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Abstract

A new class of computational methods, referred to as decomposition methods, has been developed for predicting failure probability of

structural and mechanical systems subject to random loads, material properties, and geometry. The methods involve a novel function

decomposition that facilitates univariate and bivariate approximations of a general multivariate function, response surface generation of

univariate and bivariate functions, and Monte Carlo simulation. Due to a small number of original function evaluations, the proposed

methods are very effective, particularly when a response evaluation entails costly finite-element, mesh-free, or other numerical analysis.

Seven numerical examples involving elementary mathematical functions and solid-mechanics problems illustrate the methods developed.

Results indicate that the proposed methods provide accurate and computationally efficient estimates of probability of failure.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

A fundamental problem in the time-invariant reliability

analysis entails calculation of a multi-fold integral [1–3]

PF hPðX 2UFÞ Z

ð
UF

fXðxÞdx; (1)

where XZ fX1;.;XNg
T 2R

N is a real-valued, N-dimen-

sional random vector defined on a probability space (U,

F, P) comprising the sample space U, the s-field F, and

the probability measure P; UF is the failure domain; and

fX(x) is the joint probability density function of X. In

structural reliability analysis, X typically represents loads,

material properties, and geometry and PF is the

probability of failure. For component reliability analysis,

UFZ{x:y(x)!0}, where y(x) represents a single perform-

ance function. For system reliability analyses involving m

performance functions, UF Z fx :gm
kZ1yðkÞðxÞ!0g and UF

Zfx :hm
kZ1yðkÞðxÞ!0g for series and parallel systems,

respectively, where y(k)(x) represents the kth performance

function. Nevertheless, for most practical problems,
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the exact evaluation of this integral, either analytically

or numerically, is not possible because N is large, fx(x) is

generally non-Gaussian, and y(x) or y(k)(x) are highly

nonlinear functions of x. While research is ongoing,

approximate methods, such as the first- and second-order

reliability methods (FORM/SORM) [1–8] and simulation

methods [9–18] are commonly employed to estimate the

failure probability.

FORM/SORM are based on linear (FORM) or

quadratic approximation (SORM) of the limit-state surface

at a most probable point (MPP). Experience has shown

that FORM/SORM are sufficiently accurate for engineer-

ing purposes, provided that the MPP is accurately found,

the limit-state surface at MPP is close to being linear or

quadratic, and no multiple MPPs exist. The MPP can be

located by various gradient-based optimization algorithms,

which in turn require first- and/or second-order (also

needed in SORM) response sensitivities or gradients, for

which efficient means of calculation are also required. If

these sensitivities can be calculated analytically, FOR-

M/SORM are quite efficient. Otherwise, FORM/SORM

can be ineffective, for instance, when response sensi-

tivities are not available or when sensitivity analysis is

computationally intensive. A prime example is a multi-

disciplinary design environment, where multiple analysis

codes from third-party sources are frequently employed

without any knowledge of gradients. In that case,

FORM/SORM may yield inaccurate reliability solutions
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or create computationally inefficient results when using

gradients from finite-difference approximations. Further-

more, for highly nonlinear performance functions, which

exist in many structural problems, results based on

FORM/SORM must be interpreted with caution. If the

Rosenblatt transformation, frequently used to map non-

Gaussian random input into its standard Gaussian image,

yields a highly nonlinear limit-state, inadequate reliability

estimates by FORM/SORM may result [12,13]. Further-

more, the existence of multiple MPPs could give rise to

large errors in standard FORM/SORM approximations [3,

8]. In that case, multi-point FORM/SORM along with the

system reliability concept is required for improving

component reliability analysis [8].

Simulation methods involving sampling and estimation

are well known in the statistics and reliability literature.

Direct Monte Carlo simulation [9] is the most widely used

simulation method and involves the generation of indepen-

dent samples of all input random variables, repeated

deterministic trials (analyses) to obtain corresponding

simulated samples of response variables, and standard

statistical analysis to estimate probabilistic characteristics

of response. This method generally requires a large number

of simulations to calculate low failure probability, and is

impractical when each simulation involves expensive finite-

element, boundary-element, or mesh-free calculations. As a

result, researchers have developed or examined faster

simulation methods, such as quasi-Monte Carlo simulation

[10], importance sampling [11], directional simulation

[12–14], and others [15–18]. While simulation methods do

not exhibit the limitations of approximate reliability

methods, such as FORM/SORM, they generally require

considerably more extensive calculations than the latter

methods. Consequently, simulation methods are useful

when alternative methods are inapplicable or inaccurate,

and have been traditionally employed as a yardstick for

evaluating approximate methods.

This paper presents a new class of computational

methods, referred to as decomposition methods, for

predicting reliability of structural and mechanical systems

subject to random loads, material properties, and geometry.

The idea of decomposition in multivariate functions,

originally developed by the authors for statistical moment

analysis [19,20], has been extended for reliability analysis,

which is the focus of the current paper. The proposed

reliability methods involve a very small number of exact or

numerical evaluations of the performance function at

selected input, generation of approximate values of the

performance function at arbitrarily large number of input

using the decomposition technique, and subsequent

response surface approximations. Finally, the reliability is

evaluated using the Monte Carlo simulation. Seven

numerical examples involving elementary mathematical

functions and solid-mechanics problems illustrate the

proposed method. Whenever possible, comparisons have

been made with alternative approximate and simulation
methods to evaluate the accuracy and computational

efficiency of the proposed methods.
2. Multivariate function decomposition

Consider a continuous, differentiable, real-valued func-

tion y(x) that depends on xZ fx1;.; xNg
T 2R

N . Suppose

that y(x) has a convergent Taylor series expansion at an

arbitrary reference point xZcZ{c1,.,cN}T, expressed by

yðxÞ Z yðcÞC
XN
jZ1

1

j!

XN

iZ1

vjy

vxi

ðcÞðxi KciÞ
j CR2; (2)

or

yðxÞZyðcÞC
XN
jZ1

1

j!

XN

iZ1

vjy

vxi

ðcÞðxiKciÞ
j

C
XN

j1;j2O0

1

j1!j2!

X
i1!i2

vj1Cj2 y

vx
j1
i1

vx
j2
i2

ðcÞðxi1
Kci1

Þj1 ðxi2
Kci2

Þj2 CR3;

ð3Þ

where the remainder R2 denotes all terms with dimension

two and higher and the remainder R3 denotes all terms with

dimension three and higher.
2.1. Univariate approximation

Consider a univariate approximation of y(x), denoted by

ŷ1ðxÞhŷ1ðx1;.;xNÞ

Z
XN

iZ1

yðc1;.;ciK1;xi;ciC1;.;cNÞKðN K1ÞyðcÞ; ð4Þ

where each term in the summation is a function of only one

variable and can be subsequently expanded in a Taylor

series at xZc, yielding

ŷ1ðxÞ Z yðcÞC
XN
jZ1

1

j!

XN

iZ1

vjy

vx
j
i

ðcÞðxi KciÞ
j: (5)

Comparing Eqs. (2) and (5) indicates that the univariate

approximation leads to the residual error yðxÞK ŷ1ðxÞZR2,

which includes contributions from terms of dimension two

and higher. For sufficiently smooth y(x) with convergent

Taylor series, the coefficients associated with higher-

dimensional terms are usually much smaller than that with

one-dimensional terms. In that case, higher-dimensional

terms contribute less to the function, and therefore, can be

neglected. Furthermore, Eq. (4) represents exactly the same

function as y(x) when yðxÞZ
P

i yiðxiÞ, i.e. when y(x) can be

additively decomposed into functions yi(xi) of single

variables.
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2.2. Bivariate approximation

In the similar way, consider a bivariate approximation
ŷ2ðxÞ

h
X
i1!i2

yðc1;.; ci1K1; xi1
; ci1C1;.; ci2K1; xi2

; ci2C1;.; cNÞ

K ðN K2Þ
XN

iZ1

yðc1;.; ciK1; xi; ciC1;.; cNÞ

C
ðN K1ÞðN K2Þ

2
yðcÞ; ð6Þ
of y(x), where each term on the right hand side is a function

of at most two variables and can be subsequently expanded

in a Taylor series at xZc, yielding
ŷ2ðxÞ ZyðcÞC
XN
jZ1

1

j!

XN

iZ1

vjy

vxi

ðcÞðxi KciÞ
j

C
XN

j1;j2O0

1

j1!j2!

X
i1!i2

vj1Cj2 y

vxi1
vxi2

ðcÞðxi1
Kci1

Þj1 ðxi2
Kci2

Þj2 :

ð7Þ
Again, the comparison of Eqs. (3) and (7) indicates that

the bivariate approximation leads to the residual error

yðxÞK ŷ2ðxÞZR3, in which remainder R3 includes terms of

dimension three and higher. The bivariate approximation

includes all terms with no more than two variables, thus

leads to higher accuracy than the univariate approximation.

Furthermore, Eq. (6) represents exactly the same function as

y(x) when yðxÞZ
P

i!j yijðxi; xjÞ, i.e. when y(x) can be

additively decomposed into functions yij(xi, xj) of at most

two variables.
2.3. Generalized S-variate approximation

The procedure for univariate and bivariate approxi-

mations described in the preceding can be generalized to

an S-variate approximation for any integer 1%S%N.
yðxÞZy0C
XN

iZ1

yiðxiÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Zŷ1ðxÞ

C
XN

i1;i2Z1

i1!i2

yi1i2
ðxi1

;xi2
Þ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Zŷ2ðxÞ

C/C
XN

i1;.;iSZ1

i1!/!iS

yi1.

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl
ZŷSðxÞ
The generalized S-variate approximation of y(x) is

ŷSðxÞh
XS

iZ0

ðK1Þi
N KS C i K1

i

 !

!
X

k1!/!kSKi

yðc1;.; ck1K1; xk1
; ck1C1;.; ckSKiK1; xkSKi

;

ckSKiC1;.; cNÞ: ð8Þ

If

yR hyðc1;.; ck1K1; xk1
; ck1C1;.; ckRK1; xkR

; ckRC1;.; cNÞ;

0%R%S, a multivariate function decomposition theorem

developed by the authors leads to [20]

yR Z
XR

kZ0

N Kk

R Kk

 !
tk; 0%R%S; (9)

where
t0 ZyðcÞ

t1 Z
P

j1

1

j1!

XN

i1Z1

vj1 y

vx
j1
i1

ðcÞðxi1
Kci1

Þj1

t2 Z
P

j1 ;j2

1

j1!j2!

X
i1!i2

vj1Cj2 y

vx
j1
i1

vx
j2
i2

ðcÞðxi1
Kci1

Þj1 ðxi2
Kci2

Þj2

«

tS Z
P

j1 ;.;jS

1

j1!.jS!

X
i1!/!iS

vj1C/CjS y

vx
j1
i1

.vx
jS
iS

ðcÞðxi1
Kci1

Þj1 .ðxiS
KciS

ÞjS

:

(10)

Using Eqs. (9) and (10), it can be shown that ŷSðxÞ in Eq.

(8) consists of all terms of the Taylor series of y(x) that have

less than or equal to S variables [20]. The expanded form of

Eq. (8), when compared with the Taylor expansion of y(x),

indicates that the residual error in the S-variate approxi-

mation is yðxÞK ŷSðxÞZRSC1, where the remainder RSC1

includes terms of dimension SC1 and higher. When SZ1,

Eq. (8) degenerates to the univariate approximation (Eq.

(4)). When SZ2, it becomes the bivariate approximation

(Eq. (6)). Similarly, trivariate, quadrivariate, and other

higher-variate approximations can be derived by appro-

priately selecting the value of S. In the limit, when SZN,

Eq. (8) converges to the exact function y(x). In other words,

the proposed decomposition generates convergent sequence

of approximations of y(x).

2.4. Remarks

The decomposition of a general multivariate function

y(x) can be viewed as a finite sum

iS
ðxi1

;.;xis
Þ

fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

C/Cy12.Nðx1;.;xNÞ; (11)

where y0 is a constant, yi(xi) is a univariate component

function representing independent contribution to y(x) by
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input variable xi acting alone, yi1i2
ðxi1

;xi2
Þ is a bivariate

component function describing cooperative influence of two

input variables xi1
and xi2

, yi1.iS
ðxi1

;.;xiS
Þ is an S-variate

component function quantifying cooperative effects of S

input variables xi1
;.;xiS

, and so on. By comparing Eqs. (4)

and (6) with Eq. (11), the proposed univariate and bivariate

approximations provide two- and three-term approximants,

respectively, of the finite decomposition. In general, the S-

variate approximation in Eq. (8) yields the SC1-term

approximant of the decomposition. The fundamental

conjecture underlying this work is that component functions

arising in proposed decomposition will exhibit insignificant

S-variate effects cooperatively when S/N, leading to

useful lower-variate approximations of a high-dimensional

function. Indeed, this is the major motivation of the

reliability methods developed.

It is worth noting that the univariate and bivariate

approximations should not be viewed as first- or second-

order Taylor series expansions nor do they limit the

nonlinearity of y(x). According to Eqs. (5) and (7), all

higher-order univariate and bivariate terms of y(x),

respectively, are included in the proposed approximations.

Furthermore, the approximations contain contributions from

all input variables.
3. Response surface generation

Consider the univariate terms yiðxiÞhyðc1;.; ciK1; xi;

ciC1;.; cNÞ in Eqs. (4) and (6). If for xiZx
ðjÞ
i , n function

values

yiðx
ðjÞ
i Þ Z yðc1;.; ciK1; x

ðjÞ
i ; ciC1;.; cNÞ; j Z 1; 2;.; n

(12)

are given, the function value for arbitrary xi can be obtained

using the Lagrange interpolation as

yiðxiÞ Z
Xn

jZ1

fjðxiÞyiðx
ðjÞ
i Þ; (13)

where the shape function fj(xi) is defined as

fjðxiÞZ
ðxiKxð1Þi Þ.ðxiKx

ðjK1Þ
i ÞðxiKx

ðjC1Þ
i Þ.ðxiKxðnÞi Þ

ðx
ðjÞ
i Kxð1Þi Þ.ðx

ðjÞ
i Kx

ðjK1Þ
i Þðx

ðjÞ
i Kx

ðjC1Þ
i Þ.ðx

ðjÞ
i KxðnÞi Þ

:

(14)

By using Eq. (13), arbitrarily many function values of

yi(xi) can be generated if n function values are given. The

same idea can be applied to the bivariate terms yi1i2
ðxi1

; xi2
Þh

yðc1;.; ci1K1; xi1
; ci1C1;.; ci2K1; xi2

; ci2C1;.; cNÞ in Eq. (6).
If for xi1
Zx

ðj1Þ
i1

and xi2
Zx

ðj2Þ
i2

, n2 function values

yi1i2
ðx

ðj1Þ
i1

; x
ðj2Þ
i2

Þ

hyðc1;.; ci1K1; x
ðj1Þ
i1

; ci1C1;.; ci2K1; x
ðj2Þ
i2

; ci2C1;.; cNÞ;

j1 Z 1; 2;.; n; j2 Z 1; 2;.; n ð15Þ

are given, the function value yi1i2
ðxi1

; xi2
Þ for arbitrary point

ðxi1
; xi2

Þ can be obtained using the Lagrange interpolation as

yi1i2
ðxi1

; xi2
Þ Z

Xn

j2Z1

Xn

j1Z1

fj1
ðxi1

Þfj2
ðxi2

Þyi1i2
ðx

ðj1Þ
i1

; x
ðj2Þ
i2

Þ; (16)

where shape functions fj1
ðxi1

Þ and fj2
ðxi2

Þ are defined in

Eq. (14). Note that there are n and n2 performance function

evaluations involved in Eqs. (13) and (16), respectively.

Therefore, the total cost for univariate approximation entails

a maximum of nNC1 function evaluations, and for bivariate

approximation, N(NK1)n2/2CnNC1 maximum function

evaluations are required. More accurate multivariate

approximations can be developed in the similar way.

However, because of much higher cost, only univariate

and bivariate approximations will be examined in this paper.
4. Monte Carlo simulation
4.1. Component reliability analysis

For component reliability analysis, the Monte Carlo

estimates PF,1 and PF,2 of the failure probability employing

univariate and bivariate approximations, respectively, are

PF;1 Z
1

NS

XNS

iZ1

I½ŷ1ðx
ðiÞÞ!0� (17)

PF;2 Z
1

NS

XNS

iZ1

I½ŷ2ðx
ðiÞÞ!0�; (18)

where x(i) is the ith realization of X, NS is the sample size,

and I½$� is an indicator function such that IZ1 if x(i) is in

the failure set (i.e. when ŷ1ðx
ðiÞÞ!0 for univariate

approximation and when ŷ2ðx
ðiÞÞ!0 for bivariate approxi-

mation of the performance function) and zero otherwise.
4.2. System reliability analysis

For system reliability analysis involving union and

intersection of m failure sets, similar decomposition and

response surface approximations can be performed for each

performance function. Let UFZ fx :gm
kZ1yðkÞðxÞ!0g and

UFZ fx :hm
kZ1yðkÞðxÞ!0g denote component failure sets in

series and parallel systems, respectively, where y(k)(x) is the

kth performance function. Hence, the Monte Carlo estimates

PF,1 and PF,2 using univariate and bivariate approximations,
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respectively, are

PF;1 Z

1

NS

XNS

iZ1

I g
m

kZ1
ŷðkÞ1 ðxðiÞÞ!0

� �
; series system

1

NS

XNS

iZ1

I h
m

kZ1
ŷðkÞ1 ðxðiÞÞ!0

� �
; parallel system

8>>>><
>>>>:

(19)

PF;2 Z

1

NS

XNS

iZ1

I g
m

kZ1
ŷðkÞ2 ðxðiÞÞ!0

� �
; series system

1

NS

XNS

iZ1

I h
m

kZ1
ŷðkÞ2 ðxðiÞÞ!0

� �
; parallel system

;

8>>>><
>>>>:

(20)

where I½$� is another indicator function such that IZ1 if

x(i) is in the system failure domain and zero otherwise.

The decomposition methods involving univariate and

bivariate approximations, are respectively, defined as

univariate and bivariate methods in this paper. Since the

proposed methods facilitate explicit lower-dimensional

approximations of a general multivariate function, the

embedded Monte Carlo simulation can be conducted for any

sample size. However, the accuracy and efficiency of the

failure probability calculations using Eqs. (17)–(20) depend

on both the decomposition and response surface approxi-

mations. They will be evaluated using several numerical

examples in Section 5.
5. Numerical examples

Two sets of numerical examples, one involving explicit

mathematical functions (Examples 1 and 2) and the other

involving solid-mechanics/structural problems (Examples

3–7), are presented to illustrate the proposed decomposition

methods. Whenever possible, comparisons have been made

with alternative approximate (FORM/SORM) and several

simulation methods to evaluate the accuracy and compu-

tational efficiency of the proposed decomposition methods.

All numerical results of decomposition methods are based

on the expansion at the mean point. For response surface

generation, n (Z3, 5, 7 or 9) uniformly distributed points

miK(nK1)si/2, miK(nK3)si/2,., mi,., miC(nK3)si/2,

miC(nK1)si/2 were deployed at xi-coordinate with mean mi

and standard deviation si, leading to (nK1)NC1 and (nK
1)2N(NK1)/2C(nK1)NC1 function evaluations by uni-

variate and bivariate methods, respectively. In all examples,

response surface approximations were constructed in the

standard Gaussian space.

When comparing computational efforts by various

methods, the number of original performance functions

evaluations is chosen as the primary metric in this paper. For

the direct Monte Carlo simulation, the number of original

function evaluations is the same as the sample size.
However, in the proposed decomposition methods, they

are different, because the Monte Carlo simulation (although

with the same sample size as in direct Monte Carlo

simulation) embedded in decomposition methods are

conducted using their response surface approximations.

The difference in CPU times in evaluating an original

function and its response surface approximation is signifi-

cant when a calculation of the original function involves

expensive finite-element or mesh-free analysis, as in

Examples 4–7. However, the difference becomes trivial

when solving problems involving explicit performance

functions, as in Examples 1–3. Hence, the computational

effort expressed in terms of function evaluations alone

should be carefully interpreted for problems involving

explicit functions. Nevertheless, the number of function

evaluations provides an objective measure of the compu-

tational effort for reliability analysis of realistic problems.
5.1. Example Set I—mathematical functions

Example 1. Consider a component reliability problem with

a performance function [21]

yðXÞ ZK
1

2b

X5

iZ1

X2
i KX6 Cb; (21)

where Xi1N(0,1), iZ1,.,6 are independent, standard

Gaussian random variables and bZ4. The exact value of

the failure probability is PFZP yðXÞ!0
� �

Z1:30!10K3

[21]. Recently, Yonezawa et al. [22], who developed a new

simulation method with limited sampling region, predicted

the failure probability to be 1.28!10K3, involving 10,000

samples, When this problem was solved by the proposed

univariate method, a failure probability of PF,1Z1.32!
10K3 was calculated using only 13 function evaluations

(nZ3, NZ6). Hence, the univariate method is not only

accurate, but also significantly more efficient than some

existing simulation methods (e.g. simulation within limited

sampling region [22]). Since the univariate method exactly

represents the univariate performance function in Eq. (21),

there is no need to pursue the bivariate approximation.

However, in many cases, bivariate approximation is needed

to achieve improved accuracy and will be illustrated in

forthcoming examples.

Example 2. Consider a system reliability problem in which

the failure region is bounded by the following two

performance functions [13,14]

yð1ÞðXÞ ZKX1 KX2 KX3 C3
ffiffiffi
3

p
; yð2ÞðXÞ ZKX3 C3;

(22)

where Xi1N(0,1), iZ1–3 are independent, standard

Gaussian random variables. Both series and parallel systems

are considered.



Fig. 1. Failure domain for x2Zconstant; (a) series system; (b) parallel system.

Table 2

Failure probability for parallel system
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Series system

For the series system, the system failure region is defined

as UF Z fx : yð1ÞðXÞ!0gyð2ÞðXÞ!0g, which is sketched in

Fig. 1(a) in the x1Kx3 space when x2Zconstant. Katsuki

and Frangopol [14] computed Ditlevsen’s [3] second-

order bounds of the probability of failure to be: 2.53734!
10K3%PF%2.61864!10K3. Table 1 compares the failure

probability obtained by the proposed univariate method,

second-order bounds, directional simulation using Fekete

points by Nie and Ellingwood [13], and the direct Monte

Carlo simulation with 107 samples. According to Nie and

Ellingwood, the directional simulation including Fekete

points generates the most accurate and efficient estimation

of the failure probability. As can be seen in Table 1, the

proposed univariate method provides identical result

(PF,1Z2.585!10K3) of direct Monte Carlo, but using

only 7 (nZ3, NZ3) function evaluations. This is because

both performance functions in Eq. (22) are univariate

functions, which are exactly represented by their response
Table 1

Failure probability for series system

Method Failure probability

(!10K3)

Number of function

evaluationsa

Univariate method 2.585 7b

Second-order boundsc 2.537–2.618

Directional simulationd

Fekete pointsZ36 2.572

Fekete pointsZ60 2.611

Fekete pointsZ72 2.570

Fekete pointsZ96 2.584

Fekete pointsZ108 2.555

Fekete pointsZ144 2.580

Fekete pointsZ240 2.575

Fekete pointsZ300 2.572

Direct Monte Carlo

simulation

2.585 10,000,000

a Total number of times the original performance functions is calculated.
b (3K1)!3C1Z7.
c See Refs. [3,14].
d See Ref. [13]. For each Fekete point, several function evaluations are

needed to determine the radius of hypersphere. The total number of function

evaluations is not reported.
surfaces. In contrast, to obtain the same accuracy, the

directional simulation involved 36–300 directions; for each

direction the radius of the hypersphere segment has to be

obtained through numerical methods, which usually takes

several function evaluations [13]. Hence, significantly fewer

function evaluations are needed in the univariate method.
Parallel system

For the parallel system, the system failure domain is

defined as UF Z fx : yð1ÞðXÞ!0hyð2ÞðXÞ!0g and is also

depicted in Fig. 1(b). The second-order bounds [3] of the

probability of failure are: 8.12977!10K5%PF%1.62595!
10K4 [3,13]. The failure probability reported by Katsuki and

Frangopol [14] using Hohenbichler’s approximation [23] of

multinormal integrals is 1.24211!10K4. Nie and Elling-

wood [13] also produced various estimations using the

directional simulation with Fekete points. Table 2 compares
Method Failure probability

(!10K4)

Number of function

evaluationsa

Univariate method 1.303 7b

Second-order boundsc 0.813–1.626

Multinormal integralsd 1.242

Directional simulatione

Fekete pointsZ36 1.554

Fekete pointsZ60 1.235

Fekete pointsZ72 1.496

Fekete pointsZ96 1.324

Fekete pointsZ108 1.475

Fekete pointsZ144 1.372

Fekete pointsZ240 1.559

Fekete pointsZ300 1.526

Fekete pointsZ1200 1.556

Direct Monte Carlo

simulation

1.303 10,000,000

a Total number of times the original performance functions is calculated.
b (3K1)!3C1Z7.
c See Refs. [3,14].
d See Refs. [14,23].
e See Ref. [13]. For each Fekete point, several function evaluations are

needed to determine the radius of hypersphere. The total number of function

evaluations is not reported.



Table 3

Failure probability for portal frame

Method Failure probability

(!10K5)

Number of function

evaluationsa

Univariate method 5.544 41b

First-order boundsc 3.12–5.68

Second-order boundsc 5.200–5.200

Directional simulationd 5.452

Directional simulatione

Fekete pointsZ480 5.427

Fekete pointsZ604 5.283

Fekete pointsZ640 5.382

Fekete pointsZ800 5.564

Fekete pointsZ960 5.495
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failure probability calculated by the proposed univariate

method, second-order bounds, multinormal integrals, Nie

and Ellingwood’s directional simulation using Fekete

points, and direct Monte Carlo simulation with 107 samples.

For the same reason as in the series system, the probability

estimates (PF,1Z1.303!10K4) by the univariate method

and direct Monte Carlo simulation are identical. According

to Table 2, only 7 function evaluations are needed by the

univariate method. To achieve the same level of accuracy,

the directional simulation required 96 simulating directions.

Hence, the proposed univariate method is more efficient

than the directional simulation for both series and parallel

systems in this example.

Fekete pointsZ2080 5.451

Direct Monte Carlo

simulation

5.544 100,000,000

a Total number of times the original performance functions is calculated.
b (9K1)!5C1Z41.
c See Refs. [3,13].
d A solution by large-scale directional simulation; see Ref. [13].
e See Ref. [13]. For each Fekete point, several function evaluations are

needed to determine the radius of hypersphere. The total number of function

evaluations is not reported.
5.2. Example Set II—structural and solid-mechanics

problems

Example 3. Rigid-Plastic Portal Frame Structure. Ditle-

vsen [24] and Nie and Ellingwood [13] studied the rigid-

plastic frame structure of Fig. 2 by the directional

simulation method. This structure can be analyzed as a

series system of three limit-state functions (collapse

mechanisms), which, according to the principle of virtual

work, are

yð1ÞðXÞ Z X2 C2X3 CX4 KGb

yð2ÞðXÞ Z X1 CX2 CX4 CX5 KFa

yð3ÞðXÞ Z X1 C2X3 C2X4 CX5 KFa KGb;

(23)

where y(1)(X), y(2)(X) and y(3)(X) are component limit-state

functions for beam, sway and combined mechanisms,

respectively. The yield moments Xj, jZ1,.,5, at hinge

points are independent and identically distributed

lognormal random variables, with unit mean and 25%

coefficient of variation. The lateral force F, vertical force G

and distances a and b are constants, with GbZ1.15
Fig. 2. A portal frame as rigid-plastic system.
and FaZ2.4. The failure domain is defined as:

UF Z fx : yð1ÞðXÞ!0gyð2ÞðXÞ!0gyð3ÞðXÞ!0g.

Table 3 lists the system failure probabilities of the frame,

which are calculated by first- and second-order bounds [3,

13], a large-scale directional simulation reported in Ref.

[13], Nie and Ellingwood’s directional simulation involving

480–2080 Fekete points [13], proposed univariate method

involving 41 (nZ9, NZ5) function evaluations, and direct

Monte Carlo simulation involving 108 samples. The results

in Table 3 indicate that the univariate method provides

identical result (PF,1Z5.544!10K5) of the direct Monte

Carlo simulation. The directional simulations also yield

failure probabilities close to the direct Monte Carlo result.

But, the proposed method requires very few function

evaluations to generate an accurate result.

Example 4. Ten-Bar Truss Structure (Linear-Elastic). A

ten-bar, linear-elastic, truss structure, shown in Fig. 3, was

studied in this example to examine the accuracy and

efficiency of the proposed reliability method. The Young’s

modulus of the material is 107 psi. Two concentrated forces

of 105 lb are applied at nodes 2 and 3, as shown in Fig. 3.

The cross section area Xi, iZ1,.,10 for each bar is

normally distributed random variable with mean mZ2.5 in.

and standard deviation sZ0.5 in. According to the loading

condition, the maximum displacement [(v3(X1,.,X10))]

occurs at node 3, where a permissible displacement is

limited to 18 in. Hence, the limit-state function is

yðXÞ Z 18 Kv3ðX1;.;X10Þ: (24)

Table 4 shows the failure probability of the truss

structure, calculated using the proposed univariate method,

FORM, three variants of SORM due to Breitung [4],

Hohenbeichler [5] and Cai and Elishakoff [6], and direct
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Fig. 3. A ten-bar truss structure with random cross-sectional areas.
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Fig. 4. A square plate with a hole subjected to uniformly distributed tension;

(a) geometry and loads; (b) meshless discretization.
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Monte Carlo simulation (106 samples). For the univariate

method, seven uniformly distributed points between mK3s

and mC3s were deployed for function evaluations at each

dimension. As can be seen from Table 4, the univariate

method predicts the failure probability more accurately than

FORM and all three variants of SORM, yet the number of

function evaluations is less than FORM and much less than

SORM. Furthermore, the proposed method does not require

any response derivatives as required by FORM/SORM in

finding the MPP.

Example 5. Stochastic Mesh-Free Analysis of Plate with a

Hole (Linear-Elastic). Consider a square plate with a

centrally located circular hole, as shown in Fig. 4(a). The

plate has a dimension of 2LZ40 units, a hole with diameter

2aZ2 units, and is subjected to a uniformly distributed load

of magnitude sNZ1 unit. The Poisson’s ratio n was

selected to be 0.3. The elastic modulus was assumed to be

a homogeneous random field and symmetrically distributed

with respect to x1- and x2-axes [see Fig. 4(a)]. The modulus

of elasticity E(x) was represented by a homogeneous,

lognormal translation field E(x)Zcaexp[a(x)], with mean

mEZ1 unit and standard deviation sEZ0.2 or 0.5 for which

a(x) is a zero-mean, homogeneous, Gaussian random field
G

Table 4

Failure probability for ten-bar truss

Method Failure probability Number of function

evaluationsa

Univariate method 0.1357 61b

FORM 0.0863 127

SORM (Breitung)c 0.1286 506

SORM (Hohenbichler)d 0.1524 506

SORM (Cai and

Elishakoff)e

0.1467 506

Direct Monte Carlo

simulation

0.1397 1,000,000

a Total number of times the original performance functions is calculated.
b (7K1)!10C1Z61.
c See Ref. [4].
d See Ref. [5].
e See Ref. [6].
with standard deviation sa Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1Cs2

E=m
2
EÞ

p
, an exponen-

tial covariance function represented by

aðxÞ Z E aðxÞaðx CxÞ½ �

Z s2
aexp K

jx1jC jx2j

bL

� �
; cx; x Cx2D; (25)

where D3R
2 is the domain of the random field represented

by the shaded area in Fig. 4(a), and

ca Z mE expðKs2
a=2Þ Z m2

E=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

E Cs2
E

q
: (26)

Due to symmetry, only a quarter of the plate, represented

by the region ABEDC and shaded in Fig. 4(a), was
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analyzed. Fig. 4(b) presents a meshless discretization of the

quarter plate with 90 nodes.

The random field a(x) was parameterized using the

Karhunen–Loève expansion [25]

aðxÞy
XN

jZ1

Xj

ffiffiffiffi
lj

q
fjðxÞ: (27)

where Xj1N(0,1), jZ1,.,N are standard and independent

Gaussian random variables and {lj,fj(x)}, jZ1,.,N are the

eigenvalues and eigenfunctions, respectively, of the

covariance kernel. Mesh-free shape functions were

employed to solve the associated integral equation needed

to calculate the eigenvalues and eigenfunctions [26]. Based

on the correlation parameter bZ0.5, a value of NZ8 was

selected to adequately represent a(x). Hence, the input

uncertainty was represented by an 8-dimensional standard

Gaussian vector X1N(0,I), where 02R
8 and I 2LðR8 !

R
8Þ are the null vector and identity matrix, respectively.

A stress-based failure criterion at a critical point was

employed to calculate the reliability of the plate. If
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Fig. 5. Failure probability of square plate with a hole; (a) sEZ0.2; (b) 0.5.
sA(X1,.,X8) denotes the von Mises equivalent stress at

point A [see Fig. 4(a)], the limit-state function associated

with the von Mises yield criterion is

yðXÞ Z Sy KsAðX1;.;X10Þ; (28)

where Sy is a deterministic yield strength of the material.

Fig. 5(a) and (b) present failure probabilities for various

yield strengths, predicted by the proposed decomposition

methods, as well as by the direct Monte Carlo simulation

(105 samples). As can be seen in Fig. 5(a), when the

uncertainty of elastic modulus is lower (sEZ0.2), both the

univariate and bivariate methods provide satisfactory results

in comparison with the simulation results. However, when a

higher uncertainty is considered (sEZ0.5), Fig. 5(b) shows

that the accuracy of the failure probability from the bivariate

method is slightly higher than that from the univariate

method. The number of function evaluations by proposed

methods with univariate and bivariate approximations are

only 33 and 481, respectively, when nZ5 and NZ8. A

comparison of total CPU times, shown in Fig. 6, indicates

that both decomposition methods are far more efficient than

the Monte Carlo simulation. In calculating the CPU times,

the overhead cost due to random field discretization, random

number generation, and response surface approximations

are all included. The overhead cost is comparable to the cost

of evaluating the structural response in this particular

problem. For this reason, the ratios of CPU times by

bivariate and univariate methods and by Monte Carlo and

univariate methods, are respectively, only 8 and 1080, as

compared with 15 (z481/33) and 3030 (z100,000/33),

when function evaluations alone are compared. For more

complex problems requiring expensive response evalu-

ations, the overhead cost is negligible. In that case, the CPU

ratio should approach the ratio of function evaluations.

Hence, the proposed methods are effective when a response

evaluation entails costly mesh-free or finite-element

analysis.
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Fig. 7. A shallow arch subject to a concentrated load at midspan; (a)

geometry and loads; (b) finite-element discretization.
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Fig. 8. Failure probability of shallow arch; (a) sEZ16 GPa; (b) 40 GPa.
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Example 6. Stochastic Finite-Element Analysis of Shallow

Arch (Nonlinear, Large-Deformation). In this example, the

proposed decomposition methods were employed to solve

a nonlinear problem in solid-mechanics. Fig. 7(a) illus-

trates a shallow circular arch, with mean radius RZ
100 mm, rectangular cross-section with depth hZ2 mm,

thickness tZ1 mm, and arc angle 2bZ28.18. The arch,

fixed at both ends, was subjected to a concentrated load

PZ400 N at the center. The Poisson’s ratio was zero in

this example. A finite-element mesh employing 30 8-noded

quadrilateral elements was used to model the arch, as

shown in Fig. 7(b). The stress analysis involved large-

deformation behavior for modeling the geometric non-

linearity of the arch. A plane stress condition was assumed.

The modulus of elasticity E(x) was represented by a

homogeneous, lognormal translation field E(x)Zca-

exp[a(x)], with mean mEZ80 kN/mm2 and standard

deviation sE for which a(x) is a zero-mean, homogeneous,

Gaussian random field with standard deviation

sa Z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð1Cs2

E=m
2
EÞ

p
, an exponential covariance function

aðxÞZE½aðxÞaðxCxÞ�Zs2
a exp½Kjjxjj=ðbLÞ�, cx, xC

x2D, bZ0.1; and ca ZmE expðKs2
a=2ÞZm2

E=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

E Cs2
E

p
.

The Karhunen–Loève expansion was employed to dis-

cretize the random field a(x) into four standard Gaussian

random variables.

Due to uncertainty in the elastic modulus, the deflection u

at center point of this arch is stochastic. A displacement-

based failure criterion at midspan was employed to calculate

the reliability of the plate. If u(X1,.,X4) denotes the

midspan displacement of the arch, the limit-state function is

yðXÞ Z u0 KuðX1;.;X4Þ; (29)

where u0 is a deterministic threshold of displacement.

The proposed univariate and bivariate methods were

employed to predict the failure probability of the arch. To

evaluate these methods, direct Monte Carlo simulation was

performed to generate benchmark solutions. The results,

plotted as a function of displacement threshold u0, are
presented in Fig. 8(a) and (b) for two cases of statistical

input: (a) sEZ16 GPa and (b) sEZ40 GPa, representing

small and large uncertainties of elastic modulus. The results

indicate that the univariate and bivariate methods provide

excellent estimates of failure probabilities for both cases of

input. For each problem case, the univariate and bivariate

methods, respectively, require only 17 and 113 analyses

(nZ5, NZ4), as opposed to 105 analyses in Monte Carlo

simulation. Although the accuracy of the univariate method

slightly decreases as the uncertainty increases, the bivariate

approximation generates very accurate prediction even

when the coefficient of variation is 0.5, as indicated by

Fig. 8(b).

Example 7. Stochastic Fracture Mechanics (Linear-

Elastic). The final example involves a nonhomogeneous,

functionally graded, edge-cracked plate, presented to

illustrate mixed-mode probabilistic fracture-mechanics

analysis using the decomposition method. As shown in

Fig. 9(a), a functionally graded plate of length LZ16 units

was fixed at the bottom and subjected to a far-field normal



Fig. 9. A functionally graded edge-cracked plate subject to mixed-mode

deformation; (a) geometry and loads; (b) finite-element discretization.

Table 5

Statistical properties of random input for functionally graded edge-cracked

plate

Random vari-

able

Mean Standard devi-

ation

Probability dis-

tribution

a 3.5 0.404 Uniforma

W 7.5 0.289 Uniformb

sN 1 0.1 Gaussian

tN 1 0.1 Gaussian

q 0 0.3 Gaussian

E1 1 0.1 Lognormal

E2 3 0.3 Lognormal

b 5 0.5 Lognormal

a Uniformly distributed over (2.8,4.2).
b Uniformly distributed over (7,8).

H. Xu, S. Rahman / Probabilistic Engineering Mechanics 20 (2005) 239–250 249
stress sN and a shear stress tN applied at the top. The

elastic modulus was assumed to vary smoothly according to

a hyperbolic tangent function, given by

Eðx1; x2Þ Z
E1 CE2

2
C

E1 KE2

2
tanh bðx1 cos q Cx2 sin qÞ;

(30)
where (x1,x2) are spatial coordinates [see Fig. 9(a)], E1, E2, b

and q are modulus parameters. The following eight

independent random variables were defined: (1) crack

length a; (2) plate width W; (3) far-field normal stress sN;

(4) far-field shear stress tN; (5) modulus angle parameter q;

(6) modulus at the left end E1ZE(0,x2); (7) modulus at the

right end E2ZE(W,x2); and (8) modulus parameter b. The

statistical property of the random input XZ
{a,W,sN,tN,q,E1,E2,b}T is defined in Table 5.

Due to far-field stresses the plate is subjected to mixed-

mode deformation involving fracture modes I and II [27].

The mixed-mode stress-intensity factors KI(X) and KII(X)

were calculated using an interaction integral method [28].

The plate was analyzed using the finite-element method

involving a total of 832 8-noded, regular, quadrilateral

elements and 48 6-noded, quarter-point (singular), triangu-

lar elements at the crack-tip, as shown in Fig. 9(b).

The failure criterion is based on a mixed-mode fracture

initiation using the maximum tangential stress theory [27],

which leads to the performance function

yðXÞ ZKIc K KIðXÞcos2 QðXÞ

2
K

3

2
KIIðXÞsin QðXÞ

� �
!cos

QðXÞ

2
; ð31Þ

where KIc is a deterministic fracture toughness, typically

measured from small-scale fracture experiments under

mode-I and plane strain conditions, and Qc(X) is the

direction of crack propagation, given by

QcðXÞ

Z

2 tanK1 1K
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C8½KIIðXÞ=KIðXÞ�2

p
4KIIðXÞ=KIðXÞ

 !
; if KIIðXÞO0

2 tanK1 1C
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1C8½KIIðXÞ=KIðXÞ�2

p
4KIIðXÞ=KIðXÞ

 !
; if KIIðXÞ!0

:

8>>>>><
>>>>>:

ð32Þ

The failure probability PFZP[y(X)!0] was predicted

using the proposed decomposition methods and compared
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with the direct Monte Carlo simulation, as shown in Fig. 10.

In Fig. 10, the failure probability is plotted as a function of

fracture toughness KIc. Using nZ3 and NZ8, the univariate

and bivariate methods required only 17 and 129 functions

evaluations (finite-element analyses), respectively, whereas

105 finite-element analyses were performed by the Monte

Carlo simulation. The results clearly show that both the

univariate and bivariate methods can calculate probability

of fracture initiation accurately and efficiently.
6. Conclusions

New computational methods, referred to as decompo-

sition methods, were developed for predicting reliability of

structural and mechanical systems subject to random loads,

material properties, and geometry. The methods involve a

novel function decomposition that facilitates univariate and

bivariate approximations of a general multivariate function,

response surface generation of univariate and bivariate

functions, and Monte Carlo simulation. Due to a small

number of original function evaluations, the proposed

methods are very effective, particularly when a response

evaluation entails costly finite-element, mesh-free, or other

numerical analysis. The methods can solve both component

and system reliability problems. Seven numerical examples

involving elementary mathematical functions and solid-

mechanics problems illustrate the proposed method. Results

indicate that the methods developed provide accurate and

computationally efficient estimates of probability of failure.
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