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A Spline Chaos Expansion∗

Sharif Rahman†

Abstract. A spline chaos expansion, referred to as SCE, is introduced for uncertainty quantification analysis.
The expansion provides a means for representing an output random variable of interest with respect
to multivariate orthonormal basis splines (B-splines) in input random variables. The multivariate
B-splines are built from a whitening transformation to generate univariate orthonormal B-splines
in each coordinate direction, followed by a tensor-product structure to produce the multivariate
version. SCE, as it stems from compactly supported B-splines, tackles locally prominent responses
more effectively than the polynomial chaos expansion (PCE). The approximation quality of the
expansion is demonstrated in terms of the modulus of smoothness of the output function, leading
to the mean-square convergence of SCE to the correct limit. Analytical formulae are proposed to
calculate the mean and variance of an SCE approximation for a general output variable in terms of the
requisite expansion coefficients. Numerical results indicate that a low-order SCE approximation with
an adequate mesh is markedly more accurate than a high-order PCE approximation in estimating the
output variances and probability distributions of oscillatory, nonsmooth, and nearly discontinuous
functions.
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1. Introduction. Uncertainty quantification (UQ) of complex mathematical models is a
cross-cutting research topic with broad impacts on engineering and applied sciences [10, 18, 19].
A frequently employed method for UQ analysis entails polynomial chaos expansion (PCE),
which describes an infinite series expansion of a square-integrable output random variable
in terms of measure-consistent orthogonal polynomials in input random variables [1, 7, 22].
The expansion is largely predicated on the smoothness assumption of the output function,
because the polynomial basis of PCE is globally supported. While polynomials have many
attractive properties, they possess one undesirable feature: polynomials may oscillate wildly
[17]. As soon as the expansion degree or order1 exceeds four or five, a PCE approximation
becomes prone to unstable swings. This is chiefly because polynomials are inflexible if they
are too smooth, long heralded as a virtue. They are analytic, which means that the behavior
of a polynomial in an arbitrarily small region determines the behavior everywhere. In the
physical world, though, the output function is frequently of a disjointed nature, meaning that
the behavior in one region may be completely unrelated to the behavior in another region. In
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this case, the convergence property of PCE or other polynomial-based methods may become
markedly deteriorated. In an effort to enhance the performance of global supported PCE,
domain decomposition techniques, such as multielement formulation of PCE, have been intro-
duced [21]. However, in the presence of large subdomains of discontinuities, the multielement
PCE becomes computationally inefficient, especially when there are many input random vari-
ables. Therefore, alternative UQ methods, proficient in tackling locally pronounced highly
nonlinear or nonsmooth output functions, are desirable.

This paper presents a new, alternative orthogonal expansion, referred to as spline chaos
expansion or SCE, for UQ analysis subject to independent but otherwise arbitrary probability
measures of input random variables. The paper is structured as follows. Section 2 starts with
mathematical preliminaries and assumptions. A brief exposition of univariate basis splines
(B-splines) is given in section 3. This is followed by a presentation of orthonormal B-splines,
including their second-moment properties, in section 4. Section 5 describes the construction
of multivariate B-splines and explains how they form an orthonormal basis of a spline space
of interest. Section 6 formally presents SCE for a square-integrable random variable and then
demonstrates the convergence and optimality of SCE. The formulae for the mean and variance
of an SCE approximation are derived. The results from three numerical examples are reported
in section 7. Section 8 discusses future work. Finally, conclusions are drawn in section 9.

2. Input random variables. Let N := {1, 2, . . .}, N0 := N ∪ {0}, and R := (−∞,+∞)
represent the sets of positive integers (natural), nonnegative integers, and real numbers, re-
spectively. Denote by [ak, bk] a finite closed interval, where ak, bk ∈ R, bk > ak. Then, given
N ∈ N, AN = ×Nk=1[ak, bk] represents a closed bounded domain of RN .

Let (Ω,F ,P) be a probability space, where Ω is a sample space representing an abstract
set of elementary events, F is a σ-algebra on Ω, and P : F → [0, 1] is a probability measure.
Defined on this probability space, consider an N -dimensional input random vector X :=
(X1, . . . , XN )ᵀ, describing the statistical uncertainties in all system parameters of a stochastic
or UQ problem. Denote by FX(x) := P(∩Ni=1{Xk ≤ xk}) the joint distribution function of
X. The kth component of X is a random variable Xk, which has the marginal probability
distribution function FXk

(xk) := P(Xk ≤ xk). In the UQ community, the input random
variables are also known as basic random variables. The nonzero, finite integer N represents
the number of input random variables and is often referred to as the dimension of the stochastic
or UQ problem.

A set of assumptions on input random variables used or required by SCE is as follows.

Assumption 2.1. The input random vector X := (X1, . . . , XN )ᵀ satisfies all of the following
conditions:

1. All component random variables Xk, k = 1, . . . , N , are statistically independent but
not necessarily identically distributed.

2. Each input random variable Xk is defined on a bounded interval [ak, bk] ⊂ R. There-
fore, all moments of Xk exist, that is, for all l ∈ N0,

E
[
X l
k

]
:=

∫
Ω
X l
k(ω)dP(ω) <∞,

where E is the expectation operator with respect to the probability measure P.
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3. Each input random variable Xk has absolutely continuous marginal probability distribu-
tion function FXk

(xk) and continuous marginal probability density function fXk
(xk) :=

∂FXk
(xk)/∂xk with a bounded support [ak, bk] ⊂ R. Consequently, with items 1 and 2

in mind, the joint probability distribution function FX(x) and joint probability density
function fX(x) := ∂NFX(x)/∂x1 · · · ∂xN of X are obtained from

FX(x) =
N∏
k=1

FXk
(xk) and fX(x) =

N∏
k=1

fXk
(xk),

respectively, with a bounded support AN ⊂ RN of the density function.

Assumption 2.1 asserts the existence of a relevant sequence of orthogonal polynomials or
splines consistent with the input probability measure. The discrete distributions and depen-
dent variables are not dealt with in this paper.

Given the abstract probability space (Ω,F ,P) of X, there exists an image probability
space (AN ,BN , fXdx), where AN is the image of Ω from the mapping X : Ω → AN and
BN := B(AN ) is the Borel σ-algebra on AN ⊂ RN . Relevant statements and objects in
the abstract probability space have obvious counterparts in the associated image probability
space. Both probability spaces will be exploited in this paper.

3. Univariate B-splines. Let x = (x1, . . . , xN ) be an arbitrary point in AN . For the
coordinate direction k, k = 1, . . . , N , define a positive integer nk ∈ N and a nonnegative
integer pk ∈ N0, representing the total number of basis functions and polynomial degree,
respectively. The rest of this section briefly describes paraphernalia of univariate B-splines.

3.1. Knot sequence. In order to define B-splines, the concept of knot sequence, also
referred to as knot vector by some, for each coordinate direction k is needed.

Definition 3.1. A knot sequence ξk for the interval [ak, bk] ⊂ R, given nk > pk ≥ 0, is a
nondecreasing sequence of real numbers

ξk := {ξk,ik}
nk+pk+1
ik=1 = {ak = ξk,1, ξk,2, . . . , ξk,nk+pk+1 = bk},

ξk,1 ≤ ξk,2 ≤ · · · ≤ ξk,nk+pk+1,
(3.1)

where ξk,ik is the ikth knot with ik = 1, 2, . . . , nk + pk + 1 representing the knot index for the
coordinate direction k. The elements of ξk are called knots.

According to (3.1), the total number of knots is nk + pk + 1. The knots may be equally
spaced or unequally spaced, resulting in a uniform or nonuniform distribution. More impor-
tantly, the knots, whether they are exterior or interior, may be repeated, that is, a knot ξk,ik
of the knot sequence ξk may appear 1 ≤ mk,ik ≤ pk + 1 times, where mk,ik is referred to
as its multiplicity. The multiplicity has important implications on the regularity properties
of B-spline functions. To monitor knots without repetitions, say, there are rk distinct knots
ζk,1, . . . , ζk,rk in ξk with respective multiplicities mk,1, . . . ,mk,rk . Then the knot sequence in
(3.1) can be expressed more precisely by
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ξk = {ak =

mk,1 times︷ ︸︸ ︷
ζk,1, . . . , ζk,1,

mk,2 times︷ ︸︸ ︷
ζk,2, . . . , ζk,2, . . . ,

mk,rk−1 times︷ ︸︸ ︷
ζk,rk−1, . . . , ζk,rk−1,

mk,rk
times︷ ︸︸ ︷

ζk,rk , . . . , ζk,rk = bk},
ak = ζk,1 < ζk,2 < · · · < ζk,rk−1 < ζk,rk = bk,

which consists of a total number of

rk∑
ik=1

mk,ik = nk + pk + 1

knots. A knot sequence is called open if the end knots have multiplicities pk + 1. In this case,
definitions of more specific knot sequences are in order.

Definition 3.2. A knot sequence is said to be (pk + 1)-open if the first and last knots appear
pk + 1 times, that is, if

ξk = {ak =

pk+1 times︷ ︸︸ ︷
ζk,1, . . . , ζk,1,

mk,2 times︷ ︸︸ ︷
ζk,2, . . . , ζk,2, . . . ,

mk,rk−1 times︷ ︸︸ ︷
ζk,rk−1, . . . , ζk,rk−1,

pk+1 times︷ ︸︸ ︷
ζk,rk , . . . , ζk,rk = bk},

ak = ζk,1 < ζk,2 < · · · < ζk,rk−1 < ζk,rk = bk.

(3.2)

Definition 3.3. A knot sequence is said to be (pk+1)-open with simple knots if it is (pk+1)-
open and all interior knots appear only once, that is, if

ξk = {ak =

pk+1 times︷ ︸︸ ︷
ζk,1, . . . , ζk,1, ζk,2, . . . , ζk,rk−1,

pk+1 times︷ ︸︸ ︷
ζk,rk , . . . , ζk,rk = bk},

ak = ζk,1 < ζk,2 < · · · < ζk,rk−1 < ζk,rk = bk.

A (pk + 1)-open knot sequence with or without simple knots is commonly found in appli-
cations [2].

3.2. B-splines. The B-spline functions for a given degree are defined in a recursive manner
using the knot sequence as follows.

Definition 3.4. Let ξk be a general knot sequence of length at least pk + 2 for the interval
[ak, bk], as defined by (3.1). Denote by Bk

ik,pk,ξk
(xk) the ikth univariate B-spline function with

degree pk ∈ N0 for the coordinate direction k. Given the zero-degree basis functions,

Bk
ik,0,ξk

(xk) :=

{
1, ξk,ik ≤ xk < ξk,ik+1,

0, otherwise,

for k = 1, . . . , N , all higher-order B-spline functions on R are defined recursively by

Bk
ik,pk,ξk

(xk) :=
xk − ξk,ik

ξk,ik+pk − ξk,ik
Bk
ik,pk−1,ξk

(xk) +
ξk,ik+pk+1 − xk

ξk,ik+pk+1 − ξk,ik+1
Bk
ik+1,pk−1,ξk

(xk),

where 1 ≤ k ≤ N , 1 ≤ ik ≤ nk, 1 ≤ pk <∞, and 0/0 is considered as zero.
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The recursive formula in Definition 3.4 is due to Cox [3] and de Boor [5]. However, a
similar formula was reported by Popoviciu and Chakalov in the 1930s [6]. For alternative
definitions, such as those involving divided differences, readers should consult the seminal
work of Schoenberg [16].

The B-spline functions satisfy the following desirable properties [3, 5, 12].

Property 3.5. They are nonnegative, that is, Bk
ik,pk,ξk

(xk) ≥ 0 for all ik and xk.

Property 3.6. They are locally supported on the interval [ξk,ik , ξk,ik+pk+1) for all ik.

Property 3.7. They are linearly independent, that is, if

nk∑
ik=1

ckikB
k
ik,pk,ξk

(xk) = 0,

then ckik = 0 for all ik.

Property 3.8. They form a partition of unity, that is,

nk∑
ik=1

Bk
ik,pk,ξk

(xk) = 1, xk ∈ [ξk,1, ξk,nk+pk+1].

Property 3.9. They are pointwise C∞-continuous everywhere except at the knots ξk,ik of
multiplicity mk,ik , where it is Cpk−mk,ik -continuous, provided that 1 ≤ mk,ik < pk + 1.

For an illustration, consider k = 1, a1 = 0, b1 = 1, p1 = 2, and two open knot sequences:

(1) ξ1 = {0, 0, 0, 0.2, 0.4, 0.6, 0.8, 1, 1, 1},
(2) λ1 = {0, 0, 0, 0.2, 0.4, 0.6, 0.6, 0.8, 1, 1, 1}.

Here, ξ1 is a three-open knot sequence with simple knots because the multiplicity of each
interior knot is one. In contrast, λ1 is merely a three-open knot sequence, as the multiplicity
of the sixth knot is two. Consequently, there are seven and eight univariate quadratic B-spline
basis functions for these two cases: B1

i1,2,ξ1
(x1), i1 = 1, . . . , 7; and B1

i1,2,λ1
(x1), i1 = 1, . . . , 8,

which are illustrated in Figures 1(a) and 1(b), respectively. The basis functions for the first
case are C1-continuous at all interior knots, whereas the basis functions for the second case
are C0-continuous at λ1,6 = λ1,7 = 0.6 and C1-continuous at other interior knots. Clearly, the
regularities of B-splines depend on the degree and multiplicities of the knots selected.

3.3. Spline space. Suppose for nk > pk ≥ 0, a knot sequence ξk has been specified on the
interval [ak, bk]. The associated spline space of degree pk, denoted by Sk,pk,ξk , is conveniently
defined using an appropriate polynomial space. Define such a polynomial space as a finite-
dimensional linear space

Πpk :=

{
g(xk) =

pk∑
l=0

ck,lx
l
k : ck,l ∈ R

}

of real-valued polynomials in xk of degree at most pk.
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Figure 1. Quadratic B-splines generated on the interval [0,1]; (a) seven B-splines for ξ1 = {0, 0, 0, 0.2, 0.4,
0.6, 0.8, 1, 1, 1}; (b) eight B-splines for λ1 = {0, 0, 0, 0.2, 0.4, 0.6, 0.6, 0.8, 1, 1, 1}.

Definition 3.10 (Schumaker [17]). For nk > pk ≥ 0, let ξk be a (pk+1)-open knot sequence
on the interval [ak, bk], as defined by (3.2). Then the space

Sk,pk,ξk :=


gk : [ak, bk]→ R : there exist polynomials gk,1, gk,2, . . . , gk,rk−1 in Πpk

such that gk(xk) = gk,ik(xk) for xk ∈ [ξk,ik , ξk,ik+1), ik = 1, . . . , rk − 1,

and
∂jkgk,ik−1

∂xk
(ξk,ik) =

∂jkgk,ik
∂xk

(ξk,ik) for jk = 0, 1, . . . , pk −mk,ik ,

ik = 2, . . . , rk − 1



(3.3)

is defined as the spline space of degree pk with distinct knots ζk,1, . . . , ζk,rk of multiplicities
mk,1 = pk + 1, 1 ≤ mk,2 ≤ pk + 1, . . ., 1 ≤ mk,rk−1 ≤ pk + 1, mk,rk = pk + 1.

The spline space is uniquely determined by distinct interior knots ζk,2, . . . , ζk,rk−1 of multi-
plicitiesmk,2, . . . ,mk,rk−1. Indeed, the multiplicities decide the nature of Sk,pk,ξk by controlling
the smoothness of the splines at interior knots. For instance, ifmk,ik = pk+1, ik = 2, . . . , rk−1,
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then two polynomial pieces gk,ik−1 and gk,ik in the subintervals adjoining the knot ξk,ik are
unrelated, possibly forming a jump discontinuity at ξk,ik . In this case, Sk,pk,ξk will be the
roughest space of splines. If mk,ik < pk + 1, ik = 2, . . . , rk − 1, then the two aforementioned
polynomial pieces are connected smoothly in the sense that the first pk − mk,ik derivatives
are all continuous across the knot. More specifically, if mk,ik = 1, ik = 2, . . . , rk − 1, then
there are simple knots with the corresponding spline space becoming the smoothest space of
piecewise polynomials of degree at most pk.

Proposition 3.11 (Schumaker [17]). The spline space Sk,pk,ξk is a linear space of dimension

dimSk,pk,ξk = nk =

rk−1∑
ik=2

mk,ik + pk + 1.(3.4)

Proposition 3.12 (Schumaker [17]). For nk > pk ≥ 0, let ξk be a (pk + 1)-open knot
sequence on the interval [ak, bk]. Denote by{

Bk
1,pk,ξk

(xk), . . . , B
k
nk,pk,ξk

(xk)
}

(3.5)

a set of nk B-splines of degree pk. Then

Sk,pk,ξk = span
{
Bk
ik,pk,ξk

(xk)
}
ik=1,...,nk

.

4. Orthonormal B-splines. The B-splines presented in the preceding section, although
they form a basis of the spline space Sk,pk,ξk , are obtained without any explicit consideration
of the probability law of Xk. Therefore, they are not orthogonal with respect to the probability
measure fXk

(xk)dxk. A popular choice for constructing orthogonal or orthonormal basis is
the Gram–Schmidt procedure [9]. However, it is known to be ill-conditioned. Therefore,
more stable methods are needed to compute orthonormal splines consistent with the input
probability measure. In this section, a linear transformation is proposed to generate their
orthonormal version. The latter splines facilitate an orthogonal series expansion in a Hilbert
space, resulting in concise forms of the expansion and second-moment properties of an output
random variable of interest.

4.1. Spline moment matrix. In reference to the set of B-splines in (3.5), consider replac-
ing any one of its elements with an arbitrary nonzero constant, thus creating an auxiliary set.
Without loss of generality, let{

1, Bk
2,pk,ξk

(xk), . . . , B
k
nk,pk,ξk

(xk)
}

(4.1)

be such a set, obtained by replacing the first element of (3.5) with 1. Proposition 4.1 shows
that the auxiliary B-splines are also linearly independent.

Proposition 4.1. The auxiliary set of B-splines in (4.1) is linearly independent.
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Proof. For constants c̄kik ∈ R, ik = 1, . . . , nk, set

c̄k1 +

nk∑
ik=2

c̄kikB
k
ik,pk,ξk

(xk) = 0.(4.2)

Using Property 3.8, write (4.2) as

c̄k1B
k
1,pk,ξk

(xk) +

nk∑
ik=2

(
c̄k1 + c̄kik

)
Bk
ik,pk,ξk

(xk) = 0.(4.3)

From Property 3.7, {Bk
1,pk,ξk

(xk), . . . , B
k
nk,pk,ξk

(xk)} is linearly independent, meaning that the

coefficients of (4.3) must all vanish. Consequently,

c̄kik = 0, ik = 1, . . . , nk,

completing the proof.

When the input random variable Xk, instead of the real variable xk, is inserted in the
argument, the elements of the auxiliary set become random B-splines. A formal definition of
the spline moment matrix follows.

Definition 4.2. Let

Pk(Xk) := (1, Bk
2,pk,ξk

(Xk), . . . , B
k
nk,pk,ξk

(Xk))
ᵀ

be an nk-dimensional vector of constant or random B-splines. Then the nk×nk matrix, defined
by

Gk := E[Pk(Xk)P
ᵀ
k(Xk)],

is called the spline moment matrix of Pk(Xk). The matrix Gk exists as Xk has finite moments
up to order 2pk, as mandated by Assumption 2.1.

Here, any element of Gk represents the expectation of the product between two random
splines. However, Gk is not the covariance matrix of Pk(Xk), as the means of B-splines are
not zero.

Proposition 4.3. The spline moment matrix Gk is symmetric and positive-definite.

Proof. By definition, Gk = Gᵀ
k. From Proposition 4.1, the elements of Pk(xk) are linearly

independent. Hence, the spline moment matrix is a Gram matrix and is, therefore, positive-
definite.

4.2. Whitening transformation. From Proposition 4.3, Gk is positive-definite and there-
fore invertible. Consequently, there is a nonsingular whitening matrix Wk ∈ Rnk×nk such
that the factorization

Wᵀ
kWk = G−1

k or W−1
k W−ᵀ

k = Gk(4.4)

holds. This leads to a set of orthonormal B-splines.
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Definition 4.4. Let X := (X1, . . . , XN )ᵀ be a vector of N ∈ N input random variables
fulfilling Assumption 2.1. Recall, for nk > pk ≥ 0 and a specified knot sequence ξk, that
Pk(Xk) represents an nk-dimensional vector of B-splines of degree pk. Then the corresponding
nk-dimensional vector

ψk(Xk) :=
(
ψk1,pk,ξk(Xk), . . . , ψ

k
nk,pk,ξk

(Xk)
)ᵀ

of orthonormal B-splines, also of degree pk, is obtained from the whitening transformation

ψk(Xk) = WkPk(Xk),(4.5)

where Wk ∈ Rnk×nk is a nonsingular whitening matrix satisfying (4.4).

The whitening transformation in Definition 4.4 is a linear transformation that converts
Pk(Xk) into ψk(Xk) in such a way that the latter has uncorrelated random B-splines. The
transformation is called “whitening” because it changes one random vector to the other, which
has statistical properties akin to that of a white noise vector. However, the condition (4.4)
does not uniquely determine the whitening matrix Wk. There are infinitely many choices
of Wk satisfying (4.4). All of these choices result in a linear transformation, decorrelating
Pk(Xk) but producing different random vectors ψk(Xk) [11, 14].

A prominent choice for Wk, obtained from the Cholesky factorization Gk = QkQ
ᵀ
k, is

Wk = Q−1
k ,(4.6)

where Qk is an nk × nk lower-triangular matrix. The rest of the paper will use the Cholesky
factorization. Nonetheless, other whitening matrices, in conjunction with (4.4), can be used
to generate orthonormal B-splines.

Proposition 4.5. Given the preambles of Propositions 3.12 and 4.1, the set of elements of
ψk(xk) from Definition 4.4 also spans the spline space Sk,pk,ξk , that is,

Sk,pk,ξk := span
{
ψkik,pk,ξk(xk)

}
ik=1,...,nk

.

A proof of Proposition 4.5 can be obtained by recognizing the elements of ψk(xk) to be
linearly independent.

4.3. Statistical properties. Similar to Pk(Xk), ψk(Xk) is also a function of random input
variable Xk. Proposition 4.6 describes its second-moment properties.

Proposition 4.6. Let X := (X1, . . . , XN )ᵀ : (Ω,F) → (AN ,BN ) be a vector of N ∈ N
input random variables fulfilling Assumption 2.1. If the whitening matrix is selected as Q−1

k ,
then the first- and second-order moments of the vector of orthonormal B-splines ψk(Xk) =
Q−1
k Pk(Xk), k = 1, . . . , N , are

E [ψk(Xk)] = (1, 0, . . . , 0)ᵀ(4.7)

and

E
[
ψk(Xk)ψ

ᵀ
k(Xk)

]
= Ink

,(4.8)

respectively, where Ink
is the nk × nk identity matrix.
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Proof. Using (4.6) in the whitening transformation (4.5),

E[ψk(Xk)ψ
ᵀ
k(Xk)] = Q−1

k E[Pk(Xk)P
ᵀ
k(Xk)]Q

−ᵀ
k

= Q−1
k GkQ

−ᵀ
k

= Q−1
k QkQ

ᵀ
kQ
−ᵀ
k = Ink

,

obtaining (4.8). Recognize that ψk1,pk,ξk(Xk), the first element of ψk(Xk), is one. Then, using

(4.8), the expectations of products between the first row of ψk(Xk) and all nk columns of
ψᵀ
k(Xk) produce (4.7).

5. Multivariate B-splines. As the input vector X = (X1, . . . , XN )ᵀ comprises indepen-
dent random variables, its joint probability density function is the product of its marginal
density functions. Consequently, measure-consistent multivariate orthonormal B-splines can
be easily constructed from the tensor-product of measure-consistent univariate B-splines.

5.1. Tensor-product spline space. For each k = 1, . . . , N , suppose the knot sequence
ξk on the interval A{k} = [ak, bk], number of basis functions nk, and degree pk have been
specified. The associated vector of measure-consistent univariate orthonormal splines in xk is

ψk(xk) :=
(
ψk1,pk,ξk(xk), . . . , ψ

k
nk,pk,ξk

(xk)
)ᵀ
.

Correspondingly, the spline space is Sk,pk,ξk , as expressed by (3.3). To define tensor-product B-
splines in N variables and the associated spline space, define a multi-index p := (p1, . . . , pN ) ∈
NN0 , representing the degrees of splines in all N coordinate directions. Denote by Ξ :=
{ξ1, . . . , ξN} a family of all N knot sequences. Because of the tensor nature of the resulting
space, many properties of univariate splines carry over, described as follows.

Definition 5.1. Given p := (p1, . . . , pN ) and Ξ := {ξ1, . . . , ξN}, the tensor-product spline
space, denoted by Sp,Ξ, is defined by

Sp,Ξ :=
N⊗
k=1

Sk,pk,ξk ,

where the symbol
⊗

stands for tensor product.

It is clear from Definition 5.1 that Sp,Ξ is a linear space of dimension
∏N
k=1 nk. Here, nk,

the dimension of the spline space Sk,pk,ξk , is obtained from (3.4) when each knot sequence is
chosen according to (3.2). Each spline g ∈ Sp,Ξ is defined on the N -dimensional rectangular
domain

AN := ×Nk=1A{k} = ×Nk=1[ak, bk].

Define two additional multi-indices i := (i1, . . . , iN ) ∈ NN and n := (n1, . . . , nN ) ∈ NN ,
representing the knot indices and numbers of univariate basis functions, respectively, in all N
coordinate directions. Associated with i, define an index set

In := {i = (i1, . . . , iN ) : 1 ≤ ik ≤ nk, k = 1, . . . , N} ⊂ NN
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which has cardinality

|In| =
N∏
k=1

nk,

thus matching the dimension of Sp,Ξ. Then the partition defined by the knot sequences ξk,
k = 1, . . . , N , splits AN into smaller N -dimensional rectangles

ANi = {x : ζk,ik ≤ xk < ζk,ik+1, k = 1, . . . , N} ,
i ∈ {i = (i1, . . . , iN ) : 1 ≤ ik ≤ rk − 1, k = 1, . . . , N} ⊆ In.

A mesh is defined by the partition of AN into rectangular elements ANi . Define the largest
element size in each coordinate direction k by

hk := max
1≤l≤rk−1

(ζk,l+1 − ζk,l) , k = 1, . . . , N.

Then, given the family of knot sequences Ξ = {ξ1, . . . , ξN},

h := (h1, . . . , hN ) and h := max
1≤k≤N

hk

define a vector of the largest element sizes in all N coordinates and the global element size,
respectively, for the domain AN .

5.2. Tensor-product orthonormal B-splines. Given the B-splines for all N coordinate
directions, a formal definition of tensor-product B-splines is as follows.

Definition 5.2. Let X := (X1, . . . , XN )ᵀ : (Ω,F) → (AN ,BN ) be a vector of N ∈ N input
random variables fulfilling Assumption 2.1. Suppose the univariate orthonormal B-splines
consistent with the marginal probability measures in all coordinate directions have been obtained
as the sets {ψk1,pk,ξk(xk), . . . , ψ

k
nk,pk,ξk

(xk)}, k = 1, . . . , N . Then, for p = (p1, . . . , pN ) ∈
NN0 and Ξ = {ξ1, . . . , ξN}, the multivariate orthonormal B-splines in x consistent with the
probability measure fX(x)dx are defined as

Ψi,p,Ξ(x) :=
N∏
k=1

ψkik,pk,ξk(xk), i = (i1, . . . , iN ) ∈ In.

5.3. Statistical properties. When the input random variables X1, . . . , XN , instead of real
variables x1, . . . , xN , are inserted in the argument, the multivariate splines Ψi,p,Ξ(X), i ∈ In,
become functions of random input variables. Therefore, it is important to establish their
second-moment properties, to be exploited in section 6.

Proposition 5.3. Let X := (X1, . . . , XN )ᵀ : (Ω,F) → (AN ,BN ) be a vector of N ∈ N
input random variables fulfilling Assumption 2.1. Then the first- and second-order moments
of multivariate orthonormal B-splines Ψi,p,Ξ(X), i, j ∈ In, are

E [Ψi,p,Ξ(X)] =

{
1, i = 1 := (1, . . . , 1),

0, i 6= 1,
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and

E [Ψi,p,Ξ(X)Ψj,p,Ξ(X)] =

{
1, i = j,

0, i 6= j,

respectively.

The statistical properties of univariate orthonormal B-splines in Proposition 4.6, with
statistical independence in mind, lead to the result of Proposition 5.3.

5.4. Orthonormal basis. The following proposition shows that the multivariate orthonor-
mal splines from Definition 5.2 span the spline space of interest.

Proposition 5.4. Let X := (X1, . . . , XN )ᵀ : (Ω,F)→ (AN ,BN ) be a vector of N ∈ N input
random variables fulfilling Assumption 2.1. Then {Ψi,p,Ξ(x) : i ∈ In}, the set of multivariate
orthonormal B-splines for a chosen degree p and family of knot sequences Ξ, consistent with
the probability measure fX(x)dx, is a basis of Sp,Ξ. That is,

Sp,Ξ = span {Ψi,p,Ξ(x)}i∈In =
N⊗
k=1

span
{
ψkik,pk,ξk(xk)

}
ik=1,...,nk

, |In| =
N∏
k=1

nk.

The statistical properties in Proposition 5.3 result in linear independence of the elements
of {Ψi,p,Ξ(x)}i∈In . The desired result is obtained readily.

6. SCE. Given an input random vector X := (X1, . . . , XN )ᵀ : (Ω,F) → (AN ,BN ) with
the probability density function fX(x) on AN ⊂ RN , let y(X) := y(X1, . . . , XN ) be a real-
valued, square-integrable, measurable transformation on (Ω,F). Here, y : AN → R represents
an output function from a mathematical model, describing relevant stochastic performance of
a complex system. Associated with the image probability space (AN ,BN , fXdx), define

L2(AN ,BN , fXdx) :=

{
y : AN → R :

∫
AN

|y(x)|2 fX(x)dx <∞
}

to be a weighted L2-space of interest. Clearly, L2(AN ,BN , fXdx) is a Hilbert space, which is
endowed with the inner product

(y(x), z(x))L2(AN ,BN ,fXdx) :=

∫
AN

y(x)z(x)fX(x)dx

and induced norm

‖y(x)‖L2(AN ,BN ,fXdx) =
√

(y(x), y(x))L2(AN ,BN ,fXdx).

Similarly, for the abstract probability space (Ω,F ,P), there is an isomorphic Hilbert space

L2(Ω,F ,P) :=

{
Y : Ω→ R :

∫
Ω
|y(X(ω))|2 dP(ω) <∞

}
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of equivalent classes of output random variables Y = y(X) with the corresponding inner
product

(y(X), z(X))L2(Ω,F ,P) :=

∫
Ω
y(X(ω))z(X(ω))dP(ω)

and norm
‖y(X)‖L2(Ω,F ,P) :=

√
(y(X), y(X))L2(Ω,F ,P).

It is elementary to show that y(X(ω)) ∈ L2(Ω,F ,P) if and only if y(x) ∈ L2(AN ,BN , fXdx).

6.1. SCE approximation. An SCE approximation of a square-integrable random variable
y(X) ∈ L2(Ω,F ,P) is simply its orthogonal projection onto the spline space Sp,Ξ, formally
presented as follows.

Theorem 6.1. Let X := (X1, . . . , XN )ᵀ : (Ω,F) → (AN ,BN ) be a vector of N ∈ N input
random variables fulfilling Assumption 2.1. Given a degree p and a family of knot sequences
Ξ, recall that {Ψi,p,Ξ(X) : i ∈ In} represents the set comprising multivariate orthonormal B-
splines that is consistent with the probability measure fX(x)dx. Then, for any random variable
y(X) ∈ L2(Ω,F ,P), there exists an orthogonal expansion in multivariate orthonormal splines
in X, referred to as an SCE approximation

yp,Ξ(X) :=
∑
i∈In

Ci,p,ΞΨi,p,Ξ(X)(6.1)

of y(X), where the SCE expansion coefficients Ci,p,Ξ ∈ R, i ∈ In, are defined as

Ci,p,Ξ := E [y(X)Ψi,p,Ξ(X)] :=

∫
AN

y(x)Ψi,p,Ξ(x)fX(x)dx, i ∈ In.(6.2)

Furthermore, the SCE approximation is the best approximation of y(X) in the sense that

E [y(X)− yp,Ξ(X)]2 = inf
g∈Sp,Ξ

E [y(X)− g(X)]2

or, equivalently,

‖y(x)− yp,Ξ(x)‖L2(AN ,BN ,fXdx) = inf
g∈Sp,Ξ

‖y(x)− g(x)‖L2(AN ,BN ,fXdx).

Proof. Consider an arbitrary function y(x) ∈ L2(AN ,BN , fXdx). Then an orthogonal
projection operator PSp,Ξ

: L2(AN ,BN , fXdx)→ Sp,Ξ, defined by

PSp,Ξ
y :=

∑
i∈In

Ci,p,ΞΨi,p,Ξ(x),(6.3)

can be constructed. By definition of the random vector X, the sequence {Ψi,p,Ξ(X)}i∈In
is a basis of the spline subspace Sp,Ξ of L2(Ω,F ,P), inheriting the properties of the basis
{Ψi,p,Ξ(x)}i∈In of the spline subspace Sp,Ξ of L2(AN ,BN , fXdx).2 Therefore, (6.3) leads to
the expansion in (6.1).

2With a certain abuse of notation, Sp,Ξ is used here as a set of spline functions of both real variables (x)
and random variables (X).
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For deriving the expression of the expansion coefficients, define a second moment

eSCE := E

[
y(X)−

∑
i∈In

Ci,p,ΞΨi,p,Ξ(X)

]2

(6.4)

of the difference between y(X) and its SCE approximation. Differentiate both sides of (6.4)
with respect to Ci,p,Ξ, i ∈ In, to write

∂eSCE

∂Ci,p,Ξ
=

∂

∂Ci,p,Ξ
E

[
y(X)−

∑
j∈In

Cj,p,ΞΨj,p,Ξ(X)

]2

= E

[
∂

∂Ci,p,Ξ

{
y(X)−

∑
j∈In

Cj,p,ΞΨj,p,Ξ(X)

}2]

= 2E

[{∑
j∈In

Cj,p,ΞΨj,p,Ξ(X)− y(X)

}
Ψi,p,Ξ(X)

]

= 2

{∑
j∈In

Cj,p,ΞE [Ψi,p,Ξ(X)Ψj,p,Ξ(X)]− E [y(X)Ψi,p,Ξ(X)]

}

= 2

{
Ci,p,Ξ − E [y(X)Ψi,p,Ξ(X)]

}
.

(6.5)

Here, the second, third, fourth, and last lines are obtained by interchanging the differential
and expectation operators, performing the differentiation, swapping the expectation and sum-
mation operators, and applying Proposition 5.3, respectively. Setting ∂eSCE/∂Ci,p,Ξ = 0 in
(6.5) produces the desired result in (6.2).

Any spline function g ∈ Sp,Ξ can be expressed by

g(X) =
∑
i∈In

C̄i,p,ΞΨi,p,Ξ(X)(6.6)

with some real-valued coefficients C̄i,p,Ξ, i ∈ In. To minimize E[{y(X)− g(X)}2], its deriva-
tives with respect to the coefficients must be zero, that is,

∂

∂C̄i,p,Ξ
E
[
{y(X)− g(X)}2

]
=

∂

∂C̄i,p,Ξ
E

y(X)−
∑
i∈In

C̄i,p,ΞΨi,p,Ξ(X)


2 = 0, i ∈ In.

From (6.5) and the following text, the derivatives are zero only when the coefficients C̄i,p,Ξ,
i ∈ In, match the expansion coefficients defined in (6.2). Therefore, the SCE approximation
is the best one, as claimed.

Proposition 6.2. For any y(X) ∈ L2(Ω,F ,P), let yp,Ξ(X) be the SCE approximation as-
sociated with a chosen degree p and family of knot sequences Ξ. Then the truncation error
y(X)− yp,Ξ(X) is orthogonal to the subspace Sp,Ξ ⊂ L2(Ω,F ,P).
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Proof. Let g described in (6.6), with arbitrary coefficients C̄i,p,Ξ, i ∈ In, be an arbitrary
element of Sp,Ξ. Then

E [{y(X)− yp,Ξ(X)} g(X)]

= E

y(X)−
∑
j∈In

Cj,p,ΞΨj,p,Ξ(X)

∑
i∈In

C̄i,p,ΞΨi,p,Ξ(X)


=

∑
i∈In

Ci,p,ΞC̄i,p,Ξ −
∑
i∈In

Ci,p,ΞC̄i,p,Ξ

= 0,

where the third line follows from (6.2) and Proposition 5.3. Hence, the proposition is
proved.

Proposition 6.3. The projection operator PSp,Ξ
: L2(AN ,BN , fXdx) → Sp,Ξ is a linear,

bounded operator.

Proof. The operator PSp,Ξ
is obviously linear. To prove its boundedness, use Proposition

6.2 and then invoke the Pythagoras theorem, yielding

E[{y(X)− yp,Ξ(X)}2] + E[y2
p,Ξ(X)] = E[y2(X)].

Therefore,

E[y2
p,Ξ(X)] ≤ E[y2(X)]

for any y(X) ∈ L2(Ω,F ,P. This is equivalent to the assertion that∥∥PSp,Ξ
y(x)

∥∥
L2(AN ,BN ,fXdx)

≤ ‖y(x)‖L2(AN ,BN ,fXdx)

for any y(x) ∈ L2(AN ,BN , fXdx).

From the general properties of orthogonal projection, the proofs of Theorem 6.1 and
Propositions 6.2 and 6.3 are straightforward and may be deemed unnecessary to the eye of an
expert reader. Nonetheless, they are documented here for the paper to be self-contained.

6.2. Approximation quality and convergence. A preferred approach among approxima-
tion theorists to measure the quality of approximations by polynomials and splines involves
the modulus of smoothness [4, 17, 20]. Formal definitions of the modulus of smoothness in
each coordinate direction k, followed by a tensorized version, are presented as follows.

Definition 6.4 (Schumaker [17]). Given a positive integer αk ∈ N and 0 < hk ≤ (bk −
ak)/αk, the αkth modulus of smoothness of a function y(xk) ∈ L2[ak, bk] in the L2-norm is a
function defined by

ωαk
(y;hk)L2[ak,bk] := sup

0≤uk≤hk

∥∥∆αk
uk
y(xk)

∥∥
L2[ak,bk−αkuk]

, hk > 0,
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where

∆αk
uk
y(xk) :=

αk∑
i=0

(−1)αk−i
(
αk
i

)
y(xk + iuk)

is the αkth forward difference of y at xk for any 0 ≤ uk ≤ hk.
Moreover, given a multi-index α = (α1, . . . , αN ) ∈ NN and any vector u ≥ 0, let

∆α
u =

N∏
k=1

∆αk
uk
.

Then the α-modulus of smoothness of a function y(x) ∈ L2(AN ) in the L2-norm is the function
defined by

ωα(y; h)L2(AN ) := sup
0≤u≤h

‖∆α
uy(x)‖L2(AN

α,u) , h > 0,

where
ANα,u =

{
x ∈ AN : x +α⊗ u ∈ AN

}
, α⊗ u = (α1u1, . . . , αNuN ).

The book by Schumaker [17] provides a slightly general definition of the modulus of
smoothness for y ∈ Lq[ak, bk] (Chapter 2) or y ∈ Lq(AN ) (Chapter 13), 1 ≤ q < ∞, in-
cluding a summary of their elementary properties.

From Definition 6.4, as hk approaches zero, so does 0 ≤ uk ≤ hk. Taking the limit uk → 0
inside the integral of the L2 norm, which is permissible for a finite interval and uniformly
convergent integrand, the forward difference

lim
uk→0

∆αk
uk
y(xk) = y(xk)

αk∑
i=0

(−1)αk−i
(
αk
i

)
= 0

as the sum vanishes for any αk ∈ N. Consequently, the coordinate modulus of smoothness

ωαk
(y;hk)L2[ak,bk] → 0 as hk → 0 ∀αk ∈ N.

Following similar considerations, the tensor modulus of smoothness

ωα(y; h)L2(AN ) → 0 as h→ 0 ∀α ∈ NN .

These limits, in conjunction with Lemma 6.5, will be used to prove the L2-convergence of the
SCE approximations.

Lemma 6.5. Let L2(AN ) be an unweighted Hilbert space, defined as

L2
(
AN
)

:=

{
y : AN → R :

∫
AN

|y(x)|2dx <∞
}

with standard norm ‖ · ‖L2(AN ). Then, for any function y(x) ∈ L2(AN ,BN , fXdx), it holds
that

‖y(x)‖L2(AN ,BN ,fXdx) ≤
√
‖fX(x)‖L∞(AN ) ‖y(x)‖L2(AN ) ,

where ‖ · ‖L∞(AN ) is the infinity norm. Here, additionally, it is assumed that fX ∈ L∞(AN ).
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Proof. From definition,

‖y(x)‖2L2(AN ,BN ,fXdx) :=
∫
AN y

2(x)fX(x)dx

=
(
y2(x), fX(x)

)
L2(AN )

≤
∥∥y2(x)

∥∥
L1(AN )

· ‖fX(x)‖L∞(AN )

= ‖y(x)‖2L2(AN ) · ‖fX(x)‖L∞(AN ),

(6.7)

where the third line stems from Hölder’s inequality. As ‖fX(x)‖L∞(AN ) is positive, applying
the square root on (6.7) yields the desired result.

Proposition 6.6. For any y(X) ∈ L2(Ω,F ,P), a sequence of SCE approximations {yp,Ξ

(X)}h>0, with h = (h1, . . . , hN ) representing the vector of largest element sizes, converges to
y(X) in mean-square, that is,

lim
h→0

E
[
|y(X)− yp,Ξ(X)|2

]
= 0.

Furthermore, the sequence of SCE approximations converges in probability, that is, for any
ε > 0,

lim
h→0

P (|y(X)− yp,Ξ(X)| > ε) = 0,

and converges in distribution, that is, for all points ξ ∈ R where F (ξ) is continuous,

lim
h→0

Fp,Ξ(ξ) = F (ξ)

such that Fp,Ξ(ξ) := P(yp,Ξ(X) ≤ ξ) and F (ξ) := P(y(X) ≤ ξ) are distribution functions of
yp,Ξ(X) and y(X), respectively. If F (ξ) is continuous on R, then the distribution functions
converge uniformly.

Proof. From Lemma 6.5,

‖y(x)− yp,Ξ(x)‖L2(AN ,BN ,fXdx) ≤
√
‖fX(x)‖L∞ ‖y(x)− yp,Ξ(x)‖L2(AN ) .(6.8)

Recognize from Proposition 6.3 that PSp,Ξ
is a linear, bounded operator. Therefore, invoke

Theorem 12.8 of Schumaker’s book [17], which states that for a bounded linear operator, the
unweighted L2-error from the SCE approximation is bounded by

‖y(x)− yp,Ξ(x)‖L2(AN ) ≤ C
′ωp+1(y; h)L2(AN ),(6.9)

where C ′ is a constant that depends only on p and N , and p + 1 = (p1 + 1, . . . , pN + 1).
Combining (6.8) and (6.9) produces

‖y(x)− yp,Ξ(x)‖L2(AN ,BN ,fXdx) ≤ Cωp+1(y; h)L2(AN ),(6.10)

where C = C ′
√
‖fX(x)‖L∞ is another constant, depending on p, N , and now fX(x).

Equation (6.10) gives a result on the L2-distance of a function y to the spline space Sp,Ξ.
From the discussion related to Definition 6.4, the modulus of smoothness

ωp+1(y; h)L2(AN ) → 0 as h→ 0 ∀p ∈ NN0 .
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Therefore,

lim
h→0
‖y(x)− yp,Ξ(x)‖L2(AN ,BN ,fXdx) = 0,

thus proving the mean-square convergence of yp,Ξ(X) to y(X) for any degree p ∈ NN0 . In addi-
tion, as the SCE approximation converges in mean-square, it does so in probability. Moreover,
as the expansion converges in probability, it also converges in distribution.

6.3. A special case of SCE. The well-known PCE approximation, especially its tensor-
product version, can be derived from the SCE approximation proposed.

Proposition 6.7. Given k = 1, . . . , N , 0 ≤ pk <∞, and an interval [ak, bk] ⊂ R, let

ξ
′
k = {

pk+1 times︷ ︸︸ ︷
ak, . . . , ak,

pk+1 times︷ ︸︸ ︷
bk, . . . , bk}(6.11)

be a (pk + 1)-open knot sequence with no internal knots and Ξ
′

= {ξ′1, . . . , ξ
′
N}. Then the

resulting SCE approximation reduces to a PCE approximation.

For the knot sequence ξ
′
k in (6.11), the resulting B-splines are related to the well-known

Bernstein polynomials of degree pk. Since the set of Bernstein polynomials of degree pk forms
a basis of the polynomial space Πpk , the spline space S

k,pk,ξ
′
k

= Πpk . Then, going through

the standard tensor-product construction, it is trivial to show that, indeed, the multivariate
spline space S

p,Ξ
′ is spanned by the set {Ψi(x) : 0 ≤ i ≤ p} of multivariate orthonormal

polynomials in x that are consistent with the probability measure fX(x)dx. This results in a
pth-degree tensor-product PCE

y
p,Ξ
′ (X) = yp(X) :=

∑
0≤i≤p

C
′
iΨi(X)(6.12)

of y(X) ∈ L2(Ω,F ,P), where p ∈ NN0 and

C
′
i :=

∫
AN

y(x)Ψi(x)fX(x)dx, i ∈ NN0 ,

are its expansion coefficients. Hence, a pth-degree SCE approximation with no internal knots
becomes identical to a pth-degree PCE approximation.

As described in the preceding paragraph, there is no mesh in the deduction of the PCE
approximation from the SCE approximation. Therefore, a refinement by reducing the element
sizes is not possible. However, a refinement is still possible by degree elevation, that is, by
increasing gradually the degree pk in all coordinate directions. Indeed, when pk → ∞ for all
k = 1, . . . , N , the right side of (6.12) becomes the full PCE representation of y(X).

6.4. Output statistics and other probabilistic characteristics. The SCE approximation
yp,Ξ(X) can be viewed as a surrogate of y(X). Therefore, relevant probabilistic characteristics
of y(X), including its first two moments and probability density function, if it exists, can be
estimated from the statistical properties of yp,Ξ(X).
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Applying the expectation operator on yp,Ξ(X) in (6.1) and imposing Proposition 5.3, its
mean is

E [yp,Ξ(X)] = C1,p,Ξ = E [y(X)] , 1 = (1, . . . , 1),

which is independent of p and Ξ. More importantly, the SCE approximation always yields
the exact mean.

Applying the expectation operator again, this time on [yp,Ξ(X)−C1,p,Ξ]2, and employing
Proposition 5.3 one more time results in the variance

var [yp,Ξ(X)] =
∑

i∈(In\{1})

C2
i,p,Ξ =

∑
i∈In

C2
i,p,Ξ − C2

1,p,Ξ(6.13)

of yp,Ξ(X). It is elementary to show that var[yp,Ξ(X)] ≤ var[y(X)].
The second-moment properties of an SCE approximation are solely determined by the

expansion coefficients. The formulae for the mean and variance of the SCE approximation
are same as those reported for the PCE approximation, although the respective expansion
coefficients involved are not. The primary reason for this similarity stems from the use of
orthonormal basis in both expansions.

Being convergent in probability and in distribution, the probability density function of
y(X), if it exists, can also be estimated by that of yp,Ξ(X). However, deriving analytical
formula for the density function is hopeless in general. Nonetheless, the density function
can be estimated by Monte Carlo simulation (MCS) of the SCE approximation, that is, by
resampling of yp,Ξ(X) involving inexpensive evaluations of simple spline functions.

6.5. SCE as an infinite series. The set of orthonormal B-splines {Ψi,p,Ξ(x) : i ∈ In}
from (6.1) has its size equal to

∏N
k=1 nk. Therefore, the size is controlled by the number of

basis functions nk, which, in succession, is decided by the length of the knot sequence ξk and
order pk in each coordinate direction. Obviously, the longer the sequence ξk, the larger the
value of nk and, hence, the size of the set. For a refinement process with a fixed pk, consider
increasing the length of ξk or nk in all N coordinate directions in such a way that the largest
element size hk is monotonically reduced. The result is an increasing family of the sets of such
basis functions. In the limit, when nk → ∞ or hk → 0, k = 1, . . . , N , denote by ξk,∞ and
Ξ∞ = {ξ1,∞, . . . , ξN,∞} the associated knot sequence in the kth coordinate direction and the
family of such N knot sequences, respectively. Then there exists a set of infinite number of
basis functions {Ψi,p,Ξ∞(x) : i ∈ NN} with the index set of knot indices

{i = (i1, . . . , iN ) : 1 ≤ ik <∞, k = 1, . . . , N} = NN .

In consequence, {Ψi,p,Ξ∞(x) : i ∈ NN} forms an orthogonal basis of Sp,Ξ∞ , yielding

L2(Ω,F ,P) = span{Ψi,p,Ξ∞(X)}i∈NN ,

where the overline stands for set closure. Hence, every y(X) ∈ L2(Ω,F ,P) can be expanded
in terms of the aforementioned spanning set, resulting in an infinite series

y(X) ∼
∑
i∈NN

Ci,p,Ξ∞Ψi,p,Ξ∞(X),(6.14)
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which is referred to as SCE in the paper. Here the symbol ∼ represents equality in the
mean-square sense. From Proposition 6.6, the partial sums of (6.14) converge to y(X) in L2.
Therefore, the infinite series is mean-square convergent to the correct limit.

Comparing (6.1) and (6.14), the former is a truncated version of the latter. Therefore, the
designation “SCE” employed in the paper makes sense even though the SCE approximation
in (6.1) represents a finite sum or expansion.

7. Numerical experiments. Three examples describing one-, two-, and four-dimensional
UQ problems, where the output function is explicitly defined or obtained from the solution
of an ordinary differential equation (ODE), are presented. The random input X fulfills As-
sumption 2.1, and the output function y(X) is in L2(Ω,F ,P). Therefore, SCE and PCE
approximations can be applied to estimate their second-moment statistics and probability
distributions. The objectives are to evaluate the approximation power of the SCE approxima-
tion in terms of the second-moment statistics or probability distributions of y(X) and contrast
the SCE results with those obtained from the existing PCE approximation.

The coordinate degrees for SCE or PCE approximations in the second and third examples
are identical, that is, p1 = p2 = p3 = p4 = p (say). So are the knot sequences for SCE, that is,
ξ1 = ξ2 = ξ3 = ξ4 = ξ (say) with a uniform mesh of element sizes h1 = h2 = h3 = h4 = h. In
all three examples, the degree p and/or element size h were varied as desired. The basis for a
pth-degree PCE approximation was obtained from an appropriate set of Legendre orthonormal
polynomials in input variables, whereas the basis for an SCE approximation, given a degree
p and a knot sequence of element size h, was generated from the Cholesky factorization
of the spline moment matrix. From the uniform distribution, the spline moment matrix
was constructed analytically. All knot sequences are (p + 1)-open and consist of uniformly
spaced distinct knots with even and/or odd numbers of elements, depending on the example.
The PCE and SCE coefficients, which are one-, two-, and four-dimensional integrals, were
calculated exactly.

Define, for the first two examples, two approximation errors in the variances,

ep,h :=
|var[y(X)]− var[yp,h(X)]|

var[y(X)]
and ep :=

|var[y(X)]− var[yp(X)]|
var[y(X)]

,

committed by the SCE approximation yp,h(X) := yp,ξ(X) or y(p,p),{ξ,ξ}(X1, X2) and the PCE
approximation yp(X) := yp(X) or y(p,p)(X1, X2), respectively, of y(X). The exact variance
var[y(X)] was obtained analytically, whereas the SCE variance var[yp,h(X)] and PCE variance
var[yp(X)] were also determined analytically from (6.13) and similar formula, respectively.
Therefore, all approximation errors were calculated exactly.

7.1. Example 1: Three univariate functions. Consider a family of three functions of a
real-valued, uniformly distributed random variable X over [−1, 1]:

y(X) =


sin(3πX) (smooth, oscillatory),

exp(−3|X|) (nonsmooth),

Φ(20X) (nearly discontinuous).

(7.1)

Here, Φ(u) = (1/
√

2π)
∫ u
−∞ exp(−ξ2/2)dξ is the cumulative probability distribution function

of a Gaussian random variable with zero mean and unit variance. From top to bottom, (7.1)
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comprises oscillatory yet smooth, nondifferentiable, and nearly discontinuous functions that
are progressively more difficult to approximate by polynomials.

The knot sequences for the oscillatory function include simple knots and consist of even
numbers of elements with varying element sizes: h = 1/2, 1/4, 1/8, 1/12, 1/16. For the non-
smooth and nearly discontinuous functions, however, the knot sequences comprise both even
and odd numbers of elements, producing the following element sizes: h = 2/5, 2/9, 2/17, 2/25,
2/33 for odd numbers of elements and h = 1/2, 1/4, 1/8, 1/12, 1/16 for even numbers of ele-
ments. The odd numbers of elements are relevant when the location of the point where the
function is nondifferentiable or nearly discontinuous is unknown. However, if the aforemen-
tioned point is known, then it is possible to employ even numbers of elements by deploying
knot(s) at that point as well. In the latter case, double knots (multiplicity of two for p = 2)
were placed for the nondifferentiable function, whereas a single knot was assigned for the
nearly discontinuous function.

Figures 2, 3, and 4 depict the comparisons of PCE and SCE approximations for the
oscillatory, nonsmooth, and nearly discontinuous functions, respectively. For the oscillatory

(a) (b)

(c) (d)

Figure 2. Oscillatory function: y(x) = sin(3πx); (a) PCE approximations for p = 1, 3, 5, 7, 9; (b)
linear SCE approximations for h = 1/2, 1/4, 1/8, 1/12, 1/16; (c) quadratic SCE approximations for h =
1/2, 1/4, 1/8, 1/12, 1/16; (d) cubic SCE approximations for h = 1/2, 1/4, 1/8, 1/12, 1/16.
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(a)

(b) (c)

(d) (e)

Figure 3. Nonsmooth function: y(x) = exp(−3|x|); (a) PCE approximations for p = 1, 2, 4, 8, 20; (b)
linear SCE approximations for h = 2/5, 2/9, 2/17, 2/25, 2/33 (odd); (c) quadratic SCE approximations for
h = 2/5, 2/9, 2/17, 2/25, 2/33 (odd); (d) linear SCE approximations for h = 1/2, 1/4, 1/8, 1/12, 1/16 (even);
(e) quadratic SCE approximations for h = 1/2, 1/4, 1/8, 1/12, 1/16 (even).
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(a)

(b) (c)

(d) (e)

Figure 4. Nearly discontinuous function: y(x) = Φ(20x); (a) PCE approximations for p = 1, 3, 5, 9, 21;
(b) linear SCE approximations for h = 2/5, 2/9, 2/17, 2/25, 2/33 (odd); (c) quadratic SCE approximations for
h = 2/5, 2/9, 2/17, 2/25, 2/33 (odd); (d) linear SCE approximations for h = 1/2, 1/4, 1/8, 1/12, 1/16 (even);
(e) quadratic SCE approximations for h = 1/2, 1/4, 1/8, 1/12, 1/16 (even).
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function, the PCE approximation improves with p as shown in Figure 2(a), but at the cost of
the 9th-degree approximation to be fairly acceptable. Such requirement becomes stringent for
the nonsmooth (Figure 3(a)) or nearly discontinuous (Figure 4(a)) functions, where 20th- or
21st-degree PCE approximations are warranted. In contrast, the SCE approximations for the
oscillatory function, exhibited in Figure 2(b), look satisfactory, if not great, even for a linear
spline (p = 1), as long as the mesh is adequately fine (h ≤ 1/8). For p = 2 or 3 and h ≤ 1/8,
any distinction between an SCE approximation and actual function in Figure 2(c) or Figure
2(d) is indiscernible to the naked eye.

For the nonsmooth and nearly discontinuous functions, there are two sets of linear (p = 1)
and quadratic (p = 2) SCE approximations, obtained separately for odd and even numbers
of elements; they are displayed in Figures 3 and 4. According to Figures 3(b) and 3(d), the
approximation quality of linear SCE approximations for the nonsmooth function is visibly
better when there are even numbers of elements, as expected. The same observation holds for
quadratic SCE approximations, where even a much coarser mesh produces excellent approxi-
mation for even numbers of elements. The SCE results for the nearly discontinuous function
are qualitatively the same. However, there are still some oscillations in SCE approximations
when the mesh is too coarse, pointing to the Gibbs’ type phenomenon commonly observed in
polynomial-based approximations. Zhang and Martin [24] reported such behavior for a cubic
spline approximation of the Heaviside function and found that the oscillation near disconti-
nuity never goes away for a uniform knot sequence. Clearly, a better, if not optimal, selection
of knot sequences is required.

Finally, Table 1 presents the errors ep,h and ep in the variances of all three functions, ob-
tained using SCE and PCE approximations, respectively, for various chosen degrees and knot
sequences. Clearly, the SCE approximation commits much lower errors than does the PCE
approximation for the same degree p. To attain an accurate approximation using splines, one
is not interested in large values of p. Instead, the motivation is to keep p fixed to a low value,
but increase (decrease) the number of knots (element size). Indeed, Table 1 demonstrates that
a low-degree SCE approximation with an adequate mesh is capable of producing significantly
more accurate estimates of the variance than the PCE approximation even when its degree
of expansion is excessively large. All approximations errors reported in Table 1 are consistent
with the plots displayed in Figures 2 through 4.

7.2. Example 2: Solution of a stochastic ODE. The second example involves a stochastic
boundary-value problem, described by the ODE

− d

dξ

(
exp(|X1|)

d

dξ
y(ξ;X1, X2)

)
= exp(|X2|), 0 ≤ ξ ≤ 1, y(ξ;X1, X2) ∈ R,(7.2)

with boundary conditions

y(0;X1, X2) = 0, exp(|X1|)
dy

dξ
(1;X1, X2) = 1.

Here, X1 and X2 are two real-valued, independent, and identically distributed random vari-
ables, each following a uniform distribution over [−1, 1]. Originally studied by the author [14],
the ODE is slightly modified here by introducing the absolute-value function, thus producing
a nonsmooth solution.
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Table 1
Relative errors in the variances of three univariate functions by PCE and SCE approximations.

(a) smooth, oscillatory function: y(X) = sin(3πX)

ep,h

p ep h p = 1 p = 2 p = 3

1 0.932453 1/2 0.719505 0.755454 0.815119

3 0.823578 1/4 0.0936391 0.0404491 0.0107727

5 0.822617 1/8 3.56392× 10−3 1.5349× 10−4 8.20356× 10−6

7 0.292768 1/12 6.05231× 10−4 9.8752× 10−6 1.95148× 10−7

9 0.0279709 1/16 1.80817× 10−4 1.56899× 10−6 1.6× 10−8

(b) nonsmooth function: y(X) = exp(−3|X|)

ep,h (odd no. of elements) ep,h (even no. of elements)

p ep h p = 1 p = 2 h p = 1 p = 2

1 1 2/5 0.122349 0.0212933 1/2 0.0167023 4.96606× 10−4

2 0.325922 2/9 0.026662 3.74539× 10−3 1/4 1.13075× 10−3 9.37131× 10−6

4 0.124885 2/17 4.42555× 10−3 5.48633× 10−4 1/8 7.00943× 10−5 1.76989× 10−7

8 0.0301413 2/25 1.43968× 10−3 1.71708× 10−4 1/12 1.377× 10−5 1.68832× 10−8

20 0.0037569 2/33 6.36083× 10−4 7.45087× 10−5 1/16 4.34601× 10−6 3.14213× 10−9

(c) nearly discontinuous function: y(X) = Φ(20X)

ep,h (odd no. of elements) ep,h (even no. of elements)

p ep h p = 1 p = 2 h p = 1 p = 2

1 0.209125 2/5 0.0198118 0.0574063 1/2 0.0983968 0.0308548

3 0.0966401 2/9 2.59428× 10−3 0.0184093 1/4 0.0299556 5.54174× 10−3

5 0.0543964 2/17 2.19365× 10−4 2.05094× 10−3 1/8 3.89483× 10−3 5.25409× 10−5

9 0.0212929 2/25 1.82967× 10−4 1.81128× 10−4 1/12 4.98215× 10−4 2.10786× 10−5

21 0.0017763 2/33 7.0312× 10−5 1.50297× 10−5 1/16 9.23004× 10−5 1.036× 10−5

A direct integration of (7.2) yields the exact solution:

y(ξ;X1, X2) =
1

exp(|X1|)

[
ξ +

(
ξ − ξ2

2

)
exp(|X2|)

]
.

Therefore, the first two raw moments of y(ξ;X1, X2) can be obtained easily. For instance, at
ξ = 1, the two moments of y(1;X1, X2), denoted briefly as y(X1, X2), are

E[y(X1, X2)] =
1

e

[
1 +

1

2
(e− 1)

]
(e− 1) ≈ 1.1752,

E[y2(X1, X2)] =
1

16e2
(e2 + 8e− 1)(e2 − 1) ≈ 1.52048.

The exact solutions were used to benchmark the approximate results from SCE and PCE
approximations.
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Figures 5 and 6 display three-dimensional (left) and contour (right) plots of the exact
function y(x1, x2) and several approximations from PCE and SCE. Because of the absolute-
value function, the exact solution is saddle-shaped with slope discontinuities at the center, as
shown in Figure 5(a). The second-order PCE approximation exhibited in Figure 5(b) commits
a variance error of e2 = 0.116812 and is clearly inadequate. The 16th-order PCE approxima-
tion in Figure 5(c) shows some improvement by reducing the error to e16 = 2.26714 × 10−3,
but not to an extent expected from such an impractically high expansion order.

In contrast, the linear (p = 1) SCE approximation in Figure 6(a), obtained for an even
number of elements with an element size of h = 1/10, matches the exact function extremely
well, producing a variance error of e1,1/10 = 1.86149 × 10−6. The quadratic (p = 2) SCE
approximation in Figure 6(b), generated using the same mesh, yields an error of e2,1/10 =
3.54972 × 10−4 and is better than the 16th-order PCE approximation yet inferior to that in
Figure 6(a). This apparent anomaly of a linear SCE approximation producing a better result
than a quadratic SCE approximation can be explained by examining the knot sequences used.
Due to even numbers of elements, there exists a central knot in each coordinate direction for
both cases of p = 1 and p = 2. However, for p = 2, the first-order derivatives are continuous
across the central knot in both directions. This is why the quadratic SCE approximation is
smoother than the linear SCE approximation or the exact function. However, as y(x1, x2)
is not differentiable at the central knot, the linear approximation performs better than the
quadratic approximation. However, if the central knot is repeated (multiplicity of two) in the
knot sequences, the quadratic SCE approximation, shown in Figure 6(c), is even better than
the linear SCE approximation, resulting in an error of e2,1/10 = 4.0056× 10−10. Having said
so, such manipulations of the knot sequences are not possible in general if the locations of
slope discontinuities are not known a priori. In this case, the quadratic SCE approximation in
Figure 6(b) is perhaps more realistic, and the result of the linear SCE approximation should
be deemed fortuitous for this specific problem.

7.3. Example 3: A nonsmooth function of four variables. In the final example, consider
a nonsmooth function

y(X) =

4∏
i=1

|4Xi − 2|bi + ai
1 + ai

, ai, bi ∈ R, i = 1, 4,

of four independent random variables Xi, i = 1, 2, 3, 4, each of which is uniformly distributed
over [0, 1]. The function parameters are as follows: a1 = 0, a2 = 1, a3 = 2, a4 = 4; b1 = b2 =
b3 = b4 = 3/5. Clearly, y is a nondifferentiable function where the exponent bi controls its
nonlinearity. Compared with bi = 1, the smaller the value of the exponent, the more nonlinear
the function becomes in the ith coordinate direction. This type of function, especially with
unit exponents, has been used for global sensitivity analysis [15].

Figure 7 depicts the probability distribution functions of y(X) calculated by three methods:
(1) crude MCS; (2) second-, fourth-, and eighth-order PCE approximations; and (2) quadratic
SCE approximations with three element sizes: h = 1/2, h = 1/4, and h = 1/8. In SCE
calculations, there are even numbers of elements for the chosen meshes with repeated central
knots (xk = 0.5) in each coordinate direction. Although the basis functions and corresponding
expansion coefficients of SCE and PCE approximations were calculated exactly, there is no
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Figure 5. Three-dimensional and contour plots of the exact and two PCE solutions of ODE; (a) exact
solution y(x1, x2); (b) second-order PCE approximation; (c) 16th-order PCE approximation.
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Figure 6. Three-dimensional and contour plots of three SCE solutions of ODE; (a) linear SCE approxima-
tion for h = 1/10; (b) quadratic SCE approximation for h = 1/10 and simple (“S”) knots; (c) quadratic SCE
approximation for h = 1/10 and a repeated (“R”) central knot.
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Figure 7. Probability distributions of y(X) calculated by three distinct methods; (a) crude MCS and several
PCE approximations; (b) crude MCS and several SCE approximations.

analytical means to determine their probability distributions. Instead, the PCE and SCE
approximations once built were resampled to generate their associated distributions. The
sample size for both crude MCS and resampling is 10,000, which should be adequate for
examining the tail probabilistic characteristics up to a probability of 10−3. Compared with
the MCS result, the convergence of probability distributions by the SCE approximations in
Figure 7(b) is markedly faster than that by the PCE approximations in Figure 7(a). It appears
that low-order SCE approximations also yield more accurate estimates of the probability
distributions than a high-order PCE approximation for nonsmooth functions.
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8. Discussion. While the paper is aimed at fundamental mathematical development of
SCE, a brief deliberation on the practical significance of the work is justified. First, the success
of SCE is dependent on its effective implementation for UQ analysis of a general computational
model. For more realistic problems not considered here, the expansion coefficients of SCE
approximations cannot be calculated exactly. Therefore, computationally efficient methods
or techniques for estimating the expansion coefficients are direly needed. In this regard,
methods, such as dimension-reduction techniques [23] and sparse-grid quadrature [8], come to
mind. Some of these methods, when appropriately adapted, may potentially aid in calculating
the SCE coefficients economically.

Second, the SCE approximation proposed is designed to account for locally prominent and
highly nonlinear stochastic responses, including discontinuity and nonsmoothness, emanating
from multiple failure modes of complex systems. On the contrary, if the response is smooth and
moderately nonlinear, then existing PCE equipped with globally supported basis is adequate.
In the latter case, there is no significant advantage of SCE over PCE approximations.

Third, and more importantly, the use of tensor-product structure to form multivariate
B-splines is not always suitable. Indeed, for high-dimensional UQ problems, tensor-product
expansions in the context of SCE or PCE approximations will require an astronomically large
number of terms or coefficients, succumbing to the curse of dimensionality. Therefore, devel-
opments of alternative computational methods capable of exploiting low effective dimensions
of high-dimensional functions, à la dimensional decomposition methods [13], are desirable.

These topics are subjects of current research in the author’s group.

9. Conclusion. A new chaos expansion, namely, SCE of a square-integrable random vari-
able, comprising measure-consistent multivariate orthonormal B-splines in independent ran-
dom variables, is unveiled. Under prescribed assumptions, a whitening transformation is
proposed to decorrelate univariate B-splines in each coordinate direction into their orthonor-
mal version. The transformed set of B-splines was proved to form a basis of a general spline
space comprising splines of specified degree and knot sequence. Through a tensor-product
structure, multivariate orthonormal B-splines were constructed, spanning the space of multi-
variate splines of specified degrees and knot sequences in all coordinate directions. The result
is an expansion of a general L2-function with respect to measure-consistent multivariate or-
thonormal B-splines. Compared with the existing PCE, SCE, rooted in compactly supported
B-splines, deals with locally prominent stochastic responses in a more proficient manner. The
approximation quality of the expansion was demonstrated in terms of the modulus of smooth-
ness of the function, leading to the mean-square convergence of SCE to the correct limit. The
weaker modes of convergence, such as those in probability and in distribution, follow readily.
The optimality of SCE, including deriving PCE as a special case of SCE, was demonstrated.
Analytical formulae akin to those found in the PCE literature are proposed to calculate the
mean and variance of an SCE approximation for a general output variable in terms of the
expansion coefficients. Numerical results obtained for one-, two-, and four-dimensional UQ
problems entailing oscillatory, nonsmooth, and nearly discontinuous functions indicate that a
low-order SCE approximation with an adequate mesh is capable of producing a substantially
more accurate estimates of the output variance and probability distribution than a PCE with
an overly large order of approximation.
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