, to be exploited in Sections 5 and 6.

Proposition 8. Let X := (X1, . . . , XN )T be a vector of N ∈ N input random variables fulfilling Assumption 1. 
For l, r ∈ N0, the first- and second-order moments of the vector of multivariate orthogonal polynomials are

E [Pl(X)] =
{

(1)T = (1), l = 0,
0, l �= 0,

(14)

and

E
[
Pl(X)PT

r (X)
]

=
{

Gl, l = r,

0, l �= r,
(15)

respectively, where Gl ∈ R
KN,l×KN,l is defined by (11).

Proof. The non-trivial result of (14) is attained from the recognition that P0 = 1, whereas the trivial result 
of (14) follows by setting |j| = l �= 0 and |k| = 0 in (4). The non-trivial and trivial results of (15) are 
obtained, respectively, by (11) of Definition 5 and by setting |j| = l �= 0 and |k| = r, l �= r, in (4). �
Proposition 9. Let X := (X1, . . . , XN )T be a vector of N ∈ N input random variables fulfilling Assumption 1. 
For l, r ∈ N0, the first- and second-order moments of the vector of multivariate orthonormal polynomials 
are
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E [Ψl(X)] =
{

(1)T = (1), l = 0,
0, l �= 0,

(16)

and

E
[
Ψl(X)ΨT

r (X)
]

=
{

IKN,l
, l = r,

0, l �= r,
(17)

respectively, where IKN,l
is a KN,l ×KN,l identity matrix.

Proof. Apply the expectation operator on (13) to write E[Ψl(X)] = WlE[Pl(X)] and then use (14), with 
W0 = [1] in mind, to derive both the non-trivial and trivial results of (16).

Using (12) in the whitening transformation (13),

E[Ψl(X)Ψl(X)T ] = WlE[Pl(X)Pl(X)T ]WT
l

= WlGlWT
l

= WlW−1
l W−T

l WT
l = IKN,l

,

obtaining the non-trivial result of (17). When l �= r, the trivial result of (17) follows from

E[Ψl(X)Ψr(X)T ] = WlE[Pl(X)Pr(X)T ]WT
r = 0,

where the equality to zero results from the vanishing expectation as per (15). �
Given the vector Ψl(x) of multivariate orthonormal polynomials, let {Ψj(x) : |j| = l, j ∈ N

N
0 }, Ψ0(x) = 1, 

denote the corresponding set of multivariate orthonormal polynomials. Then {Ψj(x) : j ∈ N
N
0 } represents 

an infinite set of multivariate orthonormal polynomials. The second-moment properties follow readily.

Corollary 10. Let {Ψj(x) : j ∈ N
N
0 } denote an infinite set of multivariate orthonormal polynomials consistent 

with the probability measure fX(x)dx. For j, k ∈ N
N
0 , the first- and second-order moments of multivariate 

orthonormal polynomials are

E [Ψj(X)] =
{

1, j = 0,
0, j �= 0,

and

E [Ψj(X)Ψk(X)] =
{

1, j = k,
0, j �= k,

respectively.

5. Generalized polynomial chaos expansion

Let y(X) := y(X1, . . . , XN ) be a real-valued, square-integrable output random variable defined on the 
same probability space (Ω, F , P). The vector space L2(Ω, F , P) is a Hilbert space such that

E
[
y2(X)

]
:=
∫

y2(X(ω))dP(ω) =
∫

y2(x)fX(x)dx < ∞

Ω AN
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with inner product

(y(X), z(X))L2(Ω,F,P) :=
∫
Ω

y(X(ω))z(X(ω))dP(ω) =
∫
AN

y(x)z(x)fX(x)dx =: (y(x), z(x))fXdx

and norm

‖y(X)‖L2(Ω,F,P) :=
√

(y(X), y(X))L2(Ω,F,P) =
√

(y(x), y(x))fXdx =: ‖y(x)‖fXdx.

It is elementary to show that y(X(ω)) ∈ L2(Ω, F , P) if and only if y(x) ∈ L2(AN , BN , fXdx).

5.1. Generalized PCE

A generalized PCE of a square-integrable random variable y(X) is simply the expansion of y(X) with 
respect to an orthonormal polynomial basis of L2(Ω, F , P), formally presented as follows.

Theorem 11. Let X := (X1, . . . , XN )T be a vector of N ∈ N input random variables fulfilling Assumption 1. 
For l ∈ N0, recall that Ψl(x) ∈ R

KN,l , a vector comprising multivariate orthonormal polynomials of degree l, 
is consistent with the probability measure fXdx. Then,

(1) for any random variable y(X) ∈ L2(Ω, F , P), there exists a Fourier series comprising multivariate 
orthonormal polynomials in X, referred to as the generalized PCE of

y(X) =
∑
l∈N0

CT
l Ψl(X), (18)

where the vector of expansion coefficients Cl ∈ R
KN,l is defined by

Cl := E [y(X)Ψl(X)] :=
∫
AN

y(x)Ψl(x)fX(x)dx, l ∈ N0; (19)

and
(2) the generalized PCE of y(X) ∈ L2(Ω, F , P) converges to y(X) in mean-square, that is, for ym(X) :=∑m

l=0 CT
l Ψl(X), m ∈ N0,

lim
m→∞

E
[
y2
m(X)

]
= E
[
y2(X)

]
;

converges in probability, that is, for any ε > 0,

lim
m→∞

P (|ym(X) − y(X)| > ε) = 0;

and converges in distribution, that is, for any ξ ∈ R,

lim
m→∞

Fm(ξ) = F (ξ)

such that Fm(ξ) := P(ym(X) ≤ ξ) and F (ξ) := P(y(X) ≤ ξ) are continuous distribution functions.
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Proof. If y(x) ∈ L2(AN , BN , fXdx), then by Proposition 3, the expansion

y(x) =
∑
l∈N0

projly(x), (20)

with projly(x) : L2(AN , BN , fXdx) → VN
l denoting the projection operator, can be formed. Since orthonor-

malization is a linear transformation, with Proposition 3 in mind, VN
l is also spanned by {Ψj(x) : |j| = l,

j ∈ N
N
0 }. Consequently,

projly(x) = CT
l Ψl(x). (21)

By definition of the random vector X, the sequence {Ψj(X)}j∈NN
0

or {Ψl(X)}l∈N0 is a basis of L2(Ω, F , P), 
inheriting the properties of the basis {Ψj(x)}j∈NN

0
or {Ψl(x)}l∈N0 of L2(AN , BN , fXdx). Therefore, (20) and 

(21) lead to the expansion in (18).
In reference to Proposition 4, recognize that the set of polynomials from the orthogonal sum

⊕
l∈N0

span{Ψj(x) : |j| = l, j ∈ N
N
0 } = {Ψj(x) : j ∈ N

N
0 } = ΠN (22)

is also dense in L2(AN , BN , fXdx). Therefore, one has the Bessel’s inequality [3]

E

[∑
l∈N0

CT
l Ψl(X)

]2
≤ E
[
y2(X)

]
,

proving that the generalized PCE converges in mean-square or L2. To determine the limit of convergence, 
invoke again Proposition 4, which implies that the set {Ψj(x) : j ∈ N

N
0 } is complete in L2(AN , BN , fXdx). 

Therefore, Bessel’s inequality becomes an equality

E

[∑
l∈N0

CT
l Ψl(X)

]2
= E
[
y2(X)

]
,

known as the Parseval identity [3] for a multivariate orthogonal system, for every random variable y(X) ∈
L2(Ω, F , P). Furthermore, as the PCE converges in mean-square, it does so in probability. Moreover, as the 
expansion converges in probability, it also converges in distribution.

Finally, to find the expansion coefficients, define a second moment

ePCE := E

[
y(X) −

∑
l∈N0

CT
l Ψl(X)

]2
(23)

of the difference between y(X) and its full PCE. Differentiate both sides of (23) with respect to Cl, l ∈ N0, 
to write

∂ePCE

∂Cl
= ∂

∂Cl
E

[
y(X) −

∑
r∈N0

CT
r Ψr(X)

]2

= E

[
∂

∂Cl

{
y(X) −

∑
CT

r Ψr(X)
}2]
r∈N0
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= 2E
[{∑

r∈N0

CT
r Ψr(X) − y(X)

}
ΨT

l (X)
]

= 2
{∑

r∈N0

CT
r E
[
Ψl(X)ΨT

r (X)
]
− E
[
y(X)ΨT

l (X)
]}

= 2
{

CT
l − E

[
y(X)ΨT

l (X)
]}

. (24)

Here, the second, third, fourth, and last lines are obtained by interchanging the differential and expec-
tation operators, performing the differentiation, swapping the expectation and summation operators, and 
applying Proposition 9, respectively. The interchanges are permissible as the infinite sum is convergent 
as demonstrated in the preceding paragraph. Setting ∂ePCE/∂Cl = 0 in (24) yields (19), completing the 
proof. �

The expression of the expansion coefficients can also be derived by simply replacing y(X) in (19) with 
the full PCE and then using Proposition 9. In contrast, the proof given here demonstrates that the PCE 
coefficients are determined optimally.

Alternatively, the PCE proposed can be expressed in terms of measure-consistent orthogonal polynomials 
directly, for instance,

y(X) =
∑
l∈N0

C̄T
l Pl(X) (25)

involving new Fourier coefficients

C̄l := G−1
l E [y(X)Pl(X)] , l ∈ N0. (26)

The new coefficients are related to the old coefficients by

C̄l = WT
l Cl.

It is elementary to show that the expansions described by (25) and (26) and (18) and (19) are the same. 
However, the whitening transformation, which yields measure-consistent orthonormal polynomials, facili-
tates a relatively simpler form of PCE, as expressed by (18) and (19). This also results in concise expressions 
of the second-moment properties of PCE, to be discussed in Section 5.2.1. Otherwise, there is no reason to 
favor one expansion over the other.

The generalized PCE in (18) and (19) should not be confused with that of Xiu and Karniadakis [23]. The 
PCE presented here further extends the applicability of the existing PCE for arbitrary dependent probability 
distributions of random input. In contrast, the existing PCE, whether classical [2,22] or generalized [23], 
still requires independence of random input.

Corollary 12. Given the preamble of Theorem 11, the generalized PCE can also be expressed in terms of 
multivariate orthonormal polynomials Ψj(X), j ∈ N

N
0 , by

y(X) =
∑
j∈NN

0

CjΨj(X)

with the expansion coefficients

Cj = E [y(X)Ψj(X)] , j ∈ N
N
0 .
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Proof. Follow the proof of Theorem 11 and apply Corollary 10 to obtain the stated result. �
Corollary 13. Let X = (X1, . . . , XN )T be a vector of independent, but not necessarily identical, input random 
variables satisfying Assumption 1, with respective marginal density functions fXi

(xi), i = 1, . . . , N . Denote 
by Ψji(xi) the jith-degree univariate orthonormal polynomial in xi, which is obtained consistent with the 
probability measure fXi

(xi)dxi. Then the proposed generalized PCE reduces to the traditional PCE, yielding

y(X) =
∑
j∈NN

0

Cj

N∏
i=1

Ψji(Xi)

with the expansion coefficients

Cj = E

[
y(X)

N∏
i=1

Ψji(Xi)
]
.

Note that the infinite series in (18) does not necessarily converge almost surely to y(X). Furthermore, 
there is no guarantee that the moments of PCE of order larger than two will converge. These known 
fundamental limitations of existing PCE persist in the generalized PCE.

5.2. Truncation

The generalized PCE contains an infinite number of orthonormal polynomials or coefficients. In practice, 
the number must be finite, meaning that the PCE must be truncated. However, there are multiple ways 
to perform a truncation. A straightforward approach adopted in this work entails retaining polynomial 
expansion orders less than or equal to m ∈ N0. The result is an mth-order generalized PCE approximation2

ym(X) =
m∑
l=0

CT
l Ψl(X) (27)

of y(X), which contains

LN,m =
(
N + m

m

)
= (N + m)!

N !m!

number of expansion coefficients defined by (19).
It is natural to ask about the approximation quality of (27). Since the set {Ψl(x) : l ∈ N0} or {Ψl(X) :

l ∈ N0} is complete in L2(AN , BN , fXdx) or L2(Ω, F , P), the truncation error y(X) − ym(X) is orthogonal 
to any element of the subspace from which ym(X) is chosen, as demonstrated below.

Proposition 14. The truncation error y(X) − ym(X) is orthogonal to

m⊕
l=0

span{Ψj(X) : |j| = l, j ∈ N
N
0 }. (28)

Moreover, E[y(X) − ym(X)]2 → 0 as m → ∞.

2 The nouns degree and order associated with the generalized PCE or orthogonal polynomials are used synonymously in the 
paper.
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Proof. Let

ȳm(X) :=
m∑
r=0

C̄T
r Ψr(X),

with arbitrary constant vectors C̄r, r = 0, . . . , m, be any element of the subspace of L2(Ω, F , P) described 
by (28). Then

E [{y(X) − ym(X)}ȳm(X)]

= E

[{ ∞∑
l=m+1

CT
l Ψl(X)

}{
m∑
r=0

C̄T
r Ψr(X)

}]

=
∞∑

l=m+1

m∑
r=0

CT
l E
[
Ψl(X)ΨT

r (X)
]
C̄r

= 0,

where the last line follows from Proposition 9, proving the first part of the proposition. For the latter part, 
the Pythagoras theorem yields

E[{y(X) − ym(X)}2] + E[y2
m(X)] = E[y2(X)].

From Theorem 11, E[y2
m(X)] → E[y2(X)] as m → ∞. Therefore, E[{y(X) − ym(X)}2] → 0 as m → ∞. �

The second part of Proposition 14 entails L2 convergence, which is the same as the mean-square conver-
gence described in Theorem 11. However, an alternative route is chosen for the proof of Proposition 14.

5.2.1. Output statistics and other probabilistic characteristics
The mth-order generalized PCE approximation ym(X) can be viewed as a surrogate of y(X). There-

fore, relevant probabilistic characteristics of y(X), including its first two moments and probability density 
function, if it exists, can be estimated from the statistical properties of ym(X).

Applying the expectation operator on ym(X) and y(X) in (27) and (18) and imposing Proposition 9, 
their means

E [ym(X)] = E [y(X)] = C0 (29)

are the same as the single element of C0 = (C0)T = (C0) and independent of m. Therefore, the generalized 
PCE truncated for any value of m yields the exact mean. Nonetheless, E[ym(X)] will be referred to as the 
mth-order generalized PCE approximation of the mean of y(X).

Applying the expectation operator again, this time on [ym(X) − C0] and [y(X) − C0]2, and employing 
Proposition 9 results in the variances

var [ym(X)] =
m∑
l=1

CT
l Cl (30)

and

var [y(X)] =
∑

CT
l Cl
l∈N
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of yS,m(X) and y(X), respectively. In (30), the lower limit exceeds the upper limit when m = 0, yielding 
var[y0(X)] = 0. This is consistent with y0(X) = C0 being a constant function producing no variance. Again, 
var[ym(X)] will be referred to as the mth-order generalized PCE approximation of the variance of y(X). 
Clearly, var[ym(X)] approaches var[y(X)], the exact variance of y(X), as m → ∞.

Note that the formulae for the mean and variance in the existing and generalized PCEs are the same, 
although the respective expansion coefficients involved are not. The reason for the similarity between the 
formulae is the orthonormalization as per (13). If the polynomials are chosen not to be normalized, then the 
formula for the variance will contain additional terms, as recently demonstrated by Rahman [17], although 
for Gaussian input variables.

Being convergent in probability and distribution, the probability density function of y(X), if it exists, can 
also be estimated by that of ym(X). However, deriving analytical formula for the density function is difficult 
in general. In that case, the density can be estimated by Monte Carlo simulation (MCS) of ym(X). Such 
simulation should not be confused with crude MCS of y(X), commonly used for producing benchmark results 
whenever possible. The crude MCS can be expensive or even prohibitive, particularly when the sample size 
needs to be very large for estimating tail probabilistic characteristics. In contrast, the MCS embedded in 
the generalized PCE approximation requires evaluations of simple polynomial functions that describe ym. 
Therefore, a relatively large sample size can be accommodated in the generalized PCE approximation even 
when y is expensive to evaluate.

5.2.2. Computational issues
There are two important computational issues in the mth-order generalized PCE approximation pro-

posed. First, multivariate orthonormal polynomials consistent with the input probability measure must 
be generated. For Gaussian density on RN and select densities on the unit ball BN or the simplex TN , 
measure-consistent orthogonal polynomials can be generated analytically, to be illustrated in Section 6. In 
addition, the polynomial moment matrix Gl, required to transform the correlated polynomial vector Pl

into an uncorrelated polynomial vector Ψl, can be constructed analytically. Therefore, measure-consistent 
orthonormal polynomials for these probability measures can be produced purely analytically. However, for 
general probability measures, no such analytical solutions exist; instead, numerical approximations are re-
quired. For instance, the Gram–Schmidt process can be employed to generate from monomials a sequence 
of orthogonal polynomials. However, the process is known to be ill-conditioned. Therefore, more stable 
methods are needed to compute orthogonal polynomials. Moreover, to construct Gl, deriving an analytical 
formula for the second-moment properties of orthogonal polynomials for arbitrary non-Gaussian measures 
is nearly impossible. Having said so, these properties, which represent high-dimensional integrals compris-
ing products of orthogonal polynomials, can be determined by writing them as a sum of expectations 
of monomials {Xj}, 0 ≤ |j| ≤ 2m, where the moments of X are calculated either analytically, if possi-
ble, or by numerical integration. Note that the numerical integration can be performed with an arbitrary 
precision even when N is large. This is because no generally expensive output function evaluations are 
involved.

Second, the calculation of the expansion coefficients requires evaluating the expectations E[y(X)Ψl(X)]
for 0 ≤ l ≤ m. These expectations, also various N -dimensional integrals on AN , cannot be determined 
analytically or exactly if y is a general function. Furthermore, for large N , a full numerical integration em-
ploying an N -dimensional tensor product of a univariate quadrature formula is computationally expensive 
and likely prohibitive. Therefore, alternative means of estimating these expectations or integrals must be pur-
sued. One approach entails exploiting smart combinations of low-dimensional numerical integrations, such 
as sparse-grid quadrature [8] and dimension–reduction integration [24], to approximate a high-dimensional 
integral. The other approach consists of efficient sampling methods, such as quasi Monte Carlo simulation 
[15], importance sampling with Monte Carlo [19], and Markov chain Monte Carlo [4], to name a few. When 
y is obtained via solution of a differential equation, which is often the case in applications, a frequently 



S. Rahman / J. Math. Anal. Appl. 464 (2018) 749–775 765
used approach is stochastic Galerkin method, where the differential equation is projected onto the same 
truncated set of orthogonal polynomials analytically, resulting in a system of equations for the coefficients. 
Nonetheless, more research is needed for robust estimation of the expansion coefficients.

5.2.3. Implementation
Algorithm 1 describes a procedure for developing an mth-order generalized PCE approximation ym(X)

of a general square-integrable function y(X). It includes calculation of the mean and variance of ym(X).

Algorithm 1: Generalized PCE approximation and second-moment statistics.
Input: The total number N of random input variables X = (X1, . . . , XN )T , a joint probability density function fX(x) of X

satisfying Assumption 1, a square-integrable function y(X), and the largest order m of orthogonal polynomials
Output: The mth-order generalized PCE approximation ym(X) of y(X), and the mean and variance of ym(X)

1 for l ← 0 to m do
2 Generate the set of orthogonal polynomials {Pj(x) : |j| = l, j ∈ N

N
0 } consistent with the probability measure fX(x)dx

of X
/* from the Gram–Schmidt process or other means */

3 Construct the orthogonal polynomial vector Pl(x)
/* from (5) */

4 Calculate or estimate the polynomial moment matrix Gl

/* from (11) analytically or numerically */
5 Perform whitening transformation to produce the orthonormal polynomial vector Ψl(x)

/* from (13) and Table 1 */
6 Calculate or estimate E[y(X)Ψl(X)]

/* from reduced integration or sampling methods */
7 Calculate the vector of expansion coefficients Cl

/* from (19) */

8 Compile a set {Cl, 0 ≤ l ≤ m} of at most mth-order PCE coefficients and hence construct the mth-order PCE 
approximation ym(X)

/* from (27) */
9 Calculate the mean E[ym(X)] and variance var[ym(X)]

/* from (29) and (30) */

5.3. Infinitely many input variables

In many fields, such as uncertainty quantification, information theory, and stochastic process, functions 
depending on a countable sequence {Xi}i∈N of input random variables need to be considered. In this case, 
does the generalized PCE still apply as in the case of finitely many random variables? The answer is yes 
under certain assumptions, as demonstrated by the following proposition.

Proposition 15. Let {Xi}i∈N be a countable sequence of input random variables defined on the probability 
space (Ω, F∞, P), where F∞ := σ({Xi}i∈N) is the associated σ-algebra generated. If the sequence {Xi}i∈N

satisfies Assumption 1, then the generalized PCE of y({Xi}i∈N) ∈ L2(Ω, F∞, P), where y : A
N → R, 

converges to y({Xi}i∈N) in mean-square. Moreover, the generalized PCE converges in probability and in 
distribution.

Proof. According to Proposition 4, ΠN is dense in L2(AN , BN , fXdx) and hence in L2(Ω, FN , P) for every 
N ∈ N, where FN := σ({Xi}Ni=1) is the associated σ-algebra generated by {Xi}Ni=1. Here, with a certain 
abuse of notation, ΠN is used as a set of polynomial functions of both real variables x and random vari-
ables X. Now, apply Theorem 3.8 of Ernst et al. [7], which says that if ΠN is dense in L2(Ω, FN , P) for 
every N ∈ N, then

Π∞ :=
∞⋃

N=1
ΠN ,

a subspace of L2(Ω, F∞, P), is also dense in L2(Ω, F∞, P). But, using (22),
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Π∞ =
∞⋃

N=1

⊕
l∈N0

span{Ψj : |j| = l, j ∈ N
N
0 } =

∞⋃
N=1

span{Ψj : j ∈ N
N
0 },

demonstrating that the set of polynomials from the union is dense in L2(Ω, F∞, P). Therefore, the gener-
alized PCE of y({Xi}i∈N) ∈ L2(Ω, F∞, P) converges to y({Xi}i∈N) in mean-square. Since the mean-square 
convergence is stronger than the convergence in probability or in distribution, the latter modes of conver-
gence follow readily. �
6. Example

6.1. Stochastic ODE

Consider a stochastic boundary-value problem, described by the ordinary differential equation (ODE)

− d

dξ

(
exp(X1)

d

dξ
y(ξ;X)

)
= exp(X2), 0 ≤ ξ ≤ 1, y(ξ;X) ∈ R, (31)

with boundary conditions

y(0;X) = 0, exp(X1)
dy

dξ
(1;X) = 1,

where X = (X1, X2)T is a real-valued, bivariate input random vector with known probability density 
function. Originally studied by Ernst et al. [7] for a single random variable, the ODE is slightly modified 
here by introducing two statistically dependent random variables.

Three distinct cases of the probability density function of X, one with an unbounded support and the other 
two with bounded supports, were considered: (1) a Gaussian density function on R2 := {(x1, x2) : −∞ < x1,

x2 < +∞}; (2) a rotationally-invariant density function on the unit disk B2 := {(x1, x2) : x2
1 +x2

2 ≤ 1}; and 
(3) a density function on the triangle T2 := {(x1, x2) : 0 ≤ x1, x2; x1 + x2 ≤ 1}. For each case of the density 
function, four subcases, depending on the values of the respective parameters, were studied. Table 2 presents 
explicit forms of the density functions, including descriptions of the subcases. The values of parameters were 
chosen to produce widely varying density functions in all three cases, as depicted in Figs. 1(a), 2(a), and 3(a). 
Therefore, there are 12 different density functions of X in this problem, each leading to a distinct result. 
The objective is to assess the approximation quality of the truncated generalized PCE in terms of the 
second-moment statistics of the solution of the ODE for all 12 density functions.

6.2. Orthogonal and orthonormal polynomials

All three input density functions satisfy Items (1) and (2) of Assumption 1. Therefore, measure-consistent 
orthogonal polynomial bases exist in all cases. However, there are multiple and explicit forms of orthogonal 
polynomial bases. Indeed, multivariate Hermite polynomials, originally studied by Hermite, are consistent 
with the Gaussian density function on RN as explained by Erdelyi [6]. Recently, the author derived analytical 
formulae for their first- and second-moment properties, leading to Wiener–Hermite polynomial expansion 
[17] of a multivariate function. Appell and de Fériet [1], Erdelyi [6], and Dunkl and Xu [5] describe multivari-
ate orthogonal polynomials consistent with the density functions on the unit ball BN and on the simplex T

N . 
In all three cases, a set of measure-consistent orthogonal polynomials {Pj(x) : j ∈ N

N
0 } can be obtained from 

a multivariate analog of the respective Rodrigues’ formula. The third column of Table 2 lists such formulae 
for N = 2, which were employed to generate the orthogonal polynomials {Pj1j2(x1, x2) : j1, j2 ∈ N0} in 
this paper. More explicitly, Table 3 presents zeroth-, first-, second-, and third-order (-degree) orthogonal 
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Table 2
Input probability density functions and measure-consistent orthogonal polynomials.

Case Probability density function fX1X2 (x1, x2) Orthogonal polynomial Pj1j2 (x1, x2)

1a

Gaussian density on R
2:

1
2πσ1σ2

√
1 − ρ2

×

exp
[
−

( x1
σ1

)2 − 2ρ( x1
σ1

)( x2
σ2

) + ( x2
σ2

)2

2(1 − ρ2)

]

0 < σ1, σ2 < ∞; −1 < ρ < +1;
−∞ < x1, x2 < +∞.

Subcases:
σ1 = σ2 = 1/4, ρ = −9/10;
σ1 = σ2 = 1/4, ρ = −1/2;
σ1 = σ2 = 1/4, ρ = +1/2;
σ1 = σ2 = 1/4, ρ = +9/10.

(−1)|j1+j2|
∂j1+j2

∂xj1
1 ∂xj2

2
fX1X2 (x1,x2)

fX1X2 (x1,x2)
;

0 ≤ j1, j2 < ∞.

2b

Density on the disk B
2:

1
π

(μ + 1
2 )(1 − x2

1 − x2
2)

μ− 1
2 ;

μ > − 1
2 ; (x1, x2) : x2

1 + x2
2 ≤ 1.

Subcases:
μ = 0; μ = 1; μ = 2; μ = 4.

∂j1+j2

∂xj1
1 ∂xj2

2
(1−x2

1−x2
2)

j1+j2+μ− 1
2

(1 − x
2
1 − x

2
2)

μ− 1
2

;

0 ≤ j1, j2 < ∞.

3b

Density on the triangle T
2:

Γ(α + β + γ + 3)xα
1 x

β
2 (1 − x1 − x2)γ

Γ(α + 1)Γ(β + 1)Γ(γ + 1)
;

α, β, γ > −1;
(x1, x2) : 0 ≤ x1, x2;x1 + x2 ≤ 1.

Subcases:
α = β = γ = 0; α = β = γ = 1;
α = β = γ = 2; α = β = γ = 3.

∂j1+j2

∂xj1
1 ∂xj2

2
x

j1+α
1 x

j2+β
2 (1−x1−x2)j1+j2+γ

x
α
1 x

β
2 (1 − x1 − x2)γ

;

0 ≤ j1, j2 < ∞.

a See Rahman [17] and/or Erdelyi [6].
b See Dunkl and Xu [5].

polynomials obtained for the respective last subcases of all three density functions. It is easy to verify from 
Proposition 8 that all non-zero-degree polynomials have zero means and any two distinct polynomials are 
orthogonal whenever the degrees are different. However, two polynomials of the same degree obtained in 
this way may not be mutually orthogonal.

Given the orthogonal polynomials, polynomial moment matrices were constructed analytically, which is 
possible to do for all cases of input density functions employed. Henceforth, the orthonormal polynomials 
Ψj1j2(x1, x2) were generated, also analytically, using the whitening matrix from the Cholesky decomposition. 
Table 4 lists zeroth-, first-, second-, and third-order orthonormal polynomials calculated for the respective 
last subcases of the density functions. According to Proposition 9, all non-zero-degree polynomials also have 
zero means, unit variances, and any two distinct polynomials are orthogonal whether or not the degrees 
are the same. Either polynomial set from Tables 3 and 4 can be used to construct a PCE approxima-
tion. However, in this paper, orthonormal polynomials from the latter table were used for building PCE 
approximations and producing subsequent results.

6.3. Result

6.3.1. Exact solution
A straightforward integration of (31) leads to the exact solution:

y(ξ;X) = 1
[
ξ +
(
ξ − ξ2)

exp(X2)
]
. (32)
exp(X1) 2
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Fig. 1. Input probability measures and PCE results for the Gaussian density on R2; (a) density of X for four subcases; (b) decay 
of L1 error in the variance of ym(1; X) with respect to m.

Clearly, the first two raw moments E[y(ξ; X)] and E[y2(ξ; X)], or any probabilistic characteristics of y(ξ; X)]
for that matter, depend on the probability density of X. Appendix A provides analytical results of these two 
moments at ξ = 1 for all three cases of input density functions, including those for the individual subcases.

6.3.2. Approximate solution
The Gaussian density function, which has an unbounded support, satisfies Item 3(b) of Assumption 1

[17], whereas the density functions on the unit disk and the triangle, which have bounded supports, clearly 
fulfill Item 3(a) of Assumption 1. Therefore, the generalized PCE can be applied to solve this problem for 
all density functions. However, since y(ξ; X) is a non-polynomial function of X, a convergence analysis with 
respect to m — the order of the generalized PCE approximation — is essential. Employing m = 1, 2, 3, 4, 5, 6
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Fig. 2. Input probability measures and PCE results for the density on disk B2; (a) density of X for four subcases; (b) decay of L1

error in the variance of ym(1; X) with respect to m.

in Algorithm 1, six PCE approximations of y(ξ; X) and their second-moment statistics were constructed or 
calculated for all three density functions.

Define at ξ = 1 an L1 error

em := |var[y(1;X)] − var[ym(1;X)]|
var[y(1;X)] (33)

in the variance, committed by an mth-order generalized PCE approximation ym(1; X) of y(1; X), where 
var[y(1; X)] and var[ym(1; X)] are exact and approximate variances, respectively. The exact variance was 
obtained from the first two raw moments in (A.1) through (A.6), depending on the input probability mea-
sure, whereas the approximate variance, given m, was calculated following Algorithm 1. The expectations 
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Fig. 3. Input probability measures and PCE results for the density on triangle T2; (a) density of X for four subcases; (b) decay 
of L1 error in the variance of ym(1; X) with respect to m.

involved in evaluating the expansion coefficients were calculated analytically for the Gaussian density func-
tion. However, a mixed analytical-numerical integration was needed and performed with high precision to 
calculate the expansion coefficients for the other two density functions. Therefore, the variances from the 
PCE approximations and resultant errors were determined exactly or very accurately.

Fig. 1(b) presents four plots describing how the error em in (33), calculated for each of the four correlation 
coefficients of the Gaussian density function, decays with respect to m. The attenuation rates for all four 
correlation coefficients are similar, although the errors for negative correlations are larger than those for 
positive correlations. The dependency of the error on the sign of the correlation coefficient stems from 
stronger nonlinearity of the function y with respect to the random input for negative correlations than 
for positive correlations. Similar plots of error analysis for the density functions on the disk and triangle, 
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Table 3
A few orthogonal polynomials consistent with the respective last subcases of all three density 
functions.

Case 1, Subcase 4: Gaussian density on R
2 (σ1 = σ2 = 1/4, ρ = 9/10)

P0,0 = 1,

P1,0 =
160
19

(10x1 − 9x2),

P0,1 = −
160
19

(9x1 − 10x2) ,

P2,0 =
1600
361

(
1600x2

1 − 2880x2x1 + 1296x2
2 − 19

)
,

P1,1 = −
160
361

(
14400x2

1 − 28960x2x1 + 14400x2
2 − 171

)
,

P0,2 =
1600
361

(
1296x2

1 − 2880x2x1 + 1600x2
2 − 19

)
,

P3,0 =
256000 (10x1 − 9x2)

(
1600x2

1 − 2880x2x1 + 1296x2
2 − 57

)
6859

,

P2,1 = −
51200

(
72000x3

1 − 209600x2x
2
1 + 45

(
4496x2

2 − 57
)
x1 − 64800x3

2 + 2489x2
)

6859
,

P1,2 =
51200

(
64800x3

1 − 202320x2x
2
1 + 131

(
1600x2

2 − 19
)
x1 + 45x2

(
57 − 1600x2

2
))

6859
,

P0,3 = −
256000 (9x1 − 10x2)

(
1296x2

1 − 2880x2x1 + 1600x2
2 − 57

)
6859

.

Case 2, Subcase 4: Density on the disk B
2 (μ = 4)

P0,0 = 1,
P1,0 = −9x1,
P0,1 = −9x2,

P2,0 = 11
(
10x2

1 + x2
2 − 1

)
,

P1,1 = 99x1x2,
P0,2 = 11

(
x2
1 + 10x2

2 − 1
)
,

P3,0 = −429x1
(
4x2

1 + x2
2 − 1

)
,

P2,1 = −143x2
(
10x2

1 + x2
2 − 1

)
,

P1,2 = −143x1
(
x2
1 + 10x2

2 − 1
)
,

P0,3 = −429x2
(
x2
1 + 4x2

2 − 1
)
.

Case 3, Subcase 4: Density on the triangle T
2 (α = β = γ = 3)

P0,0 = 1,
P1,0 = 4 (−2x1 − x2 + 1),
P0,1 = 4 (−x1 − 2x2 + 1),
P2,0 = 10

(
9x2

1 + 9 (x2 − 1) x1 + 2 (x2 − 1) 2),
P1,1 = 4

(
9x2

1 + (23x2 − 13) x1 + 9x2
2 − 13x2 + 4

)
,

P0,2 = 10
(
2x2

1 + (9x2 − 4) x1 + 9x2
2 − 9x2 + 2

)
,

P3,0 = 60
(
−22x3

1 − 33 (x2 − 1) x2
1 − 15 (x2 − 1) 2x1 − 2 (x2 − 1) 3),

P2,1 = 20
(
−22x3

1 + (42 − 69x2)x2
1 − 3

(
17x2

2 − 25x2 + 8
)
x1 − 2 (x2 − 1) 2 (5x2 − 2)

)
,

P1,2 = 20
(
−10x3

1 + (24 − 51x2)x2
1 − 3

(
23x2

2 − 25x2 + 6
)
x1 − 22x3

2 + 42x2
2 − 24x2 + 4

)
,

P0,3 = 60
(
−2x3

1 + (6 − 15x2) x2
1 +
(
−33x2

2 + 30x2 − 6
)
x1 − 22x3

2 + 33x2
2 − 15x2 + 2

)
.

each with four distinct subcases, are displayed in Figs. 2(b) and Fig. 3(b), respectively. Nearly exponential 
convergence is achieved by the generalized PCE approximations for all three density functions.

While the paper focuses on the theoretical contributions to probability and functional approximation, 
a brief discussion on the practical significance of the work is warranted. First, the generalized PCE en-
tailing polynomials, orthogonal with respect to the original, non-product-type probability density function, 
is expected to converge faster than the commonly used tensor product PCE in the transformed variables. 
This is because the measure transformations – with the exception for dependent Gaussian variables, where 
such transformations are linear – often lead to highly nonlinear output functions of transformed variables. 
Second, the generalized PCE proposed is particularly beneficial for non-trivial domains, such as a ball or 
a simplex, where a priori measure transformations are complicated or impractical. Third, stable formulae 
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Table 4
A few orthonormal polynomials consistent with the respective last subcases of all three density functions.

Case 1, Subcase 4: Gaussian density on R
2 (σ1 = σ2 = 1/4, ρ = 9/10)

Ψ0,0 = 1,
Ψ1,0 = 4x1,

Ψ0,1 =
40x2√

19
−

36x1√
19

,

Ψ2,0 = 8
√

2x2
1 −

1√
2
,

Ψ1,1 =
160x1x2√

19
−

144x2
1√

19
,

Ψ0,2 =
648
19

√
2x2

1 −
1440
19

√
2x1x2 +

800
19

√
2x2

2 −
1√
2
,

Ψ3,0 = 32
√

2
3
x
3
1 − 2

√
6x1,

Ψ2,1 = −288
√

2
19

x
3
1 + 320

√
2
19

x2x
2
1 + 18

√
2
19

x1 − 20
√

2
19

x2,

Ψ1,2 =
2592
19

√
2x3

1 −
5760
19

√
2x2x

2
1 +

3200
19

√
2x2

2x1 − 2
√

2x1,

Ψ0,3 = −7776
19

√
6
19

x
3
1 +

25920
19

√
6
19

x2x
2
1 − 28800

19

√
6
19

x
2
2x1 + 18

√
6
19

x1 +
32000

19

√
2
57

x
3
2 − 20

√
6
19

x2.

Case 2, Subcase 4: Density on the disk B
2 (μ = 4)

Ψ0,0 = 1,
Ψ1,0 = −

√
11x1,

Ψ0,1 = −
√

11x2,

Ψ2,0 =
11
2

√
13
5

x
2
1 −

1
2

√
13
5

,

Ψ1,1 =
√

143x1x2,

Ψ0,2 =
1
6

√
143
5

x
2
1 +

1
3
√

715x2
2 −

1
6

√
143
5

,

Ψ3,0 =
3
√

11x1

2
−

13
2

√
11x3

1,

Ψ2,1 =
1
2

√
55
2

x2 −
13
2

√
55
2

x
2
1x2,

Ψ1,2 = −
1
2

√
143
3

x
3
1 − 5

√
143
3

x
2
2x1 +

1
2

√
143
3

x1,

Ψ0,3 = −
√

1430
3

x
3
2 −

1
2

√
715
6

x
2
1x2 +

1
2

√
715
6

x2.

Case 3, Subcase 4: Density on the triangle T
2 (α = β = γ = 3)

Ψ0,0 = 1,

Ψ1,0 =
√

13
2

− 3
√

13
2

x1,

Ψ0,1 = −
√

39
2

x1 −
√

78x2 +
√

39
2

,

Ψ2,0 =
91x2

1
2

−
65x1

2
+ 5,

Ψ1,1 =
21
2

√
13x2

1 + 21
√

13x2x1 −
27

√
13x1

2
− 6

√
13x2 + 3

√
13,

Ψ0,2 =
√

182x2
1 + 9

√
91
2

x2x1 − 2
√

182x1 + 9
√

91
2

x
2
2 − 9

√
91
2

x2 +
√

182,

Ψ3,0 = −28
√

221
3

x
3
1 +

21
2

√
663x2

1 −
7
√

663x1

2
+
√

221
3

,

Ψ2,1 = −12
√

4641
11

x
3
1 − 24

√
4641
11

x2x
2
1 +

39
2

√
4641
11

x
2
1 + 15

√
4641
11

x2x1 −
17
2

√
4641
11

x1 − 2
√

4641
11

x2 +
√

4641
11

,

Ψ1,2 = −4
√

3094
3

x
3
1 − 6

√
9282x2x

2
1 + 3

√
9282x2

1 − 6
√

9282x2
2x1 + 15

√
4641

2
x2x1 − 2

√
9282x1

+3
√

4641
2

x
2
2 − 3

√
4641

2
x2 +

√
3094

3
,

Ψ0,3 = −2
√

3094
11

x
3
1 − 15

√
3094
11

x2x
2
1 + 6

√
3094
11

x
2
1 − 3

√
34034x2

2x1 + 30
√

3094
11

x2x1 − 6
√

3094
11

x1

−2
√

34034x3
2 + 3

√
34034x2

2 − 15
√

3094
11

x2 + 2
√

3094
11

.
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for computing measure-consistent orthogonal polynomials, at least for the special cases considered in the 
paper, are highly desirable.

7. Conclusion

A new generalized PCE of a square-integrable random variable, comprising measure-consistent multivari-
ate orthonormal polynomials in dependent random variables with non-product-type probability measures, 
is presented. There are two main novelties: First, a degree-wise splitting of the polynomial space of all input 
random variables into orthogonal subspaces, each spanned by measure-consistent multivariate orthogonal 
polynomials, was constructed, resulting in the PCE developed without the need for a tensor-product struc-
ture. Under prescribed assumptions, the set of measure-consistent orthogonal polynomials was proved to 
form a basis of each subspace, leading to an orthogonal sum of such sets of basis functions to span the space 
of all polynomials. Second, a whitening transformation is proposed to decorrelate orthogonal polynomials 
into orthonormal polynomials for an arbitrary probability measure. The transformation is valid whether or 
not the orthogonal polynomials of the same degree are mutually orthogonal. The orthogonal sum of measure-
consistent polynomials, whether orthogonal or orthonormal, is dense in a Hilbert space of square-integrable 
functions, leading to mean-square convergence of the generalized PCE to the correct limit, including when 
there are infinitely many random variables. The optimality of the generalized PCE and the approxima-
tion quality due to truncation were demonstrated or discussed. For independent probability measures, the 
proposed generalized PCE reduces to the existing classical or generalized PCE. Analytical formulae are 
proposed to calculate the mean and variance of a truncated generalized PCE of a general output variable in 
terms of the expansion coefficients. An example stemming from a stochastic boundary-value problem illus-
trates the construction and use of a generalized PCE approximation in estimating the statistical properties 
of an output variable for 12 distinct non-product-type probability measures of input variables.
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Appendix A. Second-moment properties of y(1; X)

Applying the expectation operators on (32) and its square, the first two raw moments of y(1; X) are 
respectively given by (A.1) and (A.2) for the Gaussian density on R2, by (A.3) and (A.4) for the density on 
the unit disk B2, and by (A.5) and (A.6) for the density on the triangle T2.

(1) Gaussian density on R2 (0 < σ1, σ2 < ∞, − 1 < ρ < +1):

E [y(1;X)] = 1
2e

σ2
1
2

[
e

1
2σ2(σ2−2ρσ1) + 2

]
≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1.59479, σ1 = σ2 = 1
4 , ρ = − 9

10 ,

1.58089, σ1 = σ2 = 1
4 , ρ = −1

2 ,

1.54762, σ1 = σ2 = 1
4 , ρ = +1

2 ,

1.53488, σ1 = σ2 = 1
4 , ρ = + 9

10 .

(A.1)

E
[
y2(1;X)

]
= 1

4e
2σ2

1

[
4e 1

2σ2(σ2−4ρσ1) + e2σ2(σ2−2ρσ1) + 4
]
≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2.84348, σ1 = σ2 = 1
4 , ρ = − 9

10 ,

2.74142, σ1 = σ2 = 1
4 , ρ = −1

2 ,

2.51472, σ1 = σ2 = 1
4 , ρ = +1

2 ,

2.43420, σ1 = σ2 = 1
4 , ρ = + 9

10 .

(A.2)
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(2) Density on the unit disk B2 (μ = 0, 1, 2, 4):

E [y(1;X)] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
4
[
4 sinh(1) +

√
2 sinh(

√
2)
]
≈ 1.85935, μ = 0,

3
8e
[
8 −

√
2e sinh(

√
2) + 2e cosh(

√
2)
]
≈ 1.71105, μ = 1,

15
16e
[
−56 + 8e2 + 5

√
2e sinh(

√
2) − 6e cosh(

√
2)
]
≈ 1.64896, μ = 2,

945
64e
[
−8512 + 1152e2 + 199

√
2e sinh(

√
2) − 250e cosh(

√
2)
]
≈ 1.59358, μ = 4.

(A.3)

E
[
y2(1;X)

]
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
80
[
40 sinh(2) + 5

√
2 sinh(2

√
2) + 16

√
5 sinh(

√
5)
]
≈ 4.6268, μ = 0,

3
3200e2

[
600 + 200e4 − 25

√
2e2 sinh(2

√
2)−

128
√

5e2 sinh(
√

5) + 100e2 cosh(2
√

2) + 640e2 cosh(
√

5)
]
≈ 3.57604, μ = 1,

− 3
25600

[
−28000 sinh(2) − 1375

√
2 sinh(2

√
2)−

8192
√

5 sinh(
√

5) + 24000 cosh(2) +
1500 cosh(2

√
2) + 15360 cosh(

√
5)
]
≈ 3.15891, μ = 2,

− 189
8192000

[
−24080000 sinh(2) − 330625

√
2 sinh(2

√
2) −

4653056
√

5 sinh(
√

5) + 23200000 cosh(2) +
462500 cosh(2

√
2) + 10158080 cosh(

√
5)
]
≈ 2.80304. μ = 4.

(A.4)

(3) Density on the triangle T2 (α = β = γ = 0, 1, 2, 3):

E [y(1;X)] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
2e
(
5 − 2e + e2) ≈ 1.27884, α = β = γ = 0,

−10
e

(
−66 + 16e + 3e2) ≈ 1.25198, α = β = γ = 1,

168
e

(
6855 − 2848e + 120e2) ≈ 1.24129, α = β = γ = 2,

−5940
e

(
−1092315 + 381956e + 7315e2) ≈ 1.23556, α = β = γ = 3.

(A.5)

E
[
y2(1;X)

]
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
24e2
(
23 − 15e2 + 16e3 + 3e2 sinh(2)

)
≈ 1.77024, α = β = γ = 0,

− 5
576e2

(
−3751 − 6840e2 + 2560e3 + 27e4) ≈ 1.64355, α = β = γ = 1,

7
288 (−1075572 + 378880e− 281645 sinh(2) +
283670 cosh(2)) ≈ 1.59375, α = β = γ = 2,
− 55

27648e2
(
−2329128235 − 16257780864e2 +

6087639040e3 + 3393495e4) ≈ 1.56717, α = β = γ = 3.

(A.6)
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