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Introduction

Analytical methods for predicting the elastic or elastic-plastic
behavior of large circumferential through-wall cracks in tubes
subjected to bending, tension, or combined bending and ten-
sion are well developed. Gilles and Brust (1991) and Gilles et
al. (1991) summarize five such methods and provide a number
of comparisons between analytically predicted results and ex-
perimental data. These techniques consist of developing a
method for estimating the value of the J-integral. Classical J-
tearing theory is utilized for the analyses. A method has also
been recently developed to estimate J for a through-wall crack
in a pipe weld (Rahman et al., 1991; Rahman and Brust, 1992).

Unfortunately, the ability of these J-estimation techniques
to predict the crack growth behavior for small cracks (<12
percerit of the circumference) has not been established, even
though such small cracks are often the concern in practical
structures.' Indeed, the finite element solutions compiled in
the GE/EPRI handbook (Kumar et al., 1984) appear quite
inadequate for small-size cracks (Gilles and Brust, 1991; Gilles
et al., 1991). This paper presents the results of a series of finite
element solutions for small cracks tabulated in the spirit of
the handbook (Kumar et al., 1984). Specifically, the solutions
of Kumar et al. (1984) for 6/x=1/8, 1/16 are redone for
Ramberg-Osgood coefficients n=1, 3, 5, 7, 10 for bending,
where 6 is the half-crack angle.

The theoretical background for the development and use of
simplified elastic-plastic fracture methods is fully discussed in
Gilles and Brust (1991). Here we provide the solutions for J-
integral and the crack opening displacements for small crack
problems under pure bending. Ongoing work will complete
these solutions for tension and for combined tension-bending
loads.

The GE/EPRI Estimation Scheme

The GE/EPRI method takes advantage of the scaling prop-
erties in linear and nonlinear elasticity to interpolate over the
range from small-scale yielding to large-scale yielding and to

! These methods have been validated for large cracks; e.g., see Brust (1987)
and Gilles and Brust (1991).

Contributed by the OMAE Division and presented at the 11th International
Symposium and Exhibit on Offshore Mechanics and Arctic Engineering, Cal-
gary, Alberta, Canada, June 7-12, 1992, of THE AMERICAN SOCIETY OF ME-
CHANICAL ENGINEERS. Manuscript received by the OMAE Division, 1992; revised
manuscript received June 20, 1994. Associate Technical Editor: H. Chong Rhee.

Journal of Offshore Mechanics and Arctic Engineering

Elastic-Plastic Analysis of
Small Cracks in Tubes

normalize fracture parameters, such as J, crack opening dis-
placement (COD), and displacements. The elastic-plastic so-
lution is obtained by superposition of a small-scale yielding
solution and of the fully plastic solution. The stress-strain law
is defined by a Ramberg-Osgood relation
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where o, is an arbitrary reference stress usually defined as the
yield stress, « and n are curve-fitting parameters, and ¢, =0,/
E.

This normalization reduces the fracture parameter deter-
mination to the computation of coefficients depending, for
given types of geometry and loading, only on the strain-hard-
ening coefficient n and a few geometrical parameters. Tabu-
lated values of these coefficients were computed (Kumar et al.,
1984, 1981) using the finite element technique. J for a through-
wall cracked pipe in bending is written in the following form:

J=Jo+],
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In Eq. (2), 0 is the half-crack angle, a is the half-crack length
(a=R0), R is the mean radius of pipe, and M, is the limit
moment, defined in Kumar et al. (1984) (see Fig. 1). Also,

hi=1, (a,, 5)
{
hy=h, <g, B, ")
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and are tabulated (where ¢ is the pipe wall thickness). In the
pipe bending case, A =the moment and the effective crack
size, a,, based on an Irwin plastic zone correction, is written
as

=5 (2a)
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Table 1 Matrix of finite element calculations (total of 30 analyses for bending)

Model
no. Model name R/t n 0/x Remarks Loading
1 CASE1A3DM 5 1,3,5,7,10 0.0625 S Runs Bending
2 CASE2A3DM 10 1,3,5,7,10 0.0625 5 Runs Bending
3 CASE3A3DM 20 1,3,5,7,10 0.0625 S Runs Bending
4 CASE1B3IDM 5 1,3,5,7,10 0.1250 5 Runs Bending
5 CASE2B3DM 10 1,3,5,7,10 0.1250 S Runs Bending
6 CASE3B3DM 20 1,3,5,7,10 0.1250 5 Runs Bending

®)

Fig. 1 Typical finite element mesh used for analysis (1/4 model) and
(b) cir ial pipe g Y

(3¢)

where K, the stress intensity factor, is a function of a and not
of a,. Other parameters such as crack opening displacement
and load-point rotations were also evaluated in Kumar et al.
(1984).

The GE/EPRI method, as developed for TWC pipe, appears
to be too conservative, i.e., the compiled values of A, and,
hence, J, are too large. In fact, for the smaller crack sizes, the
results appear quite inadequate. Indeed, the pipe rotations due
to the crack are negative for §/x = 1/16, as compiled in Kumar
et al. (1984) for both elastic and plastic solutions. As discussed
in Gilles and Brust (1991), Gilles et al. (1991), Brust and Gilles
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(1992), and Brust (1987), this problem may be due to the use
of the 9-node shell element in Kumar et al. (1984) to produce
the solutions, and overly stiff results occurred. Here we re-
compute the solutions of Kumar et al. (1984) for 6/7=1/8
and 8/%=1/16. In this fashion, more reliable predictions of
crack instability for the smaller crack sizes using the GE/EPRI
scheme are expected.

Finite Element Model and Analysis Matrix

Six finite element meshes have been developed, one for each
case listed in Table 1. A typical finite element mesh and geo-
metric definitions are illustrated in Fig. 1. A quarter model is
used by taking advantage of symmetry. Twenty-node isopara-
metric brick elements are being used with focused elements at
the crack tip. Only one element through the pipe wall is used,
and, as such, the tabulated results should be considered as
average values through the pipe wall. Results for tension load-
ing and combined tension and bending are currently being
compiled.

The elastic solutions are developed using elastic properties.
A deformation theory plasticity algorithm in the ABAQUS
finite element code is used to generate the plastic solution.
Because a through-wall cracked pipe subjected to bending is
a plane stress problem, the special (hybrid) elements in the
ABAQUS library which adequately handle plastic incompres-
sibility are not necessary. A reduced (2 X 2) Gauss quadrature
integration rule is utilized.

The GE/EPRI handbook (Kumar et al., 1984) compiled
tables whereby J, the crack mouth opening displacement (at
the center of the crack), 8, are tabulated for specific geometric
and material parameters. The parameters include R/t, 6, and
the Ramberg-Osgood power law exponent, n. For a uniaxial
tensile bar, the Ramberg-Osgood relation is as written in Eq.
(1).

Here we follow the convention of Kumar et al. (1984) and
compile, for J (see Eq. 2(a)), the crack opening displacement
(8) and the additional pipe rotation due to the presence of the
crack (¢°)
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where 8, and §, are elastic and plastic contributions, respec-
tively.

For the elastic contribution, using the GE/EPRI convention
(Eq. (2)), we write
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Table 2 Check case—R/t=10, §/x=1/2, n=3

J-integral value GE/EPRI 3-D-solid ABAQUS
hy 2.105 2.105
ha 3.331 3.195
hy 3.232 4.635

Table 3 F, ¥,, for bending (R/t=5, 10, 20) (ABAQUS 3-D-
solid solution) this represents the n=1 case of Table 1

R/t=5 R/t=10 R/1=20

6/x=1/16 F 1.022 1.049 1.097
v, 1.234 1.206 L1

Vi 0.028 0.035 0.098

0/x=1/8 F 1.103 1.208 1.418
v, 1.388 1.480 1.482

v, 0.126 0.160 0.231

Table 4 h-functions for through-cracks in bending (R/1=5)
(ABAQUS—3-D solid solution)

n=3 n=>5 n=7 n=10

8/x=1/16 h, 5.451 5.766 5.681 5.263
hy 6.896 7.003 6.715 6.087

I 0.826 1.452 1.879 237

8/x=1/8 h, 4.484 3.976 3.372 2.464
hy 5.820 4.999 4.164 2.959

hy 1.194 1.454 1.461 1.291

Table 5 h-functions for through-cracks in bending (R/f =10}
(ABAQUS—3-D solid solution)

n=3 n=>5 n=7 n=10

0/x=1/16 h 6.225 6.761 6.784 6.749
hy 7.422 71.739 7.632 7.527

hy 1.156 1.802 2.220 2.826

8/x=1/8 h, 5.791 5.512 4.790 3.823
hy 6.693 6.319 5.329 4.221

hy 1.550 1.886 1.864 1.713

Table 6 A-functions for through-cracks in bending (R/t = 20)
(ABAQUS—3-D solid solution)

n=3 n=>5 n=7 n=10

60/x=1/16 h, 7.044 8.022 8.756 8.815
hy 7.073 8.050 8.787 8.812

hy 1.505 2.348 3.087 3.770

#/x=1/8 hy 8.448 8.281 7.748 6.524
hy 7.498 7.491 7.160 5.890

hy 2.216 2.738 2.963 2.728

In Eqs. (5) to (7), I is the moment of inertia of the uncracked
section, which for large R/t is written as

I=nRt
and F, Vi, and V3, are compiled from the finite element so-

lutions. Note that F is the function conventionally defined in
the stress intensity factor definition as

R
K,:U\JTGF((?. 7)

The plastic functions A, A, and A, are also compiled.

The ABAQUS deformation theory routine utilizes a con-
stitutive law which includes the elastic term (Eq. (1)), i.e., it
is not a truly plastic solution. The analyses are performed to
a load level in which plastic strains greatly dominate elastic
strains everywhere in the body, which effectively results in a
nearly fully plastic solution. However, for completeness, we
obtain the fully plastic solution by subtracting out the (sepa-
rately calculated) elastic results. Hence, from Egs. (2) and (4),
hy, hy, and h, are evaluated using?

@®)

?Note that Kumar et al. (1984) also compile f; and Ay, which are the axial
stretch due to the crack. However, for bending (only) load, this displacement
is not relevant. .
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Fig.2 Piasticity function h, (ABAQUS—sotid element resulits) for pipe
under bending, R/t=10, n=3, and §/x =0.0625
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In Egs. (9) to (11), respectively, J, 6, and ¢ are results from
the ABAQUS solution. Also, in Eq. (11) the nc superscript
refers to “‘no crack.”” These are well known and are listed in
Kumar et al. (1984). The dimensionless elastic functions are
compiled first (F, V,, V3) to determine J,, 8,, ¢. Then the
results of the ABAQUS solution provide J, 8, and ¢, which
are total values. Equations (9) to (11) provide Ay, h;, h,.

(11

Results
It has been stated earlier that the GE/EPRI solutions appear
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to be inaccurate for small crack sizes. This may have been
caused by the use of shell elements to compile the solutions,
which may have led to overly stiff results. These errors are
most vividly dramatized by observing that the pipe rotations
due to the crack for small crack sizes, as compiled in Kumar
et al. (1984), are negative for both elastic and plastic cases.
This is physically impossible.

Table 1 shows the matrix of finite element calculations that
were performed. A complete set of analyses was performed
using ABAQUS on Battelle’s Vax Computer for Model 2 (n=1,
3, 5,7, 10). Both elastic and fully plastic (deformation theory)
computations were made for bending loads.

The GE/EPRI compilations appear to be more accurate for
the large crack sizes. Hence, a comparison for the case of R/
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Fig. 6 Comparison of J versus moment for R/t=S5, 8/x =118

=10 was made to verify the accuracy of the approach taken
here. For this case, 6/7=0.5 and n=3 was chosen. Table 2
lists results. The comparison for the value of the J-integral
(hy) is very good. Further verification may be found in Wil-
kowski et al. (1992).

Tables 3 through 6 provide the solutions compiled for all
of the cases listed in Table 1. Table 3 is the elastic solution,
while Tables 4 to 6 provide solutions for R/t=5, 10, and 20,
respectively. Note that GE/EPRI did not provide solutions for
n =10 and some of the n =7 cases due to numerical difficulties.

In order to obtain the A-functions, the ABAQUS calculation
involved elastic and plastic analysis (deformation theory) for
a series of bending moment loads until a fully plastic criteria
was met. One check on the fully plastic 4-functions reported
in Tables 4 through 6 was to calculate these functions at all
load levels and verify that A-functions do not vary once certain
load levels (plasticity dominates) are reached. A typical plot
of the h; function with bending moment is shown in Fig. 2
and it shows that the A, function levels off after some load
value. This same technique was used to produce all of the A-
functions.

Discussion

The differences between the previously developed solutions
(Kumar et al., 1984) and the present results appear to be most
important only for small crack sizes (8/x=1/8, 1/16). The
present solutions were developing using the 3-dimensional solid
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Fig. 7 Comparison of J versus moment for R/t= 20, 6/x = 1/16

elements (20-node brick) and the deformation theory algorithm
of ABAQUS. The solutions presented here are believed to be
the more accurate of the two solutions because full three-
dimensional elements were used instead of relying on shell
elements. However, the results of Kumar et al. (1984) are
conservative. The analyses presented in Kumar et al. (1984)
appeared to produce results that are too stiff, and, indeed,
solutions for large n were not possible as convergence problems
occurred. Here, no convergence problems were experienced.
The problems with the small crack solutions of Kumar et al.
(1984) are discussed in much more detail in Gilles and Brust
(1991), Gilles et al. (1991), Brust and Gilles (1994), and Brust
(1987).

A plot of the presently produced F-function results (Eq. (8))
and the GE/EPRI solution is seen in Fig. 3(a) as a function
of R/t for /= =a/b=1/16, where a is the crack length and
b is the uncracked ligament. The differences are about 3 per-
cent. Figure 3(b) shows comparison of V, (Eq. (6)), which is
related to the crack opening displacement. The differences are
about 20 percent for R/t=5. Comparison of 4, (J-integral)
and h;, (crack opening displacement) are presented in Figs. 4
and 5, respectively. In these figures, note that the present
solutions were not compiled for n=2 (1/n=0.5), while the
GE/EPRI solutions were not compiled for n=10 (1/n1=0.1).
The h, and A, values differ by as much as 25 percent between
the two solutions.

Finally, a comparison of J as a function of moment is made
in Figs. 6, for 8/x=1/8, R/t=5, and n=3, 7; and, also Fig.
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7 for 6/x=1/16, R/t=20, and n=3, 7. It is seen that the
differences between the original and modified solutions can
be significant.

No comparisons are made with the hy functions. As discussed
earlier, the GE/EPRI k, functions are less than zero for most
cases.

Conclusion

Solutions for the small circumferential crack under elastic-
plastic conditions have been compiled for the case of pure
bending. These are compiled in a format identical to that of
Kumar et al. (1984). Solutions for the tension case and com-
bined tension-bending are currently being compiled. Work is
also continuing on the development of alternative improved
estimation schemes for small cracks in pipe (Gilles and Brust,
1991) and a crack in a pipe weld (Rahman et al., 1991).
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