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Risk-Based Considerations in
Developing Strategies to Ensure
Pipeline Integrity—Part I: Theory

As pipelines age, a flaw population that varies initially along the pipeline can advance
in size and number. Analysis of the serviceability of pipelines based on either in-
line inspection or hydrotesting can lead to overly conservative decisions or an ex-
cessive risk of failure when the random nature of this population and the pipeline’s
properties are represented by a “‘typical” flaw and “‘average’’ properties. It follows
that decisions on serviceability should reflect the random nature of the variables
involved or be justified by demonstrating that the uncertainty in these parameters
does not adversely affect cost and safety. This is the first in series of two papers
generated from a recent study on risk-based analysis for developing strategies to
ensure pipeline integrity. In this paper (Part I—Theory), a new probabilistic meth-
odology is developed to conduct fracture evaluations of pipelines subjected to ductile
flaw growth in service. The study is made under the assumption that continuing
serviceability is based on the use of hydrotesting. The analysis involves time-de-
pendent elastic-plastic fracture mechanics for the underlying deterministic model,
and Monte Carlo simulation for structural reliability analysis. Using these models,
pipe fracture evaluations will be conducted in the light of a hydrotest-based approach
to ensure pipeline integrity. They will be discussed in the companion paper, Part

1I—Applications (Rahman and Leis, 1994).

1 Introduction

Because of stress-corrosion cracking (SCC) that occurs oc-
casionally on the external surface of pipelines, defects present
since construction can advance in size and new defects can be
introduced to the initial population and also grow during serv-
ice. Historically, safe operation of thousands of miles of nat-
ural gas transmission pipelines underscores the merits of
hydrotesting as a means to verify the integrity of the line as
constructed and to demonstrate continuing serviceability
through the use of periodic retesting programs. Hydrotesting
is currently the only viable means to detect and control certain
types of defects, such as SCC. Hydrotesting will remain the
sole means to ensure safe serviceability for the many lines that
cannot pass in-line inspection tools. Therefore, hydrotesting
is and will continue as a key tool in the management arsenal
to ensure safe long-term service for the gas transmission pipe-
line network.

The evolution of the defect population with service means
that the defect population at any instant in time of the pipeline
is a random variable. The mechanical properties and the tough-
ness of the pipe steel are similarly random variables along the
pipeline as is the pressure loading during service. However,
during hydrotesting the pressure history is closely controlled
and varies only in a well-defined manner as a function of the
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pipeline’s elevation. The variability in properties and defect
population can confound decisions as to which test pressure
provides the optimum balance between the number and size
of defects that will be removed in the test versus the interval
between hydrotests and the likelihood of an in-service failure.
This variability also can complicate serviceability decisions
based on in-line inspection results, which introduces the added
uncertainty in the measurement of the flaw population.

Regardless of whether serviceability is based on in-line in-
spection or hydrotesting, the random nature of the flaw pop-
ulation and the properties can lead to overly conservative
decisions or an excessive risk of failure when the random nature
of this population and the loadings are represented by a *‘typ-
ical” flaw and ‘‘average’’ properties. It follows that the sta-
tistical variability in properties and defect population can
confound the ability of methods like in-line inspection and
hydrotesting to ensure safe operation when they are based on
a simple characterization of the flaw population. Therefore,
decisions on serviceability should reflect the random nature of
the variables involved or be justified by demonstrating that
the uncertainty in these parameters does not adversely affect
cost and safety (Leis and Rahman, 1993).

This is the first in series of two papers generated from a
recent study on risk-based analysis for developing strategies
to ensure pipeline integrity. In this paper (Part I—Theory), a
new probabilistic methodology is developed to conduct frac-
ture evaluations of pipelines subjected to ductile flaw growth

Transactions of the ASME



in service. The study is made under the assumption that con-
tinuing serviceability is based on the use of hydrotesting. The
method of analysis involves 1) time-dependent elastic-plastic
fracture mechanics for the underlying deterministic models,
and 2) direct Monte Carlo simulation for conducting struc-
tural reliability analysis. The paper begins with a brief de-
scription of primary creep crack growth damage models and
then formulates the deterministic J-integral equations for axial
part-through-wall cracked pipes under internal pressure.
Thereafter, the foregoing deterministic model is placed in a
probabilistic framework to evaluate structural integrity of
pipelines subjected to ductile flaw growth in service. Using
these models, pipe fracture evaluations will be conducted in
the light of a hydrotest-based approach to ensure pipeline
integrity. They will be discussed in the companion paper (Rah-
man and Leis, 1994).

2 Analysis of Axial Flaws in Pipe

Pre-service and in-service inspections of typical gas trans-
mission pipelines indicate that axial part-through-wall (PTW)
cracks can be distributed along the length of a line (Leis and
Rahman, 1993; Duffy et al, 1968). Cracks that would limit the
initial serviceability or safety are removed from the crack pop-
ulation prior to service. Cracks that remain are small and in
the absence of in-service growth could remain in the line at
maximum operating pressure without further concern. How-
ever, in cases where these cracks can grow because the in-
service loading and environment causes SCC, it is very im-
portant to be able to quantify the effects of that crack growth
on the integrity of the pipeline. Because axial cracks are most
responsive to the pressure loading of a pipeline, the following
analysis focuses on fracture-mechanics controlied behavior of
axial PTW cracks. Cases where the flaw depth approaches
either zero or the wall thickness is characterized by ductile
response of the pipe steel rather than by fracture mechanics
are discussed by Leis et al. (1991). It follows that predictions
of the population of axial PTW flaws using fracture mechanics
are valid only when the failure of the pipe is controlled by
fracture mechanics considerations. Similarly, probabilistic
analyses based on fracture mechanics will be relevant only when
failure is characterized by fracture mechanics. Predictions in
the present paper thus are relevant between the aforementioned
limits in the flaw size. This formulation could be easily ex-
tended for other cases such as moving lines, river crossings,
and subsidence where significant bending and tension can pro-
mote the growth of circumferentially oriented cracks. It could
similarly be adapted to other facets of pipeline operation, such
as the safety and serviceability of compressor stations (e.g.,
engines and compressors). The ensuing sections develop and
validate the analytical basis for the assessment of the signifi-
cance of the random nature of the flaw population and the
properties. Readers interested only in the results should pro-
ceed directly to the Results and Discussion section presented
in the companion paper (Rahman and Leis, 1994).

2.1 Primary Creep Crack Growth. Consider a pipe, which
has mean radius, R, and wall thickness, 7, containing an axial
semi-elliptical PTW crack with an initial length, 2¢, and max-
imum depth, a. Figure 1(a) shows the geometric parameters
for this axial PTW crack in a pipe. The pipe is subjected to
an internal pressure, p, which is held for some period of time,
t, as occurs in a typical hydrotest. During the loading, a plastic
zone develops around the crack tip that can be described by
the Hutchinson-Rice-Rosengren (HRR) field (Hutchinson,
1982). The size of this zone depends on the magnitude of the
load. As the hold period begins and primary creep deformation
develops, the crack-tip stress field may decrease or increase
depending on the material properties. For the type of material
(line-pipe steel) dealt with here, the stresses at the crack tip
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(b) Flat plate analog

Fig.1 Geometric parameters for axial part-through-wail flaws in a pipe

increase, and effectively the plastic zone grows in size. For the
type of material considered by Riedel (1986), crack-tip stresses
relax as a creep zone grows within the plastic zone. They are
discussed in the forthcoming.

For >0, creep straining begins as the external load is held
constant. The simplified power-law constitutive response in
the rate form (¢>0) can be represented by (Brust and Leis,
1992)

€= €5+ ef+ € )
where
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in which ¢ is total strain with the associated superscripts e,
D, and c representing its elastic, plastic, and creep components,
oy is total stress, S;=0;—(1/3)ay is deviatoric stress, o, and
€. are equivalent stress and strain, §; is kronecker delta, E is
elastic modulus, » is Poisson’s ratio, N,, ¢, and B, are material
constants for strain-hardening creep law, and B, and n, are
power-law-hardening plasticity constants. The overdot in Eqs.
(1)-(4) represents material time derivative. For a time-hard-
ening creep law, the creep strains can be represented by

3
eS=2
€ 3

mydle™ s, )

The relations between the time and strain-hardening material
constants are (Brust and Leis, 1992)
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where 1., v, and m are also material constants. For the situation
of concern here, little difference between strain and time-hard-
ening solutions will occur if n,>n.; whereas for the materials
satisfying n.> n, and considered by Riedel (1986), a significant
difference in results may exist between time and strain-hard-
ening solutions.

If n.> n,, which is the situation examined extensively in the
literature, the & term of Eq. (1) dominates very near the crack
tip, and a creep zone develops at the crack tip which grows
with time. The crack-tip stress state thus relaxes, and the crack-
tip stress state becomes another HRR type of field growing
within the plastic HRR field (see, for instance, Riedel (1986)).
At time =0, the strength of the stress singularity is

1
Y

where r is the radial distance (coordinate) from the crack tip.
After t>0, the strength of stress singularity approaches

a1
oxr P

1
nc+l' (8)
Clearly, for n.>n,, as is well known, the near-tip stress state
decreases, although a relevant crack-driving parameter, such
as the J-integral, will continue to increase.

If n,> n., which is the requirement for the present analysis
procedure, a plastic zone develops at the crack tip upon loading
at time = 0. After the hold period begins, the stress state very
near the crack tip increases rather than decreases, and the
effective plastic zone increases in size. That this is so may be
seen by observing that the &% term of Eq. (1) dominates the
other terms. Hence, the time-independent plastic HRR field
dominates the near-field stress and strain states. Thus, rather
than switching from a “‘plastic’’ HRR field to a “‘creep’” HRR
field which occurs for n.>n, and results in stress relaxation,
here for n,>n,, the stress state remains *‘plastic’’ HRR field
with stress singularity defined by Eq. (7) for ¢>0, and the
stress state increases since the strength of the HRR field J
increases.

For typical line-pipe steels from gas transmission pipelines
under hydrotest, the power-law-hardening parameter for
strength (plasticity), n, is usually greater than that for creep
parameter, n.. Hence, the rest of the paper will focus on pri-
mary creep damage based on the condition, n,>n.. As dis-
cussed in the foregoing, the continued *‘loading’’ or “‘stressing’’
at the crack tip under conditions of a hydrotest is caused by
the primary creep straining (Leis et al., 1991; Burst and Leis,
1992). Since the loading which occurs does not constitute a
drastic change in loading path (proportionality) at each ma-
terial point, it is assumed that the material does not exhibit
any memory under these circumstances. In consequence, the
stress state that is achieved after loading and subsequent hold
at any given instant of time is not greatly different from that
obteined by assuming time-invariant response but with ma-
teria: properties representative of the current time (Leis et al.,
1991). Hence, the J-integral, J(¢), at any instant following
creep deformation can be obtained by adding the time-invar-
iant elastic component, J,, and the time-variant plastic com-
ponent, J,(¢). Because of the functional dependence on time,
time-dependent material properties obtained from isochronous
(constant time) stress-strain curves can be used to calculate
J,(1). When the stress-strain curve is represented by a suitable
mathematical model, such as the Ramberg-Osgood model with
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time-varying parameters, simple closed-form equations can be
developed for J, and J,(¢), as follows.

3 Deterministic Formulation

3.1 Material Properties. In conducting nonlinear frac-
ture-mechanics analyses, several analytic idealizations are con-
sidered. For example, it is assumed that the constitutive law
characterizing the steel’s stress-strain response can be repre-
sented by the time-dependent Ramberg-Osgood model

n(ty
=2+ 2o ©
“CET\k()
or the normalized version
nt)
€ g a
—=—+aft){— 10]
P af )<Uo) (10)

where oy is an arbitrary reference stress usually assumed to be
yield stress, E is the elastic modulus, e;= 0o/ E is the associated
reference strain, and K(¢), a(t), n(t) are time-variant, strain-
hardening parameters usually chosen from a best fit of test
data. Note that the Eqs. (9) and (10) are equivalent if
a(t)=Eaa"™" /K ()", which provides a means to calculate
a(t) [or K(t)] when K(t) [or a(¢)] and n(t) are known for
a given material. For typical gas transmission pipe materials,
the time-dependent Ramberg-Osgood parameters also admit a
multiplicative decomposition of the form (Leis et al., 1991)

a(t)=a/i(f)
n{t)=nof2(t)

K(1)=Kofy(1) )

where ap, ng, and K| are the initial values (i.e., at time, ¢=0)
and fi(?), f2(¢), and fi(¢) are the time-varying functions,
which can be obtained from the isochronous test data (Leis et
al., 1991). Table 1 shows typical functional values of f, and
f, derived from Leis et al. (1991) for X65 line-pipe steel.
(Note: f;is the dependent function and can be obtained when
E, gy, ag, o, Ko, f1, and f; are known.) Also, the J-resistance
from the compact tension (CT) specimens is deemed to be
adequately characterized by linear equation of the form (Leis
et al., 1991)

Jr{Aa) =J;.+ CAa (12)

in which Aa is the extension of crack length during crack
growth, J. is the fracture toughness at crack initiation, and
C=dJg/dais the slope parameter from best fit of experimental
data. In the absence of CT specimen data, these toughness
parameters J;. (k/in) and C (k/in?) can also be obtained from
empirical correlation with full-size Charpy plateau energy, CVP
(ft-1b) and flow stress, oy (ksi) as (Leis et al., 1991)

Table 1 Deterministic functions f,(¢) and f,(¢) characteristic
of X65 line steel

Time, 7 (s) Sith) fa)
0 1.00 1.00

6 2.26 0.85

16 2.36 0.83

30 2.59 0.82

45 2.72 0.81

60 2.79 0.80

100 2.90 0.79
500 3.21 0.78
1500 3.41 0.77
3600 3.58 0.76
6000 3.68 0.76
10000 3.79 0.75
100000 4.30 0.74
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where a7=(0,+ 0,)/2 is the average of yield stress, g, and ul-
timate stress, g,,.

(13)

3.2 Time-Dependent Elastic-Plastic Fracture. Because
line-pipe steels experience only limited inelastic action at crack
tips, the primary creep model for evaluating J,(¢) for PTW
surface cracks is based on the modification of elastic solutions.
For semi-elliptical surface cracks subjected to tensile loading
(due to membrane hoop stress), detailed compilations of finite-
element solutions are readily available in the literature if elastic
conditions prevail and the cracking in the pipeline can be rep-
resented by a flat-plate analog (Fig. 1(b) (Newman, 1979; Raju
and Newman, 1986; Newman and Raju, 1981). Adaptation to
the thin-walled gas transmission pipelines (R/7 = 40) with flaw
geometries of interest usually involves a/7=0.5 and ¢/a>> 5,
for which the effects of local bending and increased tension
on stress intensity factor cannot be ignored. Hence, existing
elastic solutions based on flat-plate analog may not be adequate
for pipe geometries with deep long flaws. Further details on
this subject and comparisons between new and existing solu-
tions are available in Leis et al. (1991).

The primary creep model adopted in this paper consists of
estimating J,(¢) by using a time-dependent Irwin estimate of
the plastic zone inserted into the elastic solution. Hence, the
method relies on the small-scale yielding assumption. However,
reasonably accurate predictions are reported even when this
assumption is not strictly satisfied (Leis et al., 1991). Detailed
derivations of J, and J,(t) are available in Leis et al. (1991).
For brevity, only the final expressions are given in this paper.

Elastic Component. The time-invariant elastic component,
J. for axial PTW cracked pipe is given by (Leis et al., 1991)

R\’ / 2
L= PR r_aF(a c, a/T: R/T, ¢) a4
T) Q E
where
E for plane stress (¢ =0, point B of Fig. 1(a))
E =

E
- for plane strain (¢=7—2r, point A of Fig. 1(a))
(15)

in which E is the elastic modulus, » is Poisson’s ratio, Q is the
square of the complete elliptical integral of the second kind,
which can be accurately approximated by (Newman and Raju,
1981)

1+ 1.464(a/c)"®® when a/c<1
(16)

1+1.464(a/c)™ "% when a/c=1

The angle ¢ characterizes the location along the elliptical crack
front where J, is evaluated (see Fig. 1(a)), and Fis the geometry
function generically depending on a a/7, a/c, R/T, and ¢.

Plastic Component. The time-variant plastic component,
Jp(1), for axial PTW cracked pipe is given by (Leis et al.,
1991)

2 2
(0= <pR) wrp(t) Flale, a/T, R/T, 6 7

T) 0 E

where r,(t) is the time-dependent plastic zone size ahead of
crack tip, which can be estimated by the analogy to the ap-
proach suggested by Kujawski and Ellyn (1986) as
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2 for plane stress (¢ =0, point B of Fig. 1(a)) 19
~ 6 for plane strain (<35=12—r point A of Fig. 1(a))
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as the partitioned elastic and plastic energy densities, respec-
tively, (Leis et al., 1991). Note that the time dependency in
r,(¢) and, hence, in J,(¢), are achieved via time-varying Ram-
berg-Osgood parameters, a(?) and n(¢). The value of total
J(t) is then found by adding Eqgs. (14) and (17) [i.e.,
J(t) =T+ Jp(1)).

Both J, and J,(¢) in Eqgs. (14) and (17) depend on the F-
function. For R/T=40 or larger, which is typical for gas pipe-
lines, the F-function does not vary significantly with R/7, and
hence, F can be conservatively assumed to be independent of
R/T (Stonesifer et al., 1991). Thus, the value of F depends
only on a/T, a/c, and ¢ for R/T=40 or larger and is the key
to estimating J, and J,(¢). The F-function used here was de-
veloped by Stonesifer et al. (1991) through the finite-element
alternating method applied to axially surface-cracked pipes.
Results from the alternating method with R/ T = 40, for selected
a/T and a/c conditions, are presented for the sake of illus-
trations here in Table 2 at ¢ = x/2 (Leis et al., 1991; Stonesifer
et al., 1991). These values of F characterize the behavior at
¢ =x/2, which is the deepest part of the flaw and the location
that controls the survival of pipe with part-though-wall flaws.
All of the results reported in this paper are based on J-integral
evaluations at the deepest point (point A of Fig 1(a)). For other
values of a/T and a/c, F can be linearly interpolated between
the tabulated values.

4 Probabilistic Formulation

4.1 Structural Reliability—Crack Growth Analy-
sis. Structural-reliability analysis requires a mathematical
model derived from the principles of mechanics and experi-
mental data that relate various input random parameters for
a specific performance criterion of interest. For a pipeline
under pressure loading, p, the maximum load-carrying of the
pipe limited by the presence of cracks, denoted as ppay, is
obtained from the solution of two nonlinear equations based
on J-tearing theory given by (Leis and Rahman, 1993; Leis et
al., 1991)

Table 2 Values of flaw geometry function F at ¢ ==z/2

ale a/T

0.25 0.50 0.75
0.0 1.48 2.64 6.42
0.04 1.44 2.29 4.62
0.10 1.30 1.84 2.74
0.15 1.24 1.62 2.20
0.20 1.20 1.52 1.92
0.30 1.17 1.38 1.65
0.40 1.14 1.30 1.49
0.67 1.09 1.17 1.27
1.00 1.04 1.08 1.12
2.00 0.50 0.50 0.50
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J(Pmax@”) =Jrla—a")

g—z (pmu.a')=% (a—a") (22)
In this equation, a* is the crack depth when internal pressure
reaches Pmax fOr a crack driving force J and a toughness Jg as
defined earlier. It is based on the fact that fracture instability
can occur after some amount of stable crack growth (i.e., from
a to a*) in ductile materials with an attendant higher load at
fracture. The crack growth is assumed to occur in a geometr-
ically self-similar manner.' This implies that the aspect ratio,
2¢/a or a/c will remain constant throughout the crack growth,
although it is random correlated with random crack size, 2c.
Standard techniques such as the Newton-Raphson method
(Press et al., 1990) can be used to solve Eq. (22) for Pmax-

Fracture-mechanics variables, which are inherently random,
are 1) initial crack size, e.g., crack depth and length, and
2) material characteristics e. g., stress-strain properties and
toughness properties of the pipe. Service conditions (e.g., stress
levels, cyclic rate temperature, pressure, environment), par-
ticularly during a hydrotest and pipe geometry (¢.g., pipe radius
and thickness) for gas transmission pipes can be accurately
calculated, and, hence, they will be assumed to be determin-
istic. Based on the formulation presented in this paper, the
random variables are: a/T, 2c/a, K, no, 0,, 0, and CVP
Further details on the statistical characterization of these ran-
dom inputs are discussed in the companion paper (Rahman
and Leis, 1994).

In general, the solution of pn,,. can be represented by

Pmax=h(a/T,2c/a, Ko,no, 0y,0u, CVP) (23)

where A is a generic (implicit) response function of various
input variables (only the random arguments are shown). The
h-function can be evaluated when a relevant crack driving force
from deterministic fracture (e.g., the J-integral from Eqs. (14)
and (17)) and an appropriate fracture criterion (e.g., Egs. (22))
are known. Suppose that the design or performance criteria
requires Ppay to be always greater than applied pressure p. This
requirement cannot be satisfied with certainty because both
flaw geometry and material properties are uncertain. Hence,
the performance of the pipe should be evaluated by the reli-
ability, Ps or its complement, the probability of failure,
Pr(Ps=1— Pr) defined as

Pr=Prig(X)<0]= S " fx(x)dx 24)
g(x)<0
where
8(X) =Ppmax—P=h(a/T,2c/a,Kp,n0,0,,0,,CVP)—p  (25)

is the performance function, X ={a/T, 2c/a Ky, nq, gy, o,,
CVP} is an input random vector characterizing uncertainty in
the system parameters, and fx(x) is known joint probability
density function of X. fx(x) can be obtained following mul-
tiplication of conditional and/or marginal probability density
functions of the component random variables. The probabi-
listic characteristics of these components are described in Rah-
man and Leis (1994). In general, the multi-dimensional integral
in Eq. (24) cannot be determined analytically. As an alter-
native, numerical integration can be performed; however, this
becomes impractical and computationally prohibitive when the
dimension of X is greater than two. In the present case, we
have seven dimensions.

Several approximate methods exist for conducting the multi-
dimensional integration in Eq. (24). Some of them are first
and second-order reliability methods (Madsen et al., 1986;

'Self-similar growth is assumed, even though the actual behavior may cause
the a/c ratio to increase slightly. This increase can be ignored because the F-
function (Eqs. (14) and (17)) is very weakly dependent on such differences for
most pipeline flaw geometries.
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Rahman, 1991; Rackwitz and Fiessler, 1978), importance sam-
pling (Rahman, 1991; Melchers, 1984; Harbitz, 1986), direc-
tional simulation (Bjerager, 1988; Ditlevson, 1986), and Monte
Carlo simulation (Rubinstein, 1981). In this paper, the com-
putation of the failure probability, P, is based on direct Monte
Carlo simulation (MCS). Work is currently underway to eval-
uate failure probability by more advanced methods of struc-
tural reliability theory. These advanced methods have been
recently applied successfully for probabilistic pipe fracture
evaluation of nuclear piping for leak-rate detection (Rahman
et al., 1994; 1993; 1992).

4.2 Monte Carlo Simulation. Consider a generic N-di-
mensional random vector X, which characterizes certainty in
the load and system parameters with the known {oint distri-
bution function Fx(x). Suppose x, x®, . . ., x") are L re-
alizations of input rand-m vector X, which can be generated
independently. Methods of generating samples of X are avail-
able in Rubinstein (1981). Let g™, g?, . . ., §‘“ be the output
samples of g(X) corresponding to input x, x@, . .., x®
that can be obtained by conducting repeated deterministic eval-
uation of the performance function in Eq. (25). Define L, as
the number of trials (analyses) which are associated with neg-
ative values of the performance function. Then, the estimate
Pk, mcs of the actual probability of failure, Pr, by simulation
is given by

Pr mcs = L (26)

L

which approaches the exact failure probability, Pr, when L
approaches infinity. When L is finite, a statistical estimate on
the probability estimator may be needed. In general, the re-
quired sample size must be at least 10/Min(Pr, Ps) where
Min(Py, Py) is the minimum of Pr and Ps for a 30-percent
coefficient of variation of the estimator (Rubinstein, 1981).

5 Summary and Conclusions

A probabilistic methodology was developed to determine
structural integrity of axial part-through-wall cracked pipes
subject to internal pressure. The study was made under the
assumption that continuing serviceability is based on the use
of hydrotesting. The method of analysis involved 1) time-
dependent elastic-plastic fracture mechanics for the underlying
deterministic models, and 2) direct Monte Carlo simulation
for conducting structural reliability analysis. In the determin-
istic model, the J-tearing theory was extended to the time
domain to account for primary creep damage in a pipeline. In
the probabilistic model, the pipeline integrity was formulated
in terms of failure probability, which was defined as the prob-
ability that the applied pressure in a given pipeline during
service or a potential hydrotest exceeds its load-carrying ca-
pacity.

The companion paper (Rahman and Leis, 1994) provides
numerical predictions in the light of a hydrotest-based ap-
proach to ensure pipeline integrity. In that paper, results from
both deterministic and probabilistic models presented here were
compared with the experimental data and showed that good
correlations exist between the predictive and the test results.
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