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a b s t r a c t

This paper presents new theoretical results to demonstrate that the referential dimensional
decomposition (RDD) and cut-high-dimensional model representation (cut-HDMR), each developed
independently and from a distinct perspective, lead to identical function approximations. Therefore, the
reliability method stemming from the cut-HDMR approximation is precisely the same as the reliability
method rooted in the RDD approximation. However, a second-moment error analysis finds neither the
RDD approximation nor the cut-HDMR approximation to be optimal, whereas the approximation derived
from the analysis-of-variance dimensional decomposition (ADD) results inminimumerror for an arbitrary
truncation. The expected errors from the RDD approximations are at least four to eight times larger
than the errors from the ADD approximations. Therefore, further enhancements of decomposition-based
reliabilitymethods are possible by switching fromRDD to ADD approximations. For both approximations,
the decomposition can be truncated by an effective superposition dimension linked to respective
approximation errors.

© 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Structural reliability analyses employing multivariate function
approximations derived from dimensional decomposition [1]
and cut-high-dimensional model representation (cut-HDMR) [2]
have been reported by several researchers [1,3]. Both analyses
conducted exploit the dimensional hierarchy lurking behind a
probabilistic response, leading to accurate and efficient reliability
estimates. However, there exist a few fundamental questions
that remain unresolved: (1) Does there exist a relationship
between the function approximations resulting from dimensional
decomposition and cut-HDMR? If such a relationship exists,
what is it? (2) What are the approximation qualities resulting
from dimensional decomposition and cut-HDMR? Are they
better or worse than approximations generated from alternative
decompositions? How does one truncate such decompositions?
Answering the first set of questions should illuminate the
theoretical foundations of the reliability methods stemming from
dimensional decomposition and cut-HDMR. Exploring the second
set of questions should lead to error estimates and effective
dimensions in calculating theprobabilistic response characteristics
by various decomposition methods.

This paper presents new theoretical analyses and results per-
taining to dimensional decomposition that have important im-
plications for structural reliability analysis. Section 2 provides a
brief overview of dimensional decomposition of a multivariate
function, followed by its three variants: referential dimension de-
composition (RDD), cut-HDMR, and analysis-of-variance (ANOVA)
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dimensional decomposition (ADD). It presents new theorems and
a lemma, revealing the relationship between the RDD and cut-
HDMR approximations. Section 3 provides a new theorem for esti-
mating approximation errors by various decomposition methods.
Section 4 describes the effective dimension for truncating dimen-
sional decomposition. Finally, Section 5 presents conclusions.

2. Dimensional decomposition

Dimensional decomposition of a multivariate function is a
finite sum of simpler component functions of input variables
with increasing dimensions. This decomposition, first presented by
Hoeffding [4] in relation to his seminal work on U-statistics, has
been applied by many other researchers [5]: Sobol [6] used it in
the study of quadraturemethods, calling it the ‘‘decomposition into
summands of different dimensions’’ and also for ANOVA [7]; Efron
and Stein [8] used it to prove their famous lemma on jackknife
variances; Owen [9] presented a continuous space version of
the nested ANOVA; and Hickernell [10] developed a reproducing
kernel Hilbert space version. This decomposition has also been
examined by Rabitz and Alis [2] for HDMR, resulting in notable
contributions to function approximations [11,12], and recently, by
Xu and Rahman [1] for reliability analysis. Takemura [13] provides
a historical account, which reveals that the decomposition existed
as early as the 1940s.

Consider a continuous, differentiable, real-valued, multivariate
function y(x) that depends on x = {x1, . . . , xN}

T
∈ RN , where RN

is an N-dimensional, real vector space. The dimensional decompo-
sition represents a finite, hierarchical, convergent expansion of a
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multivariate output function [1,2,4,7,8]

y(x) = y0 +

N−
i=1

yi(xi) +

N−1−
i1=1

N−
i2=i1+1

yi1i2(xi1 , xi2) + · · ·

+

N−s+1−
i1=1

· · ·

N−
is=is−1+1

yi1···is(xi1 , . . . , xis) + · · ·

+ y12···N(x1, . . . , xN) (1)
in terms of input x with increasing dimensions, where y0 is a
constant and yi1···is : Rs

→ R, 1 ≤ s ≤ N , 1 ≤ i1 < · · · < is ≤ N ,
is an s-variate component function quantifying the cooperative
effects of s input variables xi1 , . . . , xis on y. If

ŷS(x) = y0 +

N−
i=1

yi(xi) +

N−1−
i1=1

N−
i2=i1+1

yi1 i2(xi1 , xi2) + · · ·

+

N−S+1−
i1=1

· · ·

N−
iS=iS−1+1

yi1···iS (xi1 , . . . , xiS ) (2)

represents a general S-variate approximation of y(x), then the
univariate (S = 1) and bivariate (S = 2) approximations, ŷ1(x) and
ŷ2(x), respectively, provide two- and three-term approximants of
the finite decomposition in Eq. (1). Similarly, trivariate and other
higher-variate approximations can be derived by appropriately
selecting the value of S ≤ N . The decomposition is useful only
when the component functions exhibit insignificant s-variate
effects cooperatively as s → N .

2.1. RDD approximation

Let c = {c1, . . . , cN}
T be a reference point of input x and

y(c1, . . . , ci1−1, xi1 , ci1+1, . . . , ciS−k−1, xiS−k , ciS−k+1, . . . , cN) repre-
sent an (S − k)th dimensional component function of y(x), where
S < N , k = 0, . . . , S, and 1 ≤ i1 < · · · < iS−k ≤ N . For example,
when S = 1, the zero-dimensional component function, which is
a constant, is y(c) and the one-dimensional component functions
are y(x1, c2, . . . , cN), y(c1, x2, . . . , cN), . . . , y(c1, c2, . . . , xN).

Theorem 1. For a multivariate function y(x) = y(x1, . . . , xN), if

ŷS,R(x) :=

S−
k=0

(−1)k

N − S + k − 1

k



×

N−
i1,...,iS−k=1;i1<···<iS−k

y(c1, . . . , ci1−1, xi1 , ci1+1, . . . ,

ciS−k−1, xiS−k , ciS−k+1, . . . , cN) (3)

represents an S-variate RDD approximation of y(x), then ŷS,R(x)
consists of all terms of the Taylor series expansion of y(x) at c that
have less than or equal to S variables, i.e.,

ŷS,R(x) =

S−
k=0

tk, (4)

where
t0 = y(c),

tk =

−
j1,...,jk

1
j1! · · · jk!

N−
i1,...,ik=1;i1<···<ik

∂ j1+···+jky

∂xj1i1 · · · ∂xjkik
(c)

× (xi1 − ci1)
j1 · · · (xik − cik)

jk; 1 ≤ k ≤ S.

(5)

Proof. See Xu and Rahman’s paper ([14], pp. 1996–2000), which
provides a proof when c = 0 without any loss of generality. The
method associated with the RDD approximation was simply called
‘‘decomposition method’’ by Xu and Rahman [1]. �
Remark 1. Theorem 1, defined as the multivariate function theo-
rem by Xu and Rahman [14], implies that the RDD approximation
ŷS,R(x) in Eq. (3), when compared with the Taylor series expansion
of y(x), yields a residual error that includes only terms of dimen-
sions S+1 and higher. All higher-order S- and lower-variate terms
of y(x) are included in Eq. (3), which should therefore generally
provide a higher-order approximation of a multivariate function
than equations derived from first- or second-order Taylor expan-
sions. See the works of Xu and Rahman [1,14] for further details.

2.2. Cut-HDMR approximation

An important feature of the approximation in Eq. (2) is the
selection of the constant y0 and component functions yi1···is
(xi1 , . . . , xis), 1 ≤ s ≤ S. By defining an error functional associated
with a given y(x) and an appropriate kernel function, an
optimization problem can be formulated and solved to obtain
the desired component functions. In particular, a decomposition
involving the Dirac measure

∏N
i=1 δ(xi − ci) at the reference

point c as the kernel function leads to the S-order cut-HDMR
approximation [2]

ŷS,cut-HDMR(x) = yR0 +

N−
i=1

yRi (xi) +

N−1−
i1=1

N−
i2=i1+1

yRi1 i2(xi1 , xi2) + · · ·

+

N−S+1−
i1=1

· · ·

N−
iS=iS−1+1

yRi1···iS (xi1 , . . . , xiS ) (6)

of y(x), where

yR0 := y(c)
yRi (xi) := y(c1, . . . , ci−1, xi, ci+1, . . . , cN) − yR0
yRi1 i2(xi1 , xi2)

:= y(c1, . . . , ci1−1, xi1 , ci1+1, . . . , ci2−1, xi2 , ci2+1, . . . , cN)

− yRi1(xi1) − yRi2(xi2) − yR0
...

yRi1···iS (xi1 , . . . , xiS )
:= y(c1, . . . , ci1−1, xi1 , ci1+1, . . . , ciS−1, xiS , ciS+1, . . . , cN)

−

−
j1<···<jS−1⊂{i1,...,iS }

yRj1···jS−1
(xj1 , . . . , xjS−1)

−

−
j1<···<jS−2⊂{i1,...,iS }

yRj1···jS−2
(xj1 , . . . , xjS−2)

− · · · −

−
j⊂{i1,...,iS }

yRj (xj) − yR0

(7)

appears as Eq. (49) in the paper by Rabitz and Alis [2]. Note
that ŷS,R(x) from the RDD approximation and ŷS,cut-HDMR(x) from
the cut-HDMR approximation both follow the same structure, as
shown in Eq. (2). However, due to distinct perspectives involved in
developing the RDD and cut-HDMR approximations, it is unclear if
a relationship exists between Eq. (3) and Eqs. (6), (7). Finding this
relationship – a principal objective of this study – should provide
important insights into the reliability methods rooted in RDD and
cut-HDMR.

2.3. Relationship between RDD and cut-HDMR approximations

In this subsection, a new theorem and lemma, also proven
herein, are presented to provide rigorous proof that indeed Eq.
(3) and Eqs. (6), (7) lead to identical function approximations, as
follows.

Lemma. For any positive integers N, S < N, and 0 ≤ k ≤ S,

S−
k=0

(−1)k

N
k


= (−1)S


N − 1

S


. (8)
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Proof. Setting S = 1, the left and right sides of Eq. (8) are both
equal to 1 − N , satisfying the basic step. For the inductive step,
replace S with S + 1 in the left side of Eq. (8), yielding

S+1−
k=0

(−1)k

N
k


=

S−
k=0

(−1)k

N
k


+ (−1)S+1


N

S + 1


= (−1)S


N − 1

S


+ (−1)S+1


N

S + 1


= (−1)S+1

[
−


N − 1

S


+


N

S + 1

]
= (−1)S+1


N − 1
S + 1


, (9)

where the last line follows from the Pascal’s rule. Therefore, the
lemma is proved by induction. �

Theorem 2. For any positive integers N, S < N, the S-order cut-
HDMR approximation ŷS,cut-HDMR(x) of y(x), where the component
functions are defined in Eq. (7), is the same as the S-variate RDD
approximation ŷS,R(x), i.e., ŷS,cut-HDMR(x) = ŷS,R(x).

Proof. Substituting the component functions from Eq. (7) into (6)
yields

ŷS,cut-HDMR(x)

= y(c) +

N−
i=1

[y(c1, . . . , ci−1, xi, ci+1, . . . , cN) − y(c)]

+

N−1−
i1=1

N−
i2=i1+1


y(c1, . . . , ci1−1, xi1 , ci1+1, . . . , ci2−1, xi2 ,

ci2+1, . . . , cN) − yRi1(xi1) − yRi2(xi2) − y(c)


+ · · ·

+

N−S+1−
i1=1

· · ·

N−
iS=iS−1+1


y(c1, . . . , ci1−1, xi1 , ci1+1, . . . ,

ciS−1, xiS , ciS+1, . . . , cN)

−

−
j1<···<jS−1⊂{i1,...,iS }

yRj1···jS−1
(xj1 , . . . , xjS−1)

−

−
j1<···<jS−2⊂{i1,...,iS }

yRj1···jS−2
(xj1 , . . . , xjS−2) − · · ·

−

−
j⊂{i1,...,iS }

yRj (xj) − y(c)


, (10)

which, after rearrangement of terms, results in

ŷS,cut-HDMR(x) =

N−S+1−
i1=1

· · ·

N−
iS=iS−1+1

y(c1, . . . , ci1−1, xi1 , ci1+1, . . . ,

ciS−1, xiS , ciS+1, . . . , cN) + [1 − (N − S + 1)]

×

N−S+2−
i1=1

· · ·

N−
iS−1=iS−2+1

y(c1, . . . , ci1−1, xi1 ,

ci1+1, . . . , ciS−1−1, xiS−1 , ciS−1+1, . . . , cN) + · · ·

+


1 − N +

N(N − 1)
2

− · · ·

+ (−1)S
N(N − 1) · · · (N − S + 1)

S!


y(c)
= (−1)0
N−S+1−
i1=1

· · ·

N−
iS=iS−1+1

y(c1, . . . , ci1−1, xi1 ,

ci1+1, . . . , ciS−1, xiS , ciS+1, . . . , cN)

+ (−1)1

N − S

1


×

N−S+2−
i1=1

· · ·

N−
iS−1=iS−2+1

y(c1, . . . ,

ci1−1, xi1 , ci1+1, . . . , ciS−1−1, xiS−1 , ciS−1+1, . . . , cN)

+ · · · +

S−
k=0

(−1)k

N
k


y(c). (11)

Using the lemma, i.e., Eq. (8),

ŷS,cut-HDMR(x) = (−1)0
N−S+1−
i1=1

· · ·

N−
iS=iS−1+1

y(c1, . . . , ci1−1, xi1 ,

ci1+1, . . . , ciS−1, xiS , ciS+1, . . . , cN)

+ (−1)1

N − S

1


×

N−S+2−
i1=1

· · ·

N−
iS−1=iS−2+1

y(c1, . . . ,

ci1−1, xi1 , ci1+1, . . . , ciS−1−1, xiS−1 , ciS−1+1, . . . , cN)

+ · · · + (−1)S

N − 1

S


y(c)

=

S−
k=0

(−1)k

N − S + k − 1

k



×

N−
i1,...,iS−k=1;i1<···<iS−k

y(c1, . . . , ci1−1, xi1 ,

ci1+1, . . . , ciS−k−1, xiS−k , ciS−k+1, . . . , cN)

=: ŷS,R(x), (12)

which proves the theorem for an arbitrary S < N . �

Remark 2. Although the RDD and cut-HDMR approximations are
equivalent, the former was developed independently and from a
completely different perspective. Xu and Rahman [14] provided
rigorous proof of themultivariate function decomposition theorem
(Theorem 1) and a generalized formulation that cannot be found in
the HDMR literature.

Remark 3. If the input is random, say, an N-dimensional random
vector X = {X1, . . . , XN}

T
∈ RN , then the output response y(X) is

also random. When S = 1 and S = 2, Eq. (3) or (6) degenerates to
the univariate RDD approximation

ŷ1,R(X) = ŷ1,cut-HDMR(X)

=

N−
i=1

y(c1, . . . , ci−1, Xi, ci+1, . . . , cN) − (N − 1)y(c) (13)

and the bivariate RDD approximation

ŷ2,R(X) = ŷ2,cut-HDMR(X)

=

N−1−
i1=1

N−
i2=i1+1

y(c1, . . . , ci1−1, Xi1 , ci1+1, . . . , ci2−1,

Xi2 , ci2+1, . . . , cN) − (N − 2)
N−
i=1

y(c1, . . . , ci−1,

Xi, ci+1, . . . , cN) +
(N − 1)(N − 2)

2
y(c), (14)

respectively. Structural reliability analyses involving y(X) as a
performance function and employing its surrogates ŷ1,R(X) or
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ŷ2,R(X) and ŷ1,cut-HDMR(X) or ŷ2,cut-HDMR(X), as conducted byXu and
Rahman [1] and Chowdhury and Rao [3], respectively, are nearly
identical. The only difference is the use of moving least-squares
approximation [3] as opposed to Lagrange interpolation [1] to
approximate the component functions of the decomposition.
Otherwise, the reliability method stemming from the cut-HDMR
approximation is precisely the same as the reliability method
rooted in the RDD approximation.

Remark 4. Since the right side of Eq. (13) comprises only
univariate functions, the interpolation or integration of ŷ1,R(X) is
essentially univariate. Similarly, the right side of Eq. (14), which
contains at most bivariate functions, requires at most bivariate
interpolation or integration of ŷ2,R(X). Therefore, appellation of
the terms ‘‘univariate decomposition method’’ and ‘‘bivariate
decompositionmethod’’ for approximations resulting from ŷ1,R(X)
in Eq. (13) and ŷ2,R(X) in Eq. (14), respectively, is more appropriate
than referring to them as first-order and second-order methods.
Note that the component functions embedded in the expressions
of ŷ1,R(X) and/or ŷ2,R(X) are generally nonlinear. Moreover, a
univariate or bivariate approximation may contain very high-
order (i.e., higher than first- or second-order) terms, depending on
the nonlinearity of the response. Therefore, characterizing these
approximations by first- and second-order methods is confusing
and possibly inaccurate based on the traditional definition of the
order of a function.

3. Error analysis

3.1. ADD approximation

If X comprises independent components Xj with marginal
probability density functions fj(xj), j = 1, . . . ,N , then by defining
its joint probability density function fX (x) =

∏j=N
j=1 fj(xj) as

the kernel of error minimization results in the S-variate ADD
approximation [7]

ŷS,A(x) = yA0 +

N−
i=1

yAi (xi) +

N−1−
i1=1

N−
i2=i1+1

yAi1 i2(xi1 , xi2) + · · ·

+

N−S+1−
i1=1

· · ·

N−
iS=iS−1+1

yAi1···iS (xi1 , . . . , xiS ) (15)

of y(x), where the constant yA0 and component functions yAi1···iS (xi1 ,
. . . , xiS ), S = 1, . . . ,N , defined by

yA0 :=

∫
RN

y(x)fX (x)dx

yAi (xi) :=

∫
RN−1

y(x)
∏
j≠i

fj(xj)dxj − yA0

yAi1 i2(xi1 , xi2)

:=

∫
RN−2

y(x)
∏

j≠[i1,i2]

fj(xj)dxj − yAi1(xi1) − yAi2(xi2) − yA0

...

yAi1···iS (xi1 , . . . , xiS ) :=

∫
RN−S

y(x)
∏

j≠[i1,...,iS ]

fj(xj)dxj

−

−
j1<···<jS−1⊂{i1,...,iS }

yAj1···jS−1
(xj1 , . . . , xjS−1)

−

−
j1<···<jS−2⊂{i1,...,iS }

yAj1···jS−2
(xj1 , . . . , xjS−2)

− · · · −

−
j⊂{i1,...,iS }

yAj (xj) − yA0,

(16)
also form the same structure of Eq. (2). If E is the expectation
operator with respect to fX (x), then two important properties
of the ANOVA decomposition required for uniquely defining its
component functions are as follows.

Property 1. The ANOVA component functions yAi1···is(Xi1 , . . . , Xis),
s = 1, . . . ,N, have zero means, i.e.,

E

yAi1···is(Xi1 , . . . , Xis)


:=

∫
RN

yAi1···is(xi1 , . . . , xis)fX (x)dx = 0. (17)

Property 2. Two distinct ANOVA component functions yAi1···is(Xi1 ,

. . . , Xis) and yAi1···it (Xi1 , . . . , Xit ), where 1 ≤ s ≤ N and 1 ≤

t ≤ N are two distinct integers, are uncorrelated, i.e., they satisfy the
orthogonality property

E

yAi1···is(Xi1 , . . . , Xis)y

A
i1···it (Xi1 , . . . , Xit )


:=

∫
RN

yAi1···is(xi1 , . . . , xis)y
A
i1···it (xi1 , . . . , xit )fX (x)dx = 0. (18)

Traditionally, Eqs. (15) and (16) with Xj, j = 1, . . . ,N , following
independent, standard uniform distributions, have been identified
as the ANOVA decomposition [7] or ANOVA-HDMR [2]; however,
the author’s recent work [15] reveals no fundamental requirement
for a specific probability measure of X , provided that the resultant
integrals in Eq. (16) exist and are finite. It is important to note that
no orthogonality property exists in the RDD component functions
for an arbitrary distribution of X .

3.2. Second-moment errors

The S-variate (S < N) approximations from RDD and ADD both
represent sums of lower-dimensional component functions of
y(X). An obvious question is how to quantify the errors in calcu-
lating the statistical moments (e.g., variance) of y(X) by employ-
ing these two approximations. The ADD has desirable orthogonal
properties, but the ANOVA component functions are difficult to
compute due to the high-dimensional integrals involved. The RDD
is theoretically less attractive, but the component functions are
much easier to obtain. Nonetheless, one must be able to estimate
the errors from both approximations and determine if one is bet-
ter than the other. For RDD, an additional question arises regard-
ing the reference point, which, if improperly selected, can spoil the
approximation.

3.2.1. ADD approximation error
Applying the expectation operator on y(X) and ŷS,A(X) from

Eqs. (1) and (15), respectively, and noting Property 1, the mean
E


ŷS,A(X)


= yA0 of the S-variate ADD approximation matches

the exact mean E [y(X)] :=


RN y(x)fX (x)dx = yA0 , regardless
of S. Applying the expectation operator again, this time on
ŷS,A(X) − yA0

2, and recognizing Property 2 results in the variance

σ̂ 2
S,A := E


ŷS,A(X) − yA0

2
=

N−
i=1

σ 2
i +

N−1−
i1=1

N−
i2=i1+1

σ 2
i1i2 + · · ·

+

N−S+1−
i1=1

· · ·

N−
iS=iS−1+1

σ 2
i1···iS (19)

of the S-variate ADDapproximation,whereσ 2
i1···iS

= E
[

yAi1···iS (Xi1 ,

. . . , XiS )
2

]
represents the corresponding contribution to the
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partial sum of variance terms. Clearly, the approximate variance
in Eq. (19) approaches the exact variance

σ 2
:= E


y(X) − yA0

2
=

N−
i=1

σ 2
i +

N−1−
i1=1

N−
i2=i1+1

σ 2
i1 i2 + · · ·

+

N−s+1−
i1=1

· · ·

N−
is=is−1+1

σ 2
i1···is + · · · + σ 2

12···N , (20)

the total sum of variance terms, when S → N . The mean-square
convergence of ŷS,A is guaranteed as y and its component functions
are all members of the associated Hilbert spaces.

Define an error

eS,A := E


y(X) − ŷS,A(X)
2

=

∫
RN


y(x) − ŷS,A(x)

2 fX (x)dx, (21)

representing the second moment of the difference between y(X)

and ŷS,A(X). Replacing y and ŷS,A in Eq. (21) with the right sides
of Eqs. (1) and (15), respectively, and then recognizing both
Properties 1 and 2 yields the ADD error

eS,A =

N−S−
i1=1

· · ·

N−
iS+1=iS+1

σ 2
i1···iS+1

+ · · · + σ 2
12···N , (22)

which completely eliminates the variance terms associated with
S- and all lower-variate contributions, an attractive property of the
ANOVA decomposition. By setting S = 1, 2, . . . , the error can be
easily determined for any truncation of ADD. For instance, when
N = 3, the errors from the univariate (S = 1) and bivariate (S =2)
ADD approximations become

e1,A =

2−
i1=1

3−
i2=i1+1

σ 2
i1 i2 + σ 2

123 = σ 2
12 + σ 2

13 + σ 2
23 + σ 2

123 (23)

and

e2,A = σ 2
123, (24)

respectively.
Consider a generic S-variate approximation ŷS(x) of y(x) other

than the ANOVA approximation ŷS,A(x). Since y(x) − ŷS,A(x) only
contains higher than S-variate terms and ŷS,A(x) − ŷS(x) contains
at most S-variate terms, the random variables y(X) − ŷS,A(X) and
ŷS,A(X)− ŷS(X) are uncorrelated, i.e., E[(y(X)− ŷS,A(X))(ŷS,A(X)−

ŷS(X))] = 0. Therefore, the second-moment error from any
S-variate approximation is

eS := E


y(X) − ŷS(X)
2

= E


y(X) − ŷS,A(X)
2

+ E


ŷS,A(X) − ŷS(X)
2

= eS,A + E


ŷS,A(X) − ŷS(X)
2

≥ eS,A, (25)

i.e., the S-variate ADD approximation is optimal. In other words,
the approximation error derived from an RDD, regardless of how
the reference point is selected, will always be equal to or greater
than the ANOVA approximation error. Further details of the RDD
approximation error are described as follows.
3.2.2. RDD approximation error
Following similar consideration, define another error

eS,R := E


y(X) − ŷS,R(X)
2

=

∫
RN


y(x) − ŷS,R(x)

2 fX (x)dx (26)

associatedwith the S-variate RDD approximation ŷS,R(X). Employ-
ing Theorem 1, i.e., Eq. (3) to replace ŷS,R in Eq. (26), produces

eS,R =

∫
RN


y(x) −

S−
k=0

(−1)k

N − S + k − 1

k



×

N−
i1,...,iS−k=1;i1<···<iS−k

y(c1, . . . , ci1−1, xi1 , ci1+1, . . . ,

ciS−k−1, xiS−k , ciS−k+1, . . . , cN)
2 fX (x)dx, (27)

which depends on the reference point c . Wang [16] suggested
choosing a random reference point uniformly distributed over
[0, 1]N and then calculating the error on average. But, X defined
here may follow an arbitrary probability distribution fX (x);
therefore, selecting the reference point characterized by the
probability density fX (c) is more appropriate, which leads to

E

eS,R


=

∫
RN

eS,RfX (c)dc

=

∫
R2N


y(x) −

S−
k=0

(−1)k

N − S + k − 1

k



×

N−
i1,...,iS−k=1;i1<···<iS−k

y(c1, . . . , ci1−1, xi1 , ci1+1, . . . ,

ciS−k−1, xiS−k , ciS−k+1, . . . , cN)
2 fX (x)fX (c)dxdc, (28)

as the expected value of the RDD error. Simplifying Eq. (28) in
terms of the variance components for an arbitrary S and/or N is
a formidable task. Instead, an adequately small value of N = 3 was
selected to derive explicit expressions of the expected errors from
the univariate (S = 1) and bivariate (S = 2) RDD approximations
as follows.

Theorem 3. For N = 3, S = 1 or 2, if the joint probability density
of the reference point is fX (c) =

∏j=3
j=1 fj(cj), where fj(cj) is the

marginal density of its jth coordinate, then the expected errors from
the univariate and bivariate RDD approximations are

E

e1,R


= 4


σ 2
12 + σ 2

13 + σ 2
23


+ 8σ 2

123 (29)

and

E

e2,R


= 8σ 2

123, (30)

respectively, where σ 2
i1 i2

= E
[

yAi1i2(Xi1 , Xi2)
2

]
, i1 = 1, 2, 3,

i2 = i1 + 1, . . . , 3, and σ 2
123 = E


yA123(X1, X2, X3)

2.
Proof. Setting N = 3 in Eq. (26) and noting independent
coordinates of X ,

eS,R =

∫
R3


y(x1, x2, x3) − ŷS,R(x1, x2, x3)

2 3∏
i=1

fi(xi)dxi. (31)

Expanding the square inside the integral of Eq. (31) and then
integrating both sides with respect to the reference point with
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density fX (c) =
∏j=3

j=1 fj(cj) over R3,

E

eS,R


=

∫
R6

y2(x1, x2, x3)
3∏

i=1

fi(xi)dxi
3∏

j=1

fj(cj)dcj

+

∫
R6

ŷ2S,R(x1, x2, x3)
3∏

i=1

fi(xi)dxi
3∏

j=1

fj(cj)dcj

− 2
∫

R6
y(x1, x2, x3)ŷS,R(x1, x2, x3)

×

3∏
i=1

fi(xi)dxi
3∏

j=1

fj(cj)dcj. (32)

The first term on the right side of Eq. (32) expressed in terms of the
variance components,∫

R6
y2(x1, x2, x3)

3∏
i=1

fi(xi)dxi
3∏

j=1

fj(cj)dcj = σ 2
+


yA0

2
= σ 2

1 + σ 2
2 + σ 2

3 + σ 2
12 + σ 2

13 + σ 2
23 + σ 2

123 +

yA0

2
, (33)

is independent of S. However, similar expressions of the remaining
terms depend on S and require exploiting Sobol’s formula [17],−
v⊆u

σ 2
v =

∫
R6−|u|

y(x1, x2, x3)y(xu, c−u)

×

3∏
i=1

fi(xi)dxi
∏
j⊆−u

fj(cj)dcj −

yA0

2
, (34)

for their derivations, where ∅ ≠ u ⊆ {1, . . . , 3} is an arbitrary
subset with the complementary set −u and cardinality 1 ≤ |u| ≤

3 and (xu, c−u) denotes a three-dimensional vector whose ith
component is xi if i ∈ u and is ci if i ∉ u. Setting S = 1 (or S = 2),
replacing ŷ1,R (or ŷ2,R) with the right side of Eq. (13) (or Eq. (14)) for
N = 3, and then employing Sobol’s formula (Eq. (34)) for u = {j},
u = −{j}, and u = −{i, j}, where i = 1, 2, 3 and j = 1, 2, 3, the
second and third terms on the right side of Eq. (32) respectively
become∫

R6
ŷ21,R(x1, x2, x3)

3∏
i=1

fi(xi)dxi
3∏

j=1

fj(cj)dcj

= σ 2
1 + σ 2

2 + σ 2
3 + 3


σ 2
12 + σ 2

13 + σ 2
23


+ 7σ 2

123 +

yA0

2
(35)

and

− 2
∫

R6
y(x1, x2, x3)ŷ1,R(x1, x2, x3)

3∏
i=1

fi(xi)dxi
3∏

j=1

fj(cj)dcj

= −2

σ 2
1 + σ 2

2 + σ 2
3 +


yA0

2
(36)

for S = 1 and∫
R6

ŷ22,R(x1, x2, x3)
3∏

i=1

fi(xi)dxi
3∏

j=1

fj(cj)dcj

= σ 2
1 + σ 2

2 + σ 2
3 + σ 2

12 + σ 2
13 + σ 2

23 + 7σ 2
123 +


yA0

2
(37)

and

− 2
∫

R6
y(x1, x2, x3)ŷ2,R(x1, x2, x3)

3∏
i=1

fi(xi)dxi
3∏

j=1

fj(cj)dcj

= −2

σ 2
1 + σ 2

2 + σ 2
3 + σ 2

12 + σ 2
13 + σ 2

23 +

yA0

2
(38)
for S = 2. Adding all variance terms in Eqs. (33), (35) and (36)
and Eqs. (33), (37) and (38) yields Eqs. (29) and (30), respectively.
Hence, the theorem is proven. �

Remark 5. Theorem 3 demonstrates that on average the error
from the S-variate RDD approximation eliminates the variance
terms associated with the S- and all lower-variate contributions.
The S-variate ADD approximation also satisfies this important
property. However, the coefficients of higher-variate terms in the
RDD error are larger than unity, implying greater errors from the
RDD approximations than from the ADD approximations.

Remark 6. Comparing Eqs. (23) and (29), the expected error from
the univariate RDD approximation is at least four times larger than
the error from the univariate ADD approximation. In contrast, Eqs.
(24) and (30) reveal the expected error from the bivariate RDD
approximation to be eight times larger than the error from the
bivariate ADD approximation. The factor by which the expected
RDD error is larger than the ADD error rises quickly with respect
to the truncation S.

Remark 7. Theorem 3 and Remarks 1 and 2 are strictly valid
when N = 3. For N > 3, the errors from the univariate
and bivariate RDD or ADD approximations will have additional
terms, including higher-variate contributions. Nonetheless, the
error analysis presented here is adequate for obtaining the lower
bounds, i.e.,

E

e1,R


≥ 4e1,A (univariate),

E

e2,R


≥ 8e2,A (bivariate),

(39)

which are useful for weighing the RDD approximations with
respect to the ADD approximations for an arbitrarily large number
of random variables.

For a general stochastic response with arbitrary N and S < N ,
no simple expression exists for the expected error from the S-
variate RDD approximation. However, if the response function is
separable, admitting a multiplicative decomposition of functions
of random variables, then a simple expression for the expected
error is still possible [16]. Unfortunately, it is of little value as most
responses cannot be described by separable functions.

4. Truncation of dimensional decomposition

When employing dimensional decomposition for stochastic
analysis, an important decision is how to select the truncation
parameter S for approximating the performance function y(X).
For square-integrable performance functions, the truncation can
be achieved by employing the notion of an effective dimension.
Caflisch et al. [18] were the first to formally define two such
effective dimensions, exploiting a low effective dimension to
explain why the quasi-Monte Carlo method beats the crudeMonte
Carlo algorithm for evaluating a certain class of high-dimensional
integrals.

4.1. Effective dimension

Let ∅ ≠ u ⊆ {1, . . . ,N} be a subset with the complementary
set −u = {1, . . . ,N} − u and cardinality 1 ≤ |u| ≤ N . If yAu(Xu)
is a |u|-variate, zero-mean ANOVA component function describing
the cooperative influence of Xu, a subvector of X , on y, then its
component variance is σ 2

u = E


yAu(Xu)
2. The following two

notions of effective dimension derived from ADD were introduced
by Caflisch et al. [18].

Definition 1. The function y has effective dimension Ss ≤ N in
the superposition sense, henceforth denoted as the superposition
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dimension, if

Ss := min


S : 1 ≤ S ≤ N such that

−
1≤|u|≤S

σ 2
u ≥ pσ 2


(40)

and the function y has effective dimension St ≤ N in the truncation
sense, henceforth denoted as the truncation dimension, if

St := min


S : 1 ≤ S ≤ N such that

−
u⊆{1,...,S}

σ 2
u ≥ pσ 2


, (41)

where σ 2
:= E


y(X) − yA0

2 is the total variance and 0 ≤ p ≤ 1
is a percentile threshold close to one.

Both definitions capture the notion in which y is almost Ss- or
St-dimensional. Caflisch et al. [18] used the 99th percentile
for p, but it can be treated as a threshold parameter linked
to the desired accuracy of a stochastic solution. The relevance
of the truncation or superposition dimension depends on the
nature of the performance function. The former signifies the
number of important random variables and is appropriate when
some variables are more important than others in an ordered
set. In contrast, the latter determines whether the low-variate
component functions of dimensional decomposition dominate
the function and is appropriate when all variables are equally
important. For truly high-dimensional problems, all variables
contribute to a function value; therefore, the superposition
dimension is more useful than the truncation dimension.

4.2. Superposition dimension

Note that definitions of effective dimensions in Eqs. (40) and
(41) can be generalized for any dimensional decomposition, in-
cluding RDD. Furthermore, it is possible to link the effective su-
perposition dimension to the second-moment errors introduced in
the preceding section. To do so, consider the errors eS,A andE


eS,R


associated with the S-variate ADD and RDD approximations, re-
spectively, of y(X). An alternative set of definitions of the effective
superposition dimension is as follows.

Definition 2. The function y represented by ADD has effective
superposition dimension Ss,A ≤ N if

Ss,A := min

S : 1 ≤ S ≤ N such that eS,A ≤ (1 − p)σ 2 (42)

and the function y represented by RDD has effective superposition
dimension Ss,R ≤ N if

Ss,R := min

S : 1 ≤ S ≤ N such that E


eS,R


≤ (1 − p)σ 2 . (43)

Remark 8. For the ADD approximation, the ANOVA component
functions satisfy desirable theoretical properties (Properties 1
and 2). In that case, the variance terms simplify, for instance,∑

1≤|u|≤S σ 2
u = σ̂ 2

S,A, which is the S-variate ADD approximation of
the variance in Eq. (19). Comparing Eqs. (19), (20) and (22), eS,A =

σ 2
−σ̂ 2

S,A. Therefore, the definitions of the superposition dimension
expressed by Eqs. (40) and (42) are equivalent. No such analogy
exists for RDD or other variants of dimensional decomposition.

The error analysis and effective dimensions presented in this
paper pertain to only second-moment characteristics of y(X).
Similar analyses or definitions aimed at higher-order moments
or probability distribution of y can be envisioned, but no closed-
form solutions and simple expressions are possible. However, if
y satisfies the requirements of the Chebyshev inequality or its
descendants – a condition fulfilled by many realistic performance
functions – then the results and findings from Sections 3 and 4
provide useful information that can be effectively exploited for
decomposition-based reliability analysis.
5. Conclusions

This paper presents a new theorem and lemma, also proven
herein, to demonstrate that the truncations of RDD and cut-
HDMR, which can be selected arbitrarily, lead to identical function
approximations. Although RDD and cut-HDMR approximations
are equivalent, the former was developed independently and
from a completely different perspective, including a generalized
formulation that cannot be found in the HDMR literature. The
importance of this finding is that the reliability method stemming
from the cut-HDMR approximation is precisely the same as the
reliability method rooted in the RDD approximation.

A second-moment error analysis, generating an additional new
theorem and its proof, was conducted to compare the RDD and
ADD approximations. The analysis finds the ADD approximation
to be optimal, resulting in minimum error and, therefore, reveal-
ing the superiority of ADD over RDD approximations for an arbi-
trary truncation of the decomposition. On average the error from
the univariate RDD approximation is at least four times larger than
the error from the univariate ADD approximation. In contrast, the
expected error from the bivariate RDD approximation is at least
eight times larger than the error from the bivariate ADD approx-
imation. Therefore, the accuracy of existing decomposition-based
reliability methods should improve significantly by replacing RDD
with ADD approximations. For both approximations, the decom-
position can be truncated by an effective superposition dimension
linked to respective approximation errors.
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