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Elastic-Plastic Fracture of
Circumferential Through-Wall
Cracked Pipe Welds Subject to
Bending

A methodology is proposed to carry oul elastic-plastic fracture analysis of through-
wall cracked ductile pipe weldments subjected to pure bending loads. It is based on
deformation theory of plasticity, constitutive law characterized by Ramberg-Osgood
model, and an equivalence criteria incorporating reduced thickness analogy for
simulating system compliance due 1o the presence of « crack in weld metal. Closed-
form solutions are obtained in terms of elementary functions for approximate eval-
uation of energy release rate and center crack opening displacement. The method
utilizes material properties of both base and weld metals which are not considered
in the current estimation methods. It is generaf and can be applied in the complete
range between elastic and fully plastic conditions. Numerical examples are presented
to illustrate the proposed technique. Comparisons of results with reference solutions
from finite element method indicate satisfactory prediction of foregoing fracture

parameters.

1 Introduction

The evaluation of energy release rates (also known as J-
integral) and center crack opening displacements (COD) of
circumferentially located through-wall cracked (TWC) pipe
weldments is an important issue in the structural integrity as-
sessment of leak-before-break and in-service flaw acceptance
criteria for nuclear piping. Recent analytical, experimental,
and computational studies on this subject indicate that the J
and COD are the most viable fracture parameters for char-
acterizing crack initiation, stable crack growth, and the sub-
sequent instability in ductile materials {(Rice, 1968; Hutchinson,
1982; Kanninen and Popelar, 1985). They are usually deter-
mined by numerical analysis and estimation techniques. Tra-
ditionally, a comprehensive numerical study has been based
on sophisticated finite element method (FEM) for nonlinear
stress analysis. Although several general and special-purpose
computer codes are currently available for FEM, the incon-
venience with regard to its applicability as a practical analysis
tool is not of minor nature. The computational effort is still
significant, even with the recent development of numerical
technigues and industry-standard computational facilities. In
addition, the employment of FEM can be time-consuming and
may require a high degree of expertise for its implementation.
These issues become particularly significant when numerous
deterministic analyses are required in a foll probabilistic anal-
ysis.
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Currently, there are several simplified methods available for
elastic-plastic fracture analysis of piping systems. They were
primarily developed for flawed pipes with cracks in base metal.
No reliable estimation techniques exist to evaluate performance
of pipes with cracks in weld metal (Rahman et al., 1991). The
energy release rate and crack opening displacement for pipe
weldment cases are typically estimated assuming that the entire
pipe is made up of all base material. Predictions are usually
made using base metal stress-strain data and weld metal J-
resistance curve (Wilkowski et al., 1989). This can lead to
overly conservative or nonconservative predictions, depending
on the strength ratio of the base versus weld material.

In this paper, a methodology is developed to predict the J-
integral and COD of TWC ductile pipe weldments subjected
to remote bending loads. It is based on (§) classical deformation
theory of plasticity, (#/} constitutive law characterized by Ram-
berg-Osgood mode!, and (/&) an equivalence criteria incor-
porating reduced thickness analogy for simulating system
compliance due to the presence of a crack in weld metal (Rah-
man et al., 1991). The method utilizes material properties of
hoth base and weld metals. The method is general in the sense
that it may be applied in the complete range between elastic
and fully plastic conditions. Since it is based on J-tearing
theory, it is subject to the usual limitations imposed upon this
theory, e.g., proportional loading, etc. This implies that the
crack growth must be small, although in practice J-tearing
methodology is used far beyond the limits of its theoretical
validity with acceptable results (Wilk.~wski et al., 1989). Nu-
merical examples are presented to illustrate the proposed tech-
nique which is verified with the results from FEM.
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Fig. 1

Circumlerential crack in a pipe butt weld
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Fig. 2 Typlcal butl-weld sequence ior a pipe and possible cracks (this
is an actual sequence for a 4-In-dia schedule 80 pipe)
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2 Pipe Weld With a Single Crack

Consider Fig. 1 which illustrates a typical butt-welded pipe
with a circumferential through-wall crack of total angle 26.
The pipe mean radius R and thickness ¢ are shown. Figure 2
illustrates the typical geometry for 2 butt weld in a pipe. Typ-
ically, the weld layers are deposited in sequence. The example
of Fig. 2 is an actual sequence from a 4-in-(102-mm-) dia
schedule 80 pipe, which required seven passes. The welding
gives rise to a heat-affected zone (HAZ), which results in ma-
terial properties different from those in the weld metal or base
metal alone. Often cracks develop in the HAZ zones of pipe
and may grow in a skewed fashion to become a through-wall
crack as illustrated in that figure. Figure 2 also shows a crack
which grows through the weld metal, and this is the type of
crack assumed in the development of the method presented
here. Figure 3 shows the pipe weld geometric assumption made
here. Note that the angular and irregular nature of the actual
weldment is assumed 1o be a straight radial bimaterial interface
line for development of this model. Residual stresses and al-
tered HAZ properties are not included. The total length of the
weldment is assumed to be an average length (Figs 2 and 3),
L, which is often best approximated to be the pipe thickness.

3 General Background

Consider a simply supporied TWC pipe under remote bend-
ing moment M in Fig. 4, which has length L, mean radius R,
thickness ¢, and crack angle 28 with the crack circumferentially
located in the weld material of length L, In the development
of a J-estimation scheme, it is generally assumed that the load
point rotation due to the presence of crack ¢°, energy release
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Fig. 4 Schematics ol pipe weldments with a circumlerential flaw

rate J, and center crack epening displacement §, admit additive
decomposition of elastic and plastic components

=+ o 4y
J=d.+ 7, (2)
5=8,+8, (3)

where the subscripts e and p refer to elastic and plastic con-
tributions. In the elastic range, ¢ and M are uniquely related.
In addiuon, if the deformation theory of plasticity holds, a
unique relationship also exists between ¢p and M. Once these
relationships are determined, the elastic and the plastic com-
ponents of J and & can be obtained readily.

4 Energy Release Rate

4.1 Elastic Solutien.
be defined as

The elastic energy release rate J, can

au’

J U
= = (U'+U™) = 4
*“ 94 "3a ) 34 @
where U7 is the total internal strain energy, U™ is the strain
energ;[ which would exist if there were no crack present, /¢
= U’ — U™ is the additional strain energy in the pipe due
to the presence of crack, and A = 2RO/ is the crack area.
When ¢ — 0, i.e., for thin-walled pipe with mode-7 crack
growth, J, can be obtained as
K} s

e F3 (5)
where £ is the common elastic modulus of both base and weld
materials, and K, is the mode-I stress intensity factor. From
theory of linear efastic fracture mechanics, K is given by

Ki=o0/7RE Fg(0) ©

in which ¢ = M/wR% is the far-field apphied stress, and Fy(0)
is a geometry function relating X, of a cracked shell to that
for the same size of crack in an infinite plate. From Eqgs. (4)-
(6), U‘ can be integrated to yield

pa

Uf*Ll (0) )
T2xRYUEE

where
L]

EFp(E)'at (8)
0

Iy(6) =4 j
Using Castigliano’s theorem
$oe aue
T aM
which, wher combined with Eq. (7), gives
7E7rR2f .
T8y *
representing relationship between moment and elastic rotation.
Equations (5) and (6) completely specify the elastic energy
release rate J,, and hence the elastic solution is complete in a
closed form. Equation (10) provides relationship between ap-

®

(10)
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Fig. 5 Reduced section analogy

plied moment M and elastic rotation ¢;, which will be required
for the calculation of J, explained in the next section. These
developments are based on elastic solutions by Sanders (1982,
1983}. Expiicit functional forms of Fp(f) and 75(8) are provided
in Appendix A.

4.2 Plastic Solution.
can be defined as

The plastic energy release rate J,

; 5"2 M ay
4 b 941,

where ¢ is a durnmy variable representing instantaneous plastic
rotation, The evaluation of J, in Eq. (11) requires determi-
nation of M — ¢, {or M — £) relationship as a function of
crack size. When this relationship is obtained, Eq. {11) can be
used to find J, and then can be added to J, to determine the
total J.

A widely used univariate constitutive law describing mate-
rial’s stress-strain (¢ — ¢) relation is the normalized Ramberg-
Osgood model given by

ny
€ O g
R
€0 Toi &

where g, is some reference stress usually assumed to be the
yield stress, ey = o/ E s the associated reference strain, o,
n, are the power-law parameters of model usually chesen to
fit expertmental data, and i = 1 or 2 representing base or weld
materials, respectively. In applying the Ramberg-Osgood re-
lation to the cracked pipe problem, it is necessary to relate the
stresses with rotations. [lyushin (1946) showed that the field
solutions to the boundary value problem involving a mono-
tonicaily increasing load or displacement-type parameter is
“‘proportional.”’ Consequently, Eq. (12) applies (minus the
elastic term) and the deformation theory plasticity is assumed
to be valid. Thus, it can be shown that (Brust and Gilles, 1990;
Brusi, 1987; Gilles and Brust, 1989)

< < g nr?x T
6= La; (*) be

au;,

12

(13)

in which the moment-elastic rotation relationship in Eq. (10)
is utilized. In Eq. {13}, L% is an unknown function which needs
to be determined. For the crack problem, Ly may be determined
via numerical method. However, no analytical method exists
to obtain L in closed form. Thus, the main task in this meth-
odology is to establish L§ in Eq. (13).

Evagluation of Li.  Suppose the actual pipe can be replaced
by a pipe with reduced thickness f. which extends for a distance
G = L, at the center (Fig. 5). Far from the crack plane, the
rotation of the pipe is not greatly influenced by whether a
crack exists or some other discontinuity is present, as long as
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the discontinuity can approximate the effects of crack. The
reduced thickness section, which actually results in material
discontinuity, is an attempt to simulate the reduced system
compliance due to the presence of crack. This equivalence
approach was originally suggested by Brust (1987) and suc-
cessfully implemented to evaluate performance of TWC pipes
consisting of one single material under various loading con-
ditions (Brust, 1987; Gilles and Brust, 1989). It is assumed
here that the deformation theory of plasticity controls stress-
strain response and that the beam theory holds.

Consider the equivalent pipe with material discontinuity in
Fig. 5, which is subjected to bending load M at both ends.
Using classical beam theory, the ordinary differential equations
governing displacement of beams with Ramberg-Osgood con-
stitutive law can be easily derived. These equations, when sup-
plemented by the appropriate boundary and compatibility
conditions, can be solved following elementary operations of
calculus. Details of algebra associated with these solutions are
provided in Appendix B. The rotations—dy/dx in Egs. (30),
(33), and (36)—provide explicit relationships between far-field
plastic rotation ¢2 due to material discontinuity and the cor-
responding elastic rotations ¢2 where the new superscript d
refers to material discontinuity. Each of these relationships
can be expressed in the form analogous to Eq. (13} as

nj=1
ag
¢:=Lza,(—) of

%o,

(14)

in which L% will depend on geometry, material properties of
base and weld metals, ¢, and the spatial coordinate x. While
no attempt is made here for a formal proof, it is assumed here
that L% determined from discontinuity solution (Eq. (14)) ap-
proaches the actual unknown Lj in Eq. (13).

Since L3 evaluated at segment CD cannot account for base
material properties (Eq. (36)), the appropriate choice is to write
L% at either segment AB or BC. More specifically, when the
spatial location is selected to be the point B (i.e., x = 4/2),
the explicit version of Eq. (14) becomes

d

GEO

by =
M (G Lt (MY L,i
Y A VEEY ARV A
(15)

where M = a4,I/R is the elastic bending load corresponding
to reference stress ag, and other parameters are defined in
Appendix B. Equation (15) can be derived from Eq. (33) with
the constant C, replaced by its expression given in Eq. (40).
Comparing Eq. (15) with Eq. (14) gives

MN\"(d L. A" M\ L\
Mo, 2 2 fe M 2\
M a L, I+ M L,t
M a_ Lyt (M, vt
I VI Y AR YT A

1

X—
VAR
g y
(M1>

Equation {16) apparently indicates that L% has explicit func-
tional dependency on external load parameter A4, thus violating
previously invoked Ilyushin’s theorem (cf., Eq. (13)). How-
ever, it can be shown that for the variation of load magnitude
in the practical range, the correlation between L% and M is
not of strong nature. This is semi-empirically proved by Rah-
man and Brust (1991).

€

8=

(16)
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Determination of t.. The equivalent reduced thickness ¢,
can be obtained by forcing the limit moment of reduced pipe
section

MY = 405, R7L, (17)
to be equivalent to the limit moment of cracked pipe section

g 1
M =40, Rt (cos 575 sin 0) (18)

giving (Brust, 1987)

t,e=t cosgAls'nO
= 272"

which does not require any explicit description of the limit
SLTESS Opmy due to its canceilation in the equality of Egs. (17)
and (18). However, Brust (1987) has observed that Eq. (19)
provides fairly good approximation only for small crack angles
(0 deg = 26 < 90 deg). For large crack angles (20 = 120 deg),
1, is found to be better represented by

!—it cosg ! in ¢
= 273°

obtained when the limit moment of the reduced section pipe
is calculated from linear stress variation with maximum stress
Oymic (giving M2 = FOimife fe) rather than a uniform stress
block, as assumed in Eqs. (17) and (18). For cracks with angles
in the intermediate range (90 deg < 20 < 120 deg), £, can be
found from linear interpolation between these limits (Brust,
1987).

Estimation of J,. Having determined L3 and 4,, the M —
¢, relationship can be obtained from Eq. (14) via M — ¢°
relation in Eq. (10). When it is placed in Eq. (11), it can be
integrated out symbolically to evaluate J, in a closed form.
Following simple algebra, it can be shown that

(19)

(20)

o 1 xR o M\
J=—2 = —_—
PTEM  m+1 2 H"L"I“(mzt) @n
where
10y 1 aLY
Hy=—28, 28 v)
5=, 30 T 1d o6 @)

which involves the partial derivatives 31,/86 and 3L%/36 ex-
plicitly deseribed in Appendix C. Equations (5) and {21) pro-
vide closed-form expressions for J, and J,. These analytic
forms are very convenient for both deterministic and proba-
bilistic elastic-plastic fracture mechanics.

5 Center Crack Opening Displacement

5.1 Elastic Solution. The elastic component §, may be
obtained from any known solution in the literature, such as
Sanders’ solution (1982, 1983), as interpreted by Yoo and Pan
(1988). However, when this closed-form solution based on shell
theory is compared with experimental data and the GE/EPRI
finite element solutions (1981}, the elastic COD appears to be
underpredicted. Besides, Paul et al. (1991) show that the GE/
EPRI solutions compare well with both test data and separate
finite element solutions. Hence, the following GE/EPRI so-

lution given by:
R & R\M
=d4a — - =)= 23
8, 4a1 V,(I, t)E (23)

is used in this paper. In Eq. (23), a = R@ is the half-crack
length, I = xR’f is the moment of inertia of the uncracked
pipe section with large R/t, and V, is the crack opening dis-
placement function tabulated by Kumar et al. (1981) for var-
ious combinations of 8/x and R/!.
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Table 1 Parameters of Ramberg-Osgood madel

Material g, E
() MPa) (MPa) o, n
Base metal 303.3 175760 30.56 3,826
Weld metal 358.5 175760 11.96 9.370

Cracked oreo

L

Fig. 6 Flnite element mesh of cracked pipe weld

5.2 Plastic Solution.
obtained from

The plastic component &, can be

by = [R(l +sin g)j':»j,

where #; is the plastic rotation of pipe due to the crack. In
Eq. (24), the term R[1 + sin(f/2)] represents the distance from
the rigid plastic neutral axis to the center of the crack. Hence,
it is clear that the foregoing equation should, at worst, provide
a conservative prediction.

(24)

6 Numerical Examples

Consider two circumferential TWC pipe weldments, one
with R = 52.87 mm and ¢+ = 8.56 mm (R/¢ = 6), and the
other with R = 55.88 mm and ¢ = 3.81 mm (R/¢ = 15), each
of which is subjected to constant bending moment M applied
at the simply supported ends. In both pipes, it is assumed that
28 = 139 deg and L, = 5.59 mm. The constitutive law for
base and weld metals are assumed to follow the Ramberg-
Osgood model. The numerical values of reference stress og;,
modulus of elasticity £, and the model parameters o; and n;
are shown in Table 1,

The pipes with Table 1 input parameters are used to calculate
energy release rates J and crack opening displacement & by
both estimation method and nonlinear finite element method

NOVEMBER 1992, Vol. 1147413
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Fig. 7(b) Comparisons of COD versus M by various methods (R = 6)  Fig. 8(b) Comparisons of COD versus Mby various methods (A2 = 15)

(FEM). Approximate evaluation of J and & by the proposed
estimation scheme is based on Eqs. (2), (5), and (21), and Egs.
(3), (23}, and (24), respectively. The FEM solutions, on the
other hand, are based on 3-dimensional brick elements avail-
able in the fracture mechanics code BCLFEM, which is de-
veloped by in-house expertise of the computational group at
Battelle. Figure 6 shows a typical mesh representing the finite
element idealization of the quarter {due to symmetry) of TWC
pipe with crack in weld.

Figures 7 and 8 show several plots of J versus M and & versus
M obtained from various levels of approximation for both
pipes with R/t = 6 and R/t = 15. Also shown in these figures
are the results of finite element method (FEM), which can be
used as benchmark solutions for evaluating the accuracy of
the analytical methods. Comparisons of the results of ap-
proximate method developed by Brust and Gilles (1990) solely
based on all-base or all-weld material properties with those of
FEM suggest that they provide only upper and lower bounds
of the fracture parameters at any given load M. However,
neither of them can be used to predict their actual values
reliably.

Figures 7 and 8 also exhibit the results of the proposed
method for several values of & representing the length of re-
duced thickness section. They all show reasonably good agree-
ment with the solutions of FEM. Although & is treated here
as a free parameter, an optimum value &, needs to be deter-
mined for obtaining the best estimate. In a recent paper by
Rahman and Brust (1991), several finite element analyses are
carried out to determine the optimum value of 4. Following
extensive comparisons with the results of finite element anal-
ysis, the optimum value d,, is found to be relatively insensitive
1o the variations in the hardening parameters n; and », of the
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Ramberg-Osgood models for the base and weld metals, re-
spectively. It is also found that the optimum value of dyu/L.,
is roughly in the neighborhood of 4 where L, is the average
length of weld metal in the pipe. Details of this calibration
procedure can be obtained from Rahman and Brust (1991).
The results of this calibration, however, should be viewed as
a preliminary estimate of d,,. More refined calibration will
need to be performed to investigate dependency on the ge-
ometry factor (e.g., R/t ratio), crack size (e.g., 8/« ratio),
reference stress ratio (e.g., ag;/902), and any other pertinent
parameters.

7 Conclusions

A methodology is proposed to estimate the energy release
rate and center crack opening displacement of TWC ductile
pipe weldments subjected to remote bending loads. The method
is based on deformation theory of plasticity, constitutive law
characterized by Ramberg-Qsgood model, and an equivalence
criteria incorporating reduced thickness analogy for simulating
systern compliance due to the presence of a crack in weld metal.
The method utilizes material properties of both base and weld
metals which are not considered in the current estimation meth-
ods. The method is general and it can be applied in the complete
range between elastic and fully plastic conditions.

Several numerical examples are presented to illustrate the
preposed technique for estimating the Jintegral and COD of
TWC ductile pipe welds. Similar results from stress analysis
based on finite element analysis are also obtained to provide
reference solutions for the foregoing problems. Comparison
of the results predicted by this new method with the finite
element analyses indicate satisfactory predictions of energy
release rate and crack opening displacement.
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The equations for J-integral and CODina nonlinearly elastic
cracked pipe weld are derived in closed form in terms of el-
ementary functions. This makes the proposed scheme com-
putationally feasible and attractive for future development of
probabilistic fracture mechanics by both analytical and sim-
ulation models.
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APPENDIX A

The following are the approximate equations for Fy(f) and
I4(0) (Brust, 1987):

L3 25 35
[}
F3(9)=l+Ab(£> +Bb(—) +C,,(Q) 25)
T T kS
with
2 3
Ap=-3.2654+1.5278 (?) —0.0727 (?) +0.00|6(§)

2 3
R
B,=11.3632-3.9141 (7) +0.1862 (Lf) - 0.0041 (g)

2 3
Cp= —3.1861+3.8476 (Lf) 70.1830(5;) +0.0040(§)

(26)
6 1.5 9 3
15(0)=201[1+8(;) 1,,,+(;) (Ibz"']b;):l
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and

27

where

&(2)
il\rm

f A B (0 24,C+ B (9)]
27257 15 \x 35 x

ByCy [0
I, =# (;) (28)

3+£[z) 0 4
4.5\x

APPENDIX B

Using classical beam theory for small deformation, the gOv-
erning differential equations are (Fig. 5):

1 Segment AB (/2 <= x < L/2)

dy 1/ M\"
= — 29
dx* R(Mm) (29)
T
@ LMY e (30)
dx R\M,
1 M\™ 2
J’:E<ATDI) *2*+C.X+C2 31
2 Segment BC(L,/2 <= x < a/2)
dy r{M\"{A\"
i) () o
dy 1/ M\" mt
x_R(M.,,) (1) X+ G {33)
Y ANTONE SN w4
y‘R Mo, ) Fx+ Gy (34)
3 SegmentCD (0 < x < L./2)
dy_L{M\" ("
" R\Ma) \& G3)
dy L/ M\?/{\™
—=—({=—=) (=) x+ 36,
dx R(Mm) () G (6)
ny a2
y=L(MVHN T cpve, 37
R\My/ \t,
where
_AKIR oy o V' (1.0+0.5/n)
“T xR " () 2 T(1.5+0.5/n)
(38
in which
r(u)=§ £ lexp( ~ £)d 39
o
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is the gamma function. Enforcing boundary and compatibility
conditions, the constants Cy-Cy are

o (5
i) 5

LAMN"L /O™ 1/ M\™L,/\™
Cy==—|—) —[=] +=[—] =(-

R\My/ 2\, R\My) 2 \e
Coo L (MM L el (™) L\ 2
T R\M 8 4 , t 8
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APPENDIX C

The expression for the partial derivatives 8/,/86 and 8L%/
d¢ are given as follows:
8l 2
—=48Fp(8
26 p(0)

(an

3Ly 1

% 4G O] { A5G (0} A1G (8) + 4G, (6)]
b

— AsG B AG, () + A;Goy(0)]] (42)
in which

-k
Gi(8) = (cns ;—% sin 0)

43)
, kf . 8
Gk(o)=E<SIHE+COSB>GIHI(9)
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where C = 1 or C = 4/x according to whether 0 deg = 24
= 90 deg or 26 = 120 deg, respectively. When 90 deg = 2§
< 120deg, C can be interpolated from the foregoing two limits
(Brust, 1987).
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