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a b s t r a c t

This paper presents a novel hybrid polynomial dimensional decomposition (PDD) method for stochastic
computing in high-dimensional complex systems. When a stochastic response does not possess
a strongly additive or a strongly multiplicative structure alone, then the existing additive and
multiplicative PDD methods may not provide a sufficiently accurate probabilistic solution of such a
system. To circumvent this problem, a new hybrid PDD method was developed that is based on a linear
combination of an additive and a multiplicative PDD approximation, a broad range of orthonormal
polynomial bases for Fourier-polynomial expansions of component functions, and a dimension-
reduction or sampling technique for estimating the expansion coefficients. Two numerical problems
involving mathematical functions or uncertain dynamic systems were solved to study how and when a
hybrid PDD is more accurate and efficient than the additive or the multiplicative PDD. The results show
that the univariate hybrid PDD method is slightly more expensive than the univariate additive or
multiplicative PDD approximations, but it yields significantly more accurate stochastic solutions than the
latter two methods. Therefore, the univariate truncation of the hybrid PDD is ideally suited to solving
stochastic problems that may otherwise mandate expensive bivariate or higher-variate additive or
multiplicative PDD approximations. Finally, a coupled acoustic-structural analysis of a pickup truck
subjected to 46 random variables was performed, demonstrating the ability of the new method to solve
large-scale engineering problems.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Polynomial dimensional decomposition (PDD) is a hierarchical
and convergent expansion of a general, high-dimensional stochastic
response function in terms of polynomial functions of input variables
with increasing dimensions [1–4]. The decomposition ameliorates
the curse of dimensionality [5] to some extent by developing an
input–output behavior of complex systems with low effective
dimensions [6], wherein the degrees of interactions between input
variables attenuate rapidly or vanish altogether. However, the
original PDD, referred to as the additive PDD (A-PDD) in this paper,
constitutes a sum of lower-dimensional component functions and
is, therefore, predicated on an additive nature of a multivariate
function decomposition. In contrast, when a response function is of
a multiplicative nature, suitable multiplicative-type decompositions,
such as the factorized PDD (F-PDD) [7], should be explored. None-
theless, A-PDD or F-PDD is relevant as long as the dimensional

hierarchy of a stochastic response is also additive or multiplicative.
Unfortunately, the dimensional structure of a response function, in
general, is not known a priori. Therefore, indiscriminately using A-
PDD or F-PDD for general stochastic analysis is not desirable. Further
complications may arise when a complex system exhibits a response
that is dominantly neither additive nor multiplicative. In the latter
case, hybrid approaches coupling both additive and multiplicative
decompositions, preferably selected optimally, are needed. For such
decompositions, it is unknown which truncation parameter should
be selected when compared with that for A-PDD or F-PDD. More
specifically, is it possible for the univariate truncation of a hybrid
decomposition to produce stochastic solutions that are as good as or
close to those obtained from higher-variate truncations of A-PDD or
F-PDD? If the answer is yes, then a significant cost saving for high-
dimensional uncertainty quantification is anticipated. That is the
principal motivation of this work.

This paper presents a new hybrid PDD method for solving
general high-dimensional stochastic problems commonly encoun-
tered in engineering and applied sciences. Section 2 provides a
brief exposition of the existing additive and multiplicative PDD
approximations, setting the stage for the new method developed.
The hybrid PDD method, optimally blending A-PDD and F-PDD
approximations, is described in Section 3 along with the second-
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moment properties of the resultant approximation. Section 4
focuses on the univariate hybrid approximation, resulting in
explicit formulae for the hybrid model parameters and second-
moment statistics. The mean-squared error analyses pertaining to
univariate A-PDD, F-PDD, and hybrid PDD approximations are also
discussed. Section 5 explains dimension-reduction integration and
the quasi-Monte Carlo method for calculating the PDD expansion
coefficients. Section 6 presents two numerical examples for
illustrating the accuracy, efficiency, and convergence properties
of the hybrid PDD method. In Section 7, a large, complex
engineering problem, entailing coupled acoustic-structural
analysis of a pickup truck, is solved using the hybrid PDD method.
Finally, conclusions are drawn in Section 8.

2. Polynomial dimensional decomposition

Let N, N0, R, and Rþ
0 represent the sets of positive integer

(natural), non-negative integer, real, and non-negative real num-
bers, respectively. For kAN, denote by Rk the k-dimensional
Euclidean space, by Nk

0 the k-dimensional multi-index space, and
by Rk�k the set of k� k real-valued matrices. These standard
notations will be used throughout the paper.

Let ðΩ;F ; PÞ be a complete probability space, where Ω is a
sample space, F is a σ-field on Ω, and P : F-½0;1� is a probability
measure. With BN representing the Borel σ-field on RN , NAN,
consider an RN-valued random vector X≔ðX1;…;XNÞ : ðΩ;F Þ-
ðRN ;BNÞ, which describes the statistical uncertainties in all system
and input parameters of a high-dimensional stochastic problem.
The probability law of X is completely defined by its joint prob-
ability density function f X : RN-Rþ

0 . Assuming independent coor-
dinates of X, its joint probability density f XðxÞ ¼Π i ¼ N

i ¼ 1 f iðxiÞ is
expressed by a product of marginal probability density functions fi
of Xi, i¼1,…,N, defined on the probability triple ðΩi;F i; PiÞ with a
bounded or an unbounded support on R. For a given uDf1;…;Ng,
f X� u

ðx�uÞ≔∏N
i ¼ 1;i=2uf iðxiÞ defines the marginal density function of

X�u≔Xf1;…;Ng\u.
Let yðXÞ≔yðX1;…;XN), a real-valued, measurable transforma-

tion on ðΩ;F Þ, define a high-dimensional stochastic response of
interest and L2ðΩ;F ; PÞ represent a Hilbert space of square-
integrable functions ywith respect to the induced generic measure
f XðxÞ dx supported on RN . The ANOVA dimensional decomposition
(ADD), expressed by the recursive form [8–10]

yðXÞ ¼ ∑
uD f1;…;Ng

yuðXuÞ; ð1Þ

y∅ ¼
Z
RN
yðxÞf XðxÞ dx; ð2Þ

yuðXuÞ ¼
Z
RN� juj

yðXu; x�uÞf X� u
ðx�uÞ dx�u� ∑

v � u
yvðXvÞ; ð3Þ

is a finite, hierarchical expansion in terms of its input variables
with increasing dimensions, where uDf1;…;Ng is a subset with
the complementary set �u¼ f1;…;Ng\u and cardinality
0r jujrN, and yu is a juj-variate component function describing
a constant or the interactive effect of Xu ¼ ðXi1 ;…;Xijuj Þ,
1r i1o⋯o ijujrN, a subvector of X, on y when juj ¼ 0 or
juj40. The summation in Eq. (1) comprises 2N terms, with each
term depending on a group of variables indexed by a particular
subset of f1;…;Ng, including the empty set ∅. In Eq. (3), ðXu; x�uÞ
denotes an N-dimensional vector whose ith component is Xi if iAu
and xi if i=2u: When u¼∅, the sum in Eq. (3) vanishes, resulting in
the expression of the constant function y∅ in Eq. (2). When
u¼ f1;…;Ng, the integration in Eq. (3) is on the empty set,
reproducing Eq. (1) and hence finding the last function yf1;…;Ng.

Indeed, all component functions of y can be obtained by inter-
preting literally Eq. (3).

The ADD component functions yu, uDf1;…;Ng, are uniquely
determined from the annihilating conditions [8–10],Z
R

yuðxuÞf iðxiÞ dxi ¼ 0 for iAu; ð4Þ

resulting in two remarkable properties: (1) the component func-
tions, yu, ∅auDf1;…;Ng, have zero means; and (2) two distinct
component functions yu and yv, where uDf1;…;Ng, vDf1;…;Ng,
and uav, are orthogonal [10]. However, the ADD component
functions are difficult to obtain because they require calculation of
high-dimensional integrals.

2.1. Additive PDD

Let fψ ijðXiÞ; j¼ 0;1;…g be a set of orthonormal polynomial basis
functions in the Hilbert space L2ðΩi;F i; PiÞ that is consistent with
the probability measure Pi of Xi. For a given ∅au¼ fi1;…; ijujgD
f1;…;Ng, 1r jujrN, 1r i1o⋯o ijujrN, denote a product prob-

ability triple by ð�p ¼ juj
p ¼ 1 Ωip ;�p ¼ juj

p ¼ 1 F ip ;�p ¼ juj
p ¼ 1 Pip Þ, and the associated

space of square integrable juj�variate component functions of y by
L2ð�p ¼ juj

p ¼ 1 Ωip ;�p ¼ juj
p ¼ 1 F ip ;�p ¼ juj

p ¼ 1 Pip Þ ≔fyu :
R
Rjujy2uðxuÞf Xu

ðxuÞ dxuo
1g; which is a Hilbert space. Since the joint density of ðXi1 ;…;Xijuj Þ
is separable (independence), i.e., f Xu

ðxuÞ ¼∏juj
p ¼ 1f ip ðxip Þ, the product

polynomial ψujjuj
ðXuÞ≔∏juj

p ¼ 1ψ ipjp
ðXip Þ, where jjuj ¼ ðj1;…; jjujÞAN

juj
0 ,

a juj�dimensional multi-index with 1�normJ jjuj J1≔max

ðj1;…; jjujÞ, constitutes an orthonormal basis in L2ð�p ¼ juj
p ¼ 1 Ωip ;

�p ¼ juj
p ¼ 1 F ip ;�p ¼ juj

p ¼ 1 Pip Þ. Two important properties of these product

polynomials from the tensor product of Hilbert spaces are as
follows.

Proposition 1. The product polynomials ψujjuj
ðXuÞ, ∅auDf1;…;Ng

have zero means, that is,

E½ψujjuj
ðXuÞ� ¼ 0: ð5Þ

Proposition 2. Two distinct product polynomials ψujjuj
ðXuÞ and

ψ vkjvj ðXvÞ, where ∅auDf1;…;Ng, ∅avDf1;…;Ng, j1;…; jjuja0,
k1;…; kjvja0, are uncorrelated and each has unit variance, that is,

E½ψujjuj
ðXuÞψ vkjvj ðXvÞ� ¼

1 if u¼ v; jjuj ¼ kjvj;

0 otherwise:

�
ð6Þ

From the standard Hilbert space theory, every non-constant
component function yuAL2ð�p ¼ juj

p ¼ 1 Ωip ;�p ¼ juj
p ¼ 1 F ip ;�p ¼ juj

p ¼ 1 Pip Þ of y
can be expanded as [1,2]

yuðXuÞ ¼ ∑
jjuj AN

juj
0

j1 ;…;jjuj a 0

Cujjujψujjuj
ðXuÞ; ∅auD 1;…;Nf g; ð7Þ

with

Cujjuj≔
Z
RN
yðxÞψujjuj

ðxuÞf XðxÞ dx; ∅auDf1;…;Ng; jjujAN
juj
0 ; ð8Þ

representing the corresponding expansion coefficient. Note that
the summation in Eq. (7) precludes j1;…; jjuj ¼ 0, that is, the
individual degree of each variable Xi in ψujjuj

, iAu, cannot be zero
since yu is a strictly juj-variate function and has a zero mean. The
end result of combining Eqs. (1) and (7) is the A-PDD [1,2]

yðXÞ ¼ y∅þ ∑
∅auD f1;…;Ng

∑
jjuj AN

juj
0

j1 ;…;jjuj a 0

Cujjujψujjuj
ðXuÞ; ð9Þ
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providing an exact, hierarchical expansion of y in terms of an
infinite number of coefficients or orthonormal polynomials. Using
Propositions 1 and 2, all component functions yu, ∅auDf1;…;Ng,
in Eq. (7) are found to satisfy the annihilating conditions of the
ADD. Therefore, A-PDD can be viewed as the polynomial version of
ADD and is, therefore, endowed with all desirable properties
of ADD.

In many physical and engineering applications, the function y
can be approximated by a sum of at most S-variate component
functions, where 1rSrN, resulting in the S-variate, mth-order
A-PDD approximation

~yS;mðXÞ ¼ y∅þ ∑
∅a uD f1;…;Ng

1r jujr S

∑
jjuj AN

juj
0

; J jjuj J1 rm

j1 ;…;jjuj a 0

Cujjujψujjuj
ðXuÞ; ð10Þ

containing ∑S
k ¼ 0

N
S�k

� �
mS�k number of A-PDD coefficients and

corresponding orthonormal polynomials. Due to its additive
structure, the approximation in Eq. (10) includes degrees of
interaction among at most S input variables Xi1 ;…;XiS ,
1r i1r⋯r iSrN. For instance, by selecting S¼1 and 2, the
functions ~y1;m and ~y2;m, respectively, provide univariate and
bivariate mth-order approximations, contain contributions from
all input variables, and should not be viewed as first- and second-
order approximations, nor do they limit the nonlinearity of y.
Depending on how the component functions are constructed,
arbitrarily high-order univariate and bivariate terms of y could
be lurking inside ~y1;m and ~y2;m. When S-N and m-1, ~yS;m

converges to y in the mean-square sense, permitting Eq. (10) to
generate a hierarchical and convergent sequence of approxima-
tions of y.

Applying the expectation operator on ~yS;mðXÞ and
ð ~yS;mðXÞ�y∅Þ2 and noting Propositions 1 and 2, the mean [11]

E½ ~yS;mðXÞ� ¼ y∅ ð11Þ

of the S-variate, mth-order A-PDD approximation matches the
exact mean E½yðXÞ�, regardless of S or m, and the approximate
variance [11]

~σ2
S;m≔E½ð ~yS;mðXÞ�E½ ~yS;mðXÞ�Þ2�

¼ ∑
∅a uD f1;…;Ng

1r jujr S

∑
jjuj AN

juj
0

; J jjuj J1 rm

j1 ;…;jjuj a 0

C2
ujjuj

ð12Þ

is calculated as the sum of squares of the expansion coefficients
from the S-variate, mth-order A-PDD approximation of yðXÞ. It is
elementary to show that the approximate variance in Eq. (12)
approaches the exact variance of ywhen S-N andm-1 [11]. The
mean-square convergence of ~yS;m is guaranteed as y, and its
component functions are all members of the associated Hilbert
spaces.

For the special case of S¼1, the univariate A-PDD approxima-
tion

~y1;mðXÞ ¼ y∅þ ∑
N

i ¼ 1
∑
m

j ¼ 1
Cijψ ijðXiÞ ð13Þ

of yðXÞ yields the exact mean

E ~y1;mðXÞ
� �¼ y∅; ð14Þ

and an approximate variance

~σ2
1;m≔E½ð ~y1;mðXÞ�E½ ~y1;mðXÞ�Þ2� ¼ ∑

N

i ¼ 1
∑
m

j ¼ 1
C2
ij ð15Þ

that depends on mo1.

2.2. Factorized PDD

The factorized dimensional decomposition of the multivariate
function

yðXÞ ¼ ∏
uD f1;…;Ng

½1þzuðXuÞ�; ð16Þ

where zu, uDf1;…;Ng, are various component functions of input
variables with increasing dimensions. Like the sum in Eq. (1), the
product in Eq. (16) comprises 2N terms, with each term depending
on a group of variables indexed by a particular subset of f1;…;Ng,
including the empty set ∅. This multiplicative decomposition
exists and is unique for any square-integrable function
yAL2ðΩ;F ; PÞ with a non-zero mean. Tunga and Demiralp [12]
originally proposed this decomposition, calling it factorized high-
dimensional model representation. Subsequently, Yadav and Rah-
man [7], and Rahman [13] derived a recursive relationship
between the component functions of ANOVA and factorized
dimensional decompositions, as described by Theorem 1, leading
to F-PDD.

Theorem 1. The recursive relationships between component func-
tions of the ANOVA and factorized dimensional decompositions of a
non-zero mean, square-integrable function y : RN-R, represented by
Eqs. (1) and (16), respectively, are

1þzuðXuÞ ¼
∑

vDu
yvðXvÞ

∏
v � u

½1þzvðXvÞ�
; uD 1;…;Nf g: ð17Þ

Proof. See Theorem 8 of Yadav and Rahman [7] or Theorem 3.4 of
Rahman [13]. □

Applying Eq. (7) into Eq. (17) and then combining with Eq. (16)
form the F-PDD of

yðXÞ ¼ y∅ ∏
∅auD f1;…;Ng

y∅þ ∑
∅avDu

∑
jjvj AN

jvj
0

j1 ;…;jjvj a 0

Cvjjvjψ vjjvj
ðXvÞ

∏
v � u

½1þzvðXvÞ�

2
66664

3
77775; ð18Þ

as an exact representation of yðXÞ, where infinite orthonormal
polynomials of increasing dimensions are structured with a multi-
plicative hierarchy, as opposed to the additive hierarchy in Eq. (9).
Consequently, an S-variate, mth-order F-PDD approximation,
retaining at most S-variate component functions and mth-order
orthogonal polynomials, becomes

ŷS;mðXÞ ¼ y∅ ∏
∅a uD f1;…;Ng

1r jujr S

y∅þ ∑
∅avDu

∑
jjvj AN

jvj
0

; J jjuj J1 rm

j1 ;…;jjvj a 0

Cvjjvjψ vjjvj
ðXvÞ

∏
v � u

½1þzvðXvÞ�

2
66664

3
77775:

ð19Þ
It is elementary to show that the S-variate, mth-order F-PDD
approximation converges to yðXÞ in the mean-square sense when
S-N and m-1.

Unlike Eqs. (11) and (12), the mean and variance of ŷS;mðXÞ,
respectively defined as

E½ŷS;mðXÞ�≔
Z
RN
ŷS;mðxÞf XðxÞ dx ð20Þ

and

σ̂2
S;m≔E½ðŷS;mðXÞ�E½ŷS;mðXÞ�Þ2�

≔
Z
RN
ðŷS;mðxÞ�E½ŷS;mðXÞ�Þ2f XðxÞ dx; ð21Þ

do not produce closed-form or analytic expressions in terms of y∅
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and Cujjuj if S is selected arbitrarily. This is a drawback of F-PDD
when compared with A-PDD. Having said so, they are easily
estimated by sampling methods, such as quasi- and crude Monte
Carlo simulations (MCSs), or even numerical integration if N is not
overly large.

When S¼1, the univariate F-PDD approximation

ŷ1;mðXÞ ¼ y∅ ∏
N

i ¼ 1
1þ 1

y∅
∑
m

j ¼ 1
Cijψ ijðXiÞ

( )" #
; ð22Þ

forms a product of univariate polynomials. Eq. (22) results in the
exact mean

E½ŷ1;mðXÞ� ¼ y∅; ð23Þ
and an approximate variance

σ̂2
1;m≔E½ðŷ1;mðXÞ�E½ŷ1;mðXÞ�Þ2�

¼ y2∅ ∏
N

i ¼ 1
1þ 1

y2∅
∑
m

j ¼ 1
C2
ij

 !
�1

" #
ð24Þ

that are valid for an arbitrary mo1:

3. Hybrid PDD

When a desired stochastic response exhibits neither a dom-
inantly additive nor a dominantly multiplicative nature, then a
mixed approach that optimally combines A-PDD and F-PDD
approximations is needed. Two linear hybrid approximations are
proposed.

3.1. Hybrid approximations

Given S-variate, mth-order additive PDD and factorized PDD
approximations ~yS;mðXÞ and ŷS;mðXÞ, let
yS;mðX;αS;m;βS;m;…Þ

≔

y∅ if S¼ 0;
hð ~yS;mðXÞ; ŷS;mðXÞ;αS;m;βS;m;…Þ if 1rSoN;

yðXÞ if S¼N; m-1;

8><
>: ð25Þ

define a general, S-variate, mth-order hybrid PDD approximation
of yðXÞ, where h is a chosen model function such that
E½yS;mðX;αS;m;βS;m;…Þ� ¼ y∅ and αS;m, βS;m;… are the associated
model parameters. Define the zero-mean functions

wðXÞ≔yðXÞ�y∅; ð26Þ

~wS;mðXÞ≔ ~yS;mðXÞ�y∅; ð27Þ

ŵS;mðXÞ≔ŷS;mðXÞ�E½ŷS;mðXÞ�; ð28Þ
and

wS;mðX;αS;m;βS;m;…Þ≔yS;mðX;αS;m;βS;m;…Þ�y∅; ð29Þ
that will be used throughout this section. Theorem 2 and Corollary
1 describe two optimal linear hybrid approximations
yS;mðX;αS;m;βS;mÞ and y 0

S;mðX;α0
S;m;β

0
S;mÞ for 1rSoN, mo1, both

producing the exact mean y∅. The two hybrid approximations
have their zero-mean counterparts defined as

wS;mðX;αS;m;βS;mÞ≔yS;mðX;αS;m;βS;mÞ�y∅ ð30Þ
and

w 0
S;mðX;α0

S;mÞ≔y 0
S;mðX;α0

S;mÞ�y∅: ð31Þ

Theorem 2. Given integers 1rSoNo1 and 1rmo1, let
~wS;mðXÞ and ŵS;mðXÞ represent zero-mean, S-variate, mth-order
additive PDD and factorized PDD approximations with variances

~σ2
S;m≔E½ ~yS;mðXÞ�y∅�2 ¼ E½ ~w2

S;mðXÞ� and σ̂2
S;m≔E½ŷS;mðXÞ�y∅�2 ¼

E½ŵ2
S;mðXÞ�, respectively, of a real-valued, zero-mean, square-integrable

function wðXÞ. Then there exists an optimal, linear, S-variate, mth-order
hybrid PDD approximation

wS;mðX;αS;m;βS;mÞ ¼ αS;m ~wS;mðXÞþβS;mŵS;mðXÞ ð32Þ
of wðXÞ, where

αS;m ¼ σ̂2
S;mE½wðXÞ ~wS;mðXÞ��E½ ~wS;mðXÞŵS;mðXÞ�E½wðXÞŵS;mðXÞ�

~σ2
S;mσ̂

2
S;m�ðE½ ~wS;mðXÞŵS;mðXÞ�Þ2

; ð33Þ

βS;m ¼
~σ2
S;mE½wðXÞŵS;mðXÞ��E½ ~wS;mðXÞŵS;mðXÞ�E½wðXÞ ~wS;mðXÞ�

~σ2
S;mσ̂

2
S;m�ðE½ ~wS;mðXÞŵS;mðXÞ�Þ2

: ð34Þ

Proof. For a square-integrable function wðXÞ, define a second-
moment error

eS;m≔E½wðXÞ�wS;mðX;αS;m;βS;mÞ�2 ð35Þ
committed by its S-variate, mth-order hybrid PDD approximation
wS;mðX;αS;m;βS;mÞ. For eS;m to be minimum, set

∂eS;m
∂αS;m

¼ 0;

∂eS;m
∂βS;m

¼ 0: ð36Þ

Exchanging the orders of differential and expectation operators
and substituting the expression of wS;mðX;αS;m;βS;mÞ from Eq. (32)
yield

αS;mE½ ~w2
S;mðXÞ�þβS;mE½ ~wS;mðXÞŵS;mðXÞ� ¼ E½wðXÞ ~wS;mðXÞ�;

αS;mE½ ~wS;mðXÞŵS;mðXÞ�þβS;mE½ŵ2
S;mðXÞ� ¼ E½wðXÞŵS;mðXÞ�: ð37Þ

Noting ~σ2
S;m ¼ E½ ~w2

S;mðXÞ� and σ̂2
S;m ¼ E½ŵ2

S;mðXÞ�, the solution of
equations (37) produces the expressions of αS;m and βS;m as in
Eqs. (33) and (34), thus proving the theorem. □

Corollary 1. Constraining the sum of two model parameters to be
unity in Eqs. (32) through (37) creates another optimal, linear, S-
variate hybrid approximation

w 0
S;mðX;α0

S;mÞ ¼ α0
S;m ~wS;mðXÞþð1�α0

S;mÞŵS;mðXÞ ð38Þ
of wðXÞ, 1rSoNo1, mo1, where the optimal model parameter

α0
S;m ¼ E½fwðXÞ�ŵS;mðXÞgf ~wS;mðXÞ�ŵS;mðXÞg�

E½ ~wS;mðXÞ�ŵS;mðXÞ�2
: ð39Þ

Proof. For a square-integrable function wðXÞ, define another
second-moment error

e 0S;m≔E½wðXÞ�w 0
S;mðX;α0

S;mÞ�2 ð40Þ
owing to its S-variate, mth-order hybrid PDD approximation
w 0

S;mðX;α0
S;mÞ. For e 0S;m to be minimum, set

∂e 0S;m
∂α0

S;m
¼ 0: ð41Þ

Again, swapping the orders of differential and expectation opera-
tors, and substituting the expression of w 0

S;mðX;α0
S;mÞ from Eq. (38)

result in the expression of α0
S;m as in Eq. (39), thus proving the

corollary. □

Remark 1. The second hybrid approximation w 0
S;m for S¼1 or

2 presented in Corollary 1 coincides with that proposed by Tunga
and Demiralp [12]. However, the first hybrid approximation wS;m –

that is, Theorem 2 – is new. Furthermore, the two approximations,
wS;m and w 0

S;m, are not the same for a general truncation 2rSoN.
See a recent work of Rahman [13] for distinction between these
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two linear models, including a nonlinear variant, not discussed in
this paper for brevity.

Remark 2. The hybrid PDD approximations exist for any function
y or w with a finite variance. The approximations,
wS;mðX;αS;m;βS;mÞ and w 0

S;mðX;α0
S;mÞ, for a given 1rSoNo1,

and 1rmo1, can exactly reproduce the original zero-mean
function wðXÞ under the following two conditions: (1) if the
original function is endowed with a purely additive structure,
i.e., wðXÞ ¼ ~wS;mðXÞ, then Eqs. (33), (34), and (39) yield αS;m ¼
α0
S;m ¼ 1, and βS;m ¼ 0, which in turn results in wS;mðXÞ ¼

w 0
S;mðXÞ ¼ ~wS;mðXÞ ¼wðXÞ; (2) if the original function possesses a

purely multiplicative structure, i.e., wðXÞ ¼ ŵS;mðXÞ, then Eqs. (33),
(34), and (39) produce αS;m ¼ α0

S;m ¼ 0 and βS;m ¼ 1, and therefore
wS;mðXÞ ¼w 0

S;mðXÞ ¼ ŵS;mðXÞ ¼wðXÞ.

3.2. Second-moment properties

Applying the expectation operator on Eqs. (32) and (38) yields
the exact mean

E½yS;mðX;αS;m;βS;mÞ� ¼ E½y 0
S;mðX;α0

S;mÞ� ¼ y∅; ð42Þ

by both the hybrid approximations. However, their respective
variances, obtained by applying the expectation operator on wS;m

ðX;αS;m;βS;mÞ2 and w 0
S;mðX;α0

S;m;β
0
S;mÞ2, respectively, vary according

to

σ2
S;m≔E½w2

S;mðX;αS;m;βS;mÞ�
¼ α2

S;m ~σ2
S;mþβ2

S;mσ̂
2
S;mþ2αS;mβS;mE½ ~wS;mðXÞŵS;mðXÞ� ð43Þ

and

σ 02
S;m≔E½w 02

S;mðX;α0
S;mÞ�

¼ α02
S;m ~σ2

S;mþð1�α0
S;mÞ2σ̂2

S;mþ2α0
S;mð1�α0

S;mÞE½ ~wS;mðXÞŵS;mðXÞ�:
ð44Þ

Compared with the additive and factorized PDD approximations,
the hybrid PDD approximations proposed require expectation of
product of ~wS;mðXÞ and ŵS;mðXÞ to calculate the variance.

4. Univariate hybrid PDD approximation

At the root of developing the PDD methods lies the principal
motive of achieving high accuracy in calculating the probabilistic
characteristics of high-dimensional random responses while keeping
the computational efforts to a minimum. This objective was attained
through foresaking the inefficient higher-variate expansions and
applying only univariate hybrid PDD approximations in solving
high-dimensional stochastic problems. Considering the key advan-
tage of high efficiency of a univariate additive [1] and factorized PDD
[7] approximations, only the univariate hybrid PDD method was
implemented in this work. Proposition 3 formally describes the
univariate hybrid PDD approximation.

Proposition 3. A linear, univariate, mth-order hybrid PDD approx-
imation of wðXÞ, obtained by setting S¼1 in Eqs. (32)–(34), is

w1;mðX;α1;m;β1;mÞ ¼ α1;m ~w1;mðXÞþβ1;mŵ1;mðXÞ ð45Þ

where the model parameters

α1;m ¼ σ̂2
1;m�E½wðXÞŵ1;mðXÞ�

σ̂2
1;m� ~σ2

1;m

ð46Þ

and

β1;m ¼ E½wðXÞŵ1;mðXÞ�� ~σ2
1;m

σ̂2
1;m� ~σ2

1;m

: ð47Þ

Proof. Consider the univariate, mth-order additive and factorized
PDD approximations

~w1;mðXÞ ¼ ∑
N

i ¼ 1
∑
m

j ¼ 1
Cijψ ijðXiÞ; ð48Þ

ŵ1;mðXÞ ¼ y∅ ∏
N

i ¼ 1
1þ 1

y∅
∑
m

j ¼ 1
Cijψ ijðXiÞ

( )" #
�y∅; ð49Þ

of

wðXÞ ¼ ∑
∅auD f1;…;Ng

∑
jjuj AN

juj
0

j1 ;…;jjuj a 0

Cujjujψujjuj
ðXuÞ: ð50Þ

From Propositions 1 and 2,

E½wðXÞ ~w1;mðXÞ� ¼ E½ ~w1;mðXÞŵ1;mðXÞ�

¼ ∑
N

i ¼ 1
∑
m

j ¼ 1
C2
ij ¼ ~σ2

1;m: ð51Þ

Applying Eq. (51) to Eqs. (33) and (34), the model parameters for
S¼1 and mo1 are obtained as in Eqs. (46) and (47). □

Remark 3. The two parameters α1;m and β1;m of the hybrid model
described by Eq. (45) add up to one. This is due to special
properties of ~w1;mðXÞ and ŵ1;mðXÞ expressed in Eqs. (48) and
(49). Therefore, the hybrid model described by Eq. (38) at
univariate truncation ðS¼ 1Þ is redundant, as it leads to the same
solution of the first model described by Eq. (45).

Since β1;m ¼ 1�α1;m, let

w1;mðX;α1;mÞ≔y1;mðX;α1;mÞ�y∅

¼ α1;m ~w1;mðXÞþð1�α1;mÞŵ1;mðXÞ ð52Þ

denote the univariate hybrid PDD approximation of wðXÞ. The
mean of w1;mðX;α1;mÞ is zero and, therefore, E½y1;mðX;α1;mÞ� ¼ y∅,
matching the exact mean of yðXÞ. The variance of w1;mðX;α1;mÞ or
y1;mðX;α1;mÞ is

σ2
1;m≔E½w2

1;mðX;α1;mÞ�

¼ ð2α1;m�α2
1;mÞ ~σ2

1;mþð1�α1;mÞ2σ̂2
1;m; ð53Þ

which is a linear combination of the variances from univariate
additive PDD and univariate factorized PDD approximations. The
variances ~σ2

1;m and σ̂2
1;m, expressed by Eqs. (15) and (24), are

obtained from the univariate PDD expansion coefficients. How-
ever, determining the model parameter α1;m involves evaluation of
an N-dimensional integral that will incur additional computational
expense in excess of the computations performed for estimating
the PDD expansion coefficients. A quasi-MCS was employed for
estimating the model parameters, described as follows.

4.1. Calculation of the hybrid model parameter

The basic idea of a quasi-MCS is to replace the random or
pseudo-random samples in crude MCS by well-chosen deterministic
samples that are highly equidistributed [14]. The quasi-MCS samples
are often selected from a low-discrepancy sequence [14–17] or by
lattice rules [18] to minimize the integration errors. The estimation
of the expectation of the multi-variate function wðXÞŵ1;mðXÞ, which
is a high-dimensional integral, comprises three simple steps: (1) gen-
erate a low-discrepancy point set PL≔fuðkÞA ½0;1�N ; k¼ 1;…; Lg of
size LAN; (2) map each sample from PL to the sample xðkÞARN

following the probability measure of the random input X; and
(3) approximate the expectation as E½wðXÞŵ1;mðXÞ�ffið1=LÞ
∑L

k ¼ 1½wðxðkÞÞŵ1;mðxðkÞÞ�. Thus, using quasi-MCS, the model
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parameter is given by

α1;mffi
σ̂2
1;m�1

L
∑L

k ¼ 1½wðxðkÞÞŵ1;mðxðkÞÞ�
σ̂2
1;m� ~σ2

1;m

; ð54Þ

where σ̂2
1;m and ~σ2

1;m are obtained from Eqs. (15) and (24). However,
when σ̂2

1;m ¼ E½ŵ2
1;mðXÞ� and ~σ2

1;m ¼ E½ ~w2
1;mðXÞ� are also estimated

from a quasi-MCS method, then the model parameter can also be
obtained from

α1;mffi
1
L
∑L

k ¼ 1½ŵ
2
1;mðxðkÞÞ��1

L
∑L

k ¼ 1½wðxðkÞÞŵ1;mðxðkÞÞ�
1
L
∑L

k ¼ 1½ŵ
2
1;mðxðkÞÞ��1

L
∑L

k ¼ 1½ ~w
2
1;mðxðkÞÞ�

: ð55Þ

The well-known Koksma–Hlawka inequality reveals that the error
committed by a quasi-MCS is bounded by the variation of the
integrand in the sense of Hardy and Krause and the star-discrepancy,
a measure of uniformity, of the point set PL [14]. Therefore,
constructing a point set with star-discrepancy as small as possible
and seeking variance reduction of the integrand are vital for the
success of the quasi-MCS. It should be mentioned here that many
authors, including Halton [15], Faure [16], Niederreiter [14], Sobol
[17], and Wang [19], have extensively studied how to generate the
best low-discrepancy point sets and sequences and to engender
variance reduction. For a bounded variation of the integrand, the
quasi-MCS has a theoretical error bound OðL�1ðlog LÞN compared
with the probabilistic error bound OðN�1=2Þ of crude MCS, indicating
significantly faster convergence of the quasi-MCS than crude MCS.

Both Eqs. (54) and (55) were employed for estimating α1;m in
this work. Further details, clarifying which equation is used, are
given in the Numerical Examples section.

4.2. Error analysis

Given the univariate truncation ðS¼ 1Þ, which approximation
stemming from additive PDD, factorized PDD, and hybrid PDD is
more accurate? Lemma 1 and Theorem 3 address this question.

Lemma 1. Given an integer 1rmo1, the variance of the uni-
variate factorized PDD approximation ŷ1;mðXÞ is greater than or equal
to the variance of the univariate additive PDD approximation ~y1;mðXÞ,
that is,

σ̂2
1;mZ ~σ2

1;m:

Proof. From Eq. (24),

σ̂2
1;m ¼ y2∅ ∏

N

i ¼ 1
1þ 1

y2∅
∑
m

j ¼ 1
C2
ij

 !
�1

" #

¼ ∑
N

i ¼ 1
∑
m

j ¼ 1
C2
ijþy2∅ ∑

N

s ¼ 2
∑

∅a uD f1;…;Ng
juj ¼ s

∏
iAu

1
y2∅

∑
m

j ¼ 1
C2
ij

Z ~σ2
1;m; ð56Þ

where the last line follows from Eq. (15) and the recognition that
the second term of the second line is non-negative. □

Theorem 3. Let yðXÞ be a real-valued, square-integrable function
with ~y1;mðXÞ, ŷ1;mðXÞ, and y1;mðXÞ denoting its univariate additive
PDD, univariate factorized PDD, and univariate hybrid PDD approx-
imations, respectively, with ~σ2

1;m, σ̂
2
1;m, and σ2

1;m as the variances
obtained from respective approximations. If

~e1;m≔E½yðXÞ� ~y1;mðXÞ�2 ¼ E½wðXÞ� ~w1;mðXÞ�2; ð57Þ

ê1;m≔E½yðXÞ� ŷ1;mðXÞ�2 ¼ E½wðXÞ�ŵ1;mðXÞ�2; ð58Þ

and

e1;m≔E½yðXÞ�y1;mðXÞ�2 ¼ E½wðXÞ�w1;mðXÞ�2 ð59Þ
are the mean-squared errors committed by univariate additive PDD,
univariate factorized PDD, and univariate hybrid PDD, respectively, in
calculating σ2, the variance of yðXÞ, then,
e1;mr ~e1;m

and

e1;mr ê1;m:

Proof. From Eqs. (57) and (59),

~e1;m ¼ σ2� ~σ2
1;m ð60Þ

and

e1;m;m ¼ E½w2ðXÞ�þE½w2ðXÞ��2E½wðXÞw1;mðXÞ�
¼ σ2þσ2

1;m�2E½wðXÞw1;mðXÞ�: ð61Þ

Subtracting Eq. (60) from Eq. (61) yields

e1;m� ~e1;m ¼ σ2
1;m�2E½wðXÞw1;mðXÞ�þ ~σ2

1;m

¼ ð2α1;m�α2
1;mÞ ~σ2

1;mþð1�α1;mÞ2σ̂2
1;mþ ~σ2

1;m

�2E½wðXÞfα1;m ~w1;mðXÞþð1�α1;mÞŵ1;mðXÞg�
¼ 2ð1�α1;mÞð ~σ2

1;m�E½wðXÞŵ1;mðXÞ�Þ
þð1�α1;mÞ2ðσ̂2

1;m� ~σ2
1;mÞ

¼ �ð1�α1;mÞ2ðσ̂2
1;m� ~σ2

1;mÞr0; ð62Þ

following Lemma 1, where the second equality uses Eqs. (53) and
(52) and the last equality uses Eq. (47).

Similarly, from Eq. (58),

ê1;m ¼ σ2þ σ̂2
1;m�2E½wðXÞŵ1;mðXÞ�: ð63Þ

Subtracting Eq. (63) from Eq. (61) yields

e1;m� ê1;m ¼ σ2
1;m�2E½wðXÞw1;mðXÞ�� σ̂2

1;m

þ2E½wðXÞŵ1;mðXÞ�
¼ ð2α1;m�α2

1;mÞ ~σ2
1;mþð1�α1;mÞ2σ̂2

1;m

�2E½wðXÞfα1;m ~w1;mðXÞþð1�α1;mÞŵ1;mðXÞg�
� σ̂2

1;mþ2E½wðXÞŵ1;mðXÞ�
¼ ~σ2

1;m� σ̂2
1;m�2α1;mð ~σ2

1;m�E½wðXÞŵ1;mðXÞ�Þ
þð1�α1;mÞ2ðσ̂2

1;m� ~σ2
1;mÞ

¼ �α2
1;mðσ̂2

1;m� ~σ2
1;mÞr0; ð64Þ

following Lemma 1, where, again, the second equality uses Eqs.
(53) and (52) and the last equality uses Eq. (47). □

The significance of Theorem 3 lies in providing analytical
relations comparing the errors committed in calculating the
variances by the univariate additive PDD, factorized PDD, and
hybrid PDD approximations. It is clear from Theorem 3 that the
error committed by univariate hybrid PDD can never be greater
than the error committed by either univariate additive PDD or
univariate factorized PDD.

5. Expansion coefficients

The determination of the expansion coefficients, y∅ and Cujjuj in
Eqs. (2) and (8), respectively, involves various N-dimensional
integrals over RN . For large N, a full numerical integration employing
an N-dimensional tensor product of a univariate quadrature formula
is computationally prohibitive. Instead, a dimension-reduction Gaus-
sian-integration scheme and a sampling technique were applied to
estimate the coefficients efficiently.
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5.1. Dimension-reduction integration

The dimension-reduction integration, developed by Xu and
Rahman [20], entails approximating a high-dimensional integral
of interest by a finite sum of lower-dimensional integrations. For
calculating the expansion coefficients y∅ and Cujjuj , this is accom-
plished by replacing the N-variate function y in Eqs. (2) and (8)
with an R-variate RDD approximation at a chosen reference point,
where RrN [10,21]. The result is a reduced integration scheme,
requiring evaluations of at most R-dimensional integrals.

Let c¼ ðc1;…; cNÞARN be a reference point of X and yðxv; c�vÞ
represent a jvj�variate component function of yðxÞ, vDf1;…;Ng.
Replacing yðxÞ with an R-variate truncation of its referential
dimensional decomposition [10,21], the coefficients y∅ and Cujjuj
are estimated from [20]

y∅ffi ∑
R

k ¼ 0
ð�1Þk N�Rþk�1

k

� �
∑

vD f1;…;Ng
jvj ¼ R� k

Z
Rjvj

yðxv; c�vÞf Xv
ðxvÞ dxv

ð65Þ

and

Cujjuj ffi ∑
R

k ¼ 0
ð�1Þk N�Rþk�1

k

� �

� ∑
vD f1;…;Ng

jvj ¼ R� k;uD v

Z
Rjvj

yðxv; c�vÞψujjuj
ðxuÞf Xv

ðxvÞ dxv; ð66Þ

respectively, requiring evaluation of at most R-dimensional inte-
grals. The reduced integration facilitates calculation of the coeffi-
cients approaching their exact values as R-N, and is significantly
more efficient than performing one N-dimensional integration,
particularly when R5N. Hence, the computational effort is sig-
nificantly decreased using the dimension-reduction integration.
For instance, when R¼1 or 2, Eqs. (65) and (66) involve one-, or at
most, two-dimensional integrations, respectively.

For a general function y, numerical integrations are still
required for performing various jvj-dimensional integrals over
Rjvj, 0r jvjrR, in Eqs. (65) and (66). When R41, multivariate
numerical integrations are conducted by constructing a tensor
product of underlying univariate quadrature rules. For a given
vDf1;…;Ng, 1o jvjrR, let v¼ fi1;…ijvjg, where 1r i1o⋯o ijvjr
N. Denote by fxð1Þip

;…; xðnÞip
g �R a set of integration points of xip and

by fwð1Þ
ip
;…;wðnÞ

ip
g the associated weights generated from a chosen

univariate quadrature rule and a positive integer nAN. Denote by
PðnÞ ¼ �p ¼ jvj

p ¼ 1 fxð1Þip
;…; xðnÞip

g a rectangular grid consisting of all inte-
gration points generated by the variables indexed by the elements
of v. Then the coefficients using dimension-reduction integration
and numerical quadrature are approximated by

y∅ffi ∑
R

i ¼ 0
ð�1Þi N�Rþ i�1

i

� �
∑

vD f1;…;Ng
jvj ¼ R� i

∑
kjvj APðnÞ

wðkjvj Þyðxðkjvj Þ
v ; c�vÞ ð67Þ

and

Cujjuj ffi ∑
R

i ¼ 0
ð�1Þi N�Rþ i�1

i

� �

� ∑
vD f1;…;Ng

jvj ¼ R� i;uD v

∑
kjvj APðnÞ

wðkjvj Þyðxðkjvj Þ
v ; c�vÞψujjuj

ðxðkjuj Þ
u Þ; ð68Þ

where xðkjvj Þ
v ¼ fxðk1Þi1

;…; xðkjvj Þijvj
g and wðkjvj Þ ¼∏p ¼ jvj

p ¼ 1 wðkpÞ
ip

is the product
of integration weights generated by the variables indexed by the
elements of v. For independent coordinates of X, as assumed here,
a univariate Gauss quadrature rule is commonly used, where the
integration points and associated weights depend on the prob-
ability distribution of Xi. They are readily available, for example,
the Gauss–Hermite or the Gauss–Legendre quadrature rule, when
Xi follows Gaussian or uniform distribution. An n-point Gauss

quadrature rule exactly integrates a polynomial with a total degree
of at most 2n�1.

The S-variate, mth-order PDD approximation requires evalua-
tions of ∑k ¼ S

k ¼ 0
N
k

� �
mk expansion coefficients, including y∅ðdÞ. If

these coefficients are estimated by dimension-reduction integra-
tion with R¼ SoN and, therefore, involve at most an S-dimen-
sional tensor product of an n-point univariate quadrature rule
depending on m, then the total cost for the S-variate, mth-order
approximation entails a maximum of ∑k ¼ S

k ¼ 0
N
k

� �
nkðmÞ function

evaluations. If the integration points include a common point in
each coordinate – a special case of symmetric input probability
density functions and odd values of n – the number of function

evaluations reduces to ∑k ¼ S
k ¼ 0

N
k

� �ðnðmÞ�1Þk. Nonetheless, the com-
putational complexity of the S-variate PDD approximation is an
Sth-order polynomial with respect to the number of random
variables or integration points. Therefore, PDD with dimension-
reduction integration of the expansion coefficients alleviates the
curse of dimensionality to an extent determined by S.

5.2. Quasi-Monte Carlo simulation

Employing the quasi-MCS method for the estimation of the
PDD expansion coefficients, which are high-dimensional integrals
defined in Eqs. (2) and (8), again comprises three simple steps:
(1) generate a low-discrepancy point set PL≔fuðkÞA ½0;1�N ;
k¼ 1;…; Lg of size LAN; (2) map each sample from PL to the
sample xðkÞARN following the probability measure of the random
input X; and (3) approximate the coefficients by

y∅ffi
1
L

∑
L

k ¼ 1
yðxðkÞÞ; ð69Þ

Cujjuj ffi
1
L

∑
L

k ¼ 1
yðxðkÞÞψujjuj

ðxðkÞ
u Þ: ð70Þ

6. Numerical examples

Two numerical examples are presented to illustrate the hybrid
PDD method developed in calculating the second-moment statis-
tics and tail probability distributions of random mathematical
functions and random eigensolutions of a simple stochastic
dynamical system. Classical Legendre polynomials were used to
define the orthonormal polynomials in Example 1, and all PDD
expansion coefficients and the hybrid model parameter were
determined analytically. In Example 2 all original random variables
were transformed into standard Gaussian random variables, facil-
itating the use of classical Hermite orthonormal polynomials as
bases. The expansion coefficients in Example 2 were calculated
using dimension-reduction integration (R¼1) involving the five-
point univariate Gauss–Hermite quadrature rule. The hybrid
model parameter was estimated by quasi-MCS using Sobol's low-
discrepancy sequence of 100 and 500 points and Eq. (54). The
sample size for the embedded MCS in Example 2 is 106.

6.1. Polynomial function

Consider the polynomial function

yðXÞ ¼ 2
N

∑
N

i ¼ 1
Xi

" #q
;

where N¼5, Xi, i¼1,…,N, are independent and identical random
variables, each following the standard uniform distribution over
½0;1�, and qAN is an exponent. The function yðXÞ has a purely
additive structure when q¼1, but as the value of q increases, the
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function yðXÞ evolves from strongly additive to strongly multi-
plicative. The objective of this example is to compare univariate
additive PDD, univariate factorized PDD, and univariate hybrid
PDD approximations in calculating the variance of yðXÞ for q¼ 2;
3;4;5;6;7;8.

Since y is a multivariate polynomial of degree q, the truncation
parameter m for a PDD approximation, whether additive, factor-
ized, or hybrid, was set equal to q. Fig. 1 shows how the hybrid
model parameter α1;m varies with respect to q, where ~σ2

1;m, σ̂
2
1;m,

and the expectation in Eq. (46) of α1;m are calculated exactly. The
parameter α1;m is relatively close to one when q¼2, and decreases
monotonically as q increases, indicating the diminishing additive
structure of the function y. When q¼8, α1;m is relatively close to
zero, that is, y is dominantly multiplicative.

Fig. 2 presents the relative errors, defined as the ratio of the
absolute difference between the exact and approximate variances
of yðXÞ to the exact variance, committed by the univariate additive
PDD, univariate factorized PDD, and univariate hybrid PDD

methods. The second-moment properties of yðXÞ, given q, were
calculated exactly. The function yðXÞ is strongly additive when
q¼2 or 3; therefore, the univariate additive PDD approximation
has lower error than the factorized PDD approximation. But the
trend reverses for 4rqr8, the range of higher values examined.
This is because the function switches from dominantly additive
ðqr3Þ to dominantly multiplicative ðq43Þ as q increases. None-
theless, for all the values of q considered, the univariate hybrid
PDD approximation commits lower errors than either univariate
additive PDD or univariate factorized PDD approximation. These
results are consistent with the findings of Theorem 3.

6.2. Three-degree-of-freedom, undamped, spring–mass system

Consider a three-degree-of-freedom, undamped, spring–mass
system, shown in Fig. 3, with random mass and random stiffness
matrices

MðXÞ ¼
M1ðXÞ 0 0

0 M2ðXÞ 0
0 0 M3ðXÞ

2
64

3
75 ð71Þ

and

KðXÞ ¼
K11ðXÞ K12ðXÞ K13ðXÞ

K22ðXÞ K23ðXÞ
ðsym:Þ K33ðXÞ

2
64

3
75; ð72Þ

respectively, where K11ðXÞ ¼ K1ðXÞþK4ðXÞþK6ðXÞ, K12ðXÞ ¼
�K4ðXÞ, K13ðXÞ ¼ �K6ðXÞ, K22ðXÞ ¼ K4ðXÞþK5ðXÞþK2ðXÞ, K23ðXÞ
¼ �K5ðXÞ, and K33ðXÞ ¼ K5ðXÞþK3ðXÞþK6ðXÞ; the masses
MiðXÞ ¼ μiXi; i¼ 1;2;3 with μi ¼ 1:0 kg; i¼1, 2, 3, and spring
stiffnesses KiðXÞ ¼ μiþ3Xiþ3; i¼ 1;…;6 with μiþ3 ¼ 1:0 N=m;

i¼ 1;…;5 and μ9 ¼ 3:0 N/m. The input X¼ fX1;…;X9gT AR9 is an
independent lognormal random vector with mean μX ¼ 1AR9 and
covariance matrix ΣX ¼ ν2IAR9�9 with coefficient of variation
ν¼ 0:3.

The primary objective of this example is to demonstrate the
high accuracy of univariate hybrid PDD approximation in calculat-
ing the cumulative distribution functions of the three eigenvalues
of the three-degree-of-freedom system. The secondary, although
significant, objective of this example is to show that the quasi-MCS
method, with a relatively small sample size for calculating the
model parameter of univariate hybrid PDD approximation, is
capable of delivering results comparable to those obtained from
the expensive bivariate additive PDD approximation.

The probability distributions of three eigenvalues of the three-
degree-of-freedom system were calculated using the benchmark
solution of 106 crude MCS method, and five different fourth-order
ðm¼ 4Þ PDD methods: (1) univariate additive PDD, (2) bivariate
additive PDD, (3) univariate factorized PDD, (4) univariate hybrid
PDD with α1;4 estimated using 100 quasi-MCS samples, and (5) uni-
variate hybrid PDD with α1;4 estimated using 500 quasi-MCS
samples. Fig. 4 presents the marginal probability distributions
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Fig. 1. Variation of α1;m with respect to q (Example 1).
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Fig. 2. Error in variance calculation from additive PDD, factorized PDD, and hybrid
PDD approximations (Example 1).
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Fig. 3. A three-degree-of-freedom, undamped, spring–mass system (Example 2).
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FiðλiÞ≔P½Λirλi� of three eigenvalues λi, i¼1, 2, 3, where all the PDD
solutions were obtained from the embedded MCS; the parenthetical
values reflect the total number of function evaluations required by
the respective methods. The plots are made over a semi-logarithmic
scale to delineate the distributions in the tail regions. For all three
eigenvalues, the probability distributions obtained from the univari-
ate additive PDD method are far from the crude MCS results,
divulging the clear inadequacy of the univariate additive PDD
approximation in calculating tail probabilities. The univariate factor-
ized PDDmethod performs relatively better than its additive counter-
part, indicating the dominantly multiplicative structure of the
functions; however, it still leaves much room for improvement
compared with the benchmark crude MCS results. The univariate
hybrid PDD method requires additional computational effort owing
to quasi-MCS for estimating α1;4 in Eq. (54), but the improved results
obtained clearly justify the additional cost. To put the results of the
univariate hybrid PDD method in perspective, the results from the
bivariate ðS¼ 2Þ additive PDD method, also obtained, show dramatic
improvement over the univariate additive PDD method, as expected.
However, the bivariate additive PDD method also leads to a sig-
nificantly larger number of function evaluations compared with the
univariate hybrid PDD with quasi-MCS (100 samples). Therefore, a
hybrid PDD approximation is desirable, where only univariate
truncations are feasible, but not necessarily rendering adequate
accuracy in stochastic solutions by either additive or factorized PDD
approximation alone.

7. Application: a pickup truck

This section illustrates the effectiveness of the proposed hybrid
PDD method in solving a large-scale practical engineering problem.
The application involves predicting the probabilistic characteristics of
sound pressure levels inside the cabin of a pickup truck. The
acoustics, measured through sound pressure levels, inside a vehicle
are widely considered as a prominent parameter revealing the overall
quality and build of the vehicle. A coupled acoustic-structural
analysis is therefore critically important in the automotive industry
as it paves the way towards designing vehicles for ride comfort and
quietness. Fig. 5(a) presents a computer-aided design (CAD) cabin–
air–chassis model of a pickup truck [22]. A finite-element analysis
(FEA) mesh of the model, comprising 43,663 structural elements
used to model the cabin and the chassis and 12,171 acoustic elements
used to model the air interior, with a total of 207,994 degrees of
freedom, is displayed in Fig. 5(b). Fig. 6(a) depicts the cabin model
without air mesh and doors to show the space occupied by the air
mesh, and Fig. 6(b) displays the air mesh that fills the cabin interior.
A tie constraint was employed to connect the air mesh to the
structural parts inside the cabin surface or onto the seat surface.

Portrayed in Fig. 5(a), the CAD model contains 24 distinct
materials, with 22 structural materials and two non-structural
materials representing the air inside the cabin and the carpet on
the cabin floor. Twenty-one of the structural materials were
modeled as shell elements, and the remaining material as beam
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Fig. 4. Tail probabilities of three eigenvalues of the three-degree-of-freedom, undamped, spring–mass system by various PDD approximations and crude MCS.
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elements defining the circular beam used for headrest mounting.
Young's moduli of 22 structural materials are random variables.
The mass densities of the 21 materials modeled as shell elements

are also random variables. Apart from the structural material
properties, the bulk modulus and the mass density of the air
inside the cabin are also random variables. Finally, the proportion-
ality factor between the pressure and the velocity of the carpet
surface in the normal direction is also a random variable. This
proportionality constant defines the acoustic admittance of the
carpet surface on the cabin floor. In aggregate, there exist 46
random variables Xi ¼ 1;…;46, as follows: X1 to X22¼Young's
moduli of materials 1–22; X23 to X43¼mass densities of materials
1–21; X44¼bulk modulus of air inside the cabin; X45¼mass
density of air inside the cabin; and X46¼acoustic admittance of
the carpet surface on the cabin floor. All 46 random variables are
independent and uniformly distributed with the coefficient of
variation equal to 0.2. Table 1 presents the material and part names,
and the means of random variables corresponding to the 22
structural materials, μi≔E½Xi�, i¼ 1;…;43. The means of the
bulk modulus and mass density of air inside the cabin are
μ44 ¼ 0:139 GPa and μ45 ¼ 1:2� 10�12 kg=mm3. The mean of the
acoustic admittance of the carpet surface on the cabin floor is
μ46 ¼ 0:5� 106 mm2 s=kg. All structural materials, except materials
8, 9, and 10, have a deterministic Rayleigh stiffness proportional
damping defined by the parameter βR ¼ 0:4� 10�6 s. For a given
value of βR, the damping fraction ξi for a mode i with natural
frequency ωi is given by the formula ξi ¼ βRωi=2. The value of βR
chosen in this model is to give approximately 1 percent critical
damping for the modes whose natural frequencies are in
the middle of the range of excitation, i.e., at about 80 Hz at
mean input. Poisson's ratios of all structural materials are determi-
nistic and are equal to 0.3. The probability distributions of input
random variables in this problem were chosen arbitrarily, as
the main purpose was to demonstrate the ability of the proposed
method in solving large-scale practical engineering problems. Iden-
tifying more realistic probability distributions for each
material will require additional studies that are beyond the scope
of this work.

Fig. 5. Cabin–air–chassis model of pickup truck: (a) a CAD model, (b) an FEA mesh.

Fig. 6. Cabin of pickup truck and air mesh. (a) Cabin model of pickup truck with
doors removed for clearer illustration; (b) the air mesh inside the cabin.
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7.1. Coupled acoustic-structural analysis

A mode-based coupled acoustic-structural analysis consists of
two steps: an eigensolution extraction followed by a steady-state
dynamic analysis involving sound pressure level calculations. For
obtaining eigensolutions, the first 200 eigenfrequencies were
extracted. The Lanczos method [23] embedded in Abaqus (Version
6.12) [22] was employed for extracting natural frequencies and
mode shapes. For steady-state dynamic analysis, the airborne load
originating from engine vibration was modeled as a diffuse field
incident wave loading on the bulkhead below the dashboard. In
the steady-state dynamic analysis, the sound pressure level at a
location in the vicinity of the driver's ear was calculated. The
location of the driver's ear was defined through a node in the air
mesh inside the cabin, in accordance with the specifications of
location for measurement of noise inside motor vehicles defined in
International Standard ISO-5128 [24]. The values of the sound
pressure level were calculated at 200 evenly spaced points in the
excitation frequency range of 35–120 Hz. This frequency range
corresponds to engine-induced vibrations in the range of 2100–
7200 rpm. The governing equations of a coupled acoustic-
structural analysis are described in Appendix A.

Due to the uncertainty in material properties, the eigensolu-
tions and sound pressure level values are random functions. The
univariate, second-order hybrid PDD approximation was employed
to determine their second-moment characteristics and various
response probabilities. The associated expansion coefficients of
PDD and the hybrid model parameter were estimated by the
quasi-MCS method with 500 samples. The sample size for the
embedded MCS of the PDD approximation is 5000.

7.2. Moments of mode shapes

The univariate, second-order hybrid PDD method was
employed to calculate the second-moment statistics of each nodal
pressure component of an eigenvector describing the associated

Table 1
Material, part name, and mean values of the random input variables for structural materials in pickup truck.

Material Material name Young's modulus
(GPa)

Mass density (kg/
m3)

Part name

1 Steel 210 7890 Rail (chassis), bed, cabin, fenders, engine oil box
2 Steel 210 7890 Wheel housings, rear rim, steering support, battery tray, seat track
3 Steel 210 7890 Radiator mounting, radiator outer, fan center, fuel tank
4 Steel 210 7890 Engine mountings, fender mountings, hood, doors, cabin hinges
5 Plastic 2.8 1200 Fan cover
6 Glass 76 2500 Windows, windshield
7 Plastic 3.4 1100 Radiator side block
8 Steel 210 7890 Rear axle, drive shaft, steering, steering column, gearbox CV joint, brakes
9 Steel 210 20,900 Brake assembly

10 Steel 210 6910 Brake assembly
11 Rubber 250 8060 Tires
12 Steel 210 7890 A-arm mountings, A-arm–rim connectors, A-arm–rail connectors, front rim, bed–rail

connector, rail connector
13 Foam 2.0 253 Seat bottom
14 Foam 2.0 755 Seat top
15 Foam 2.0 169 Seat headrest
16 Steel 210 2500 Door lock
17 Steel 200 7800 Radiator
18 Rubber–metal

composite
210 1960 Battery

19 Steel 120 3890 Engine gearbox
20 Steel 21 1820 Engine front
21 Steel 210 7890 Headrest connector beams, fan, door lock beams, oil pan beams, dashboard support
22 Steel 210 –a Radiator mounting beams

a Not required.

Fig. 7. Contour plots of the L2-norms of 35th mode shape of air inside the cabin of
a pickup truck by the hybrid PDD approximation: (a) mean, (b) variance.
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mode shape of the air inside the cabin. All input random variables
were transformed into uniform random variables, permitting the
use of Legendre orthonormal polynomials as basis functions. The
second-moment statistics were calculated from Eqs. (69) and (53)
where the hybrid model parameter was estimated from Eq. (55).
Based on these statistics, the L2-norms (square root of sum of
squares) of the mean and variance of a nodal pressure were
calculated. Fig 7(a) and (b) presents contour plots of the L2-norms
of the mean and variances, respectively, of an arbitrarily selected
35th mode shape, calculated using hybrid PDD approximation.
Similar results can be generated for other mode shapes if desired.

7.3. Probabilistic characteristics of sound pressure level

The sound pressure level in decibels (dB) is calculated in the
vicinity of the driver's ear as SPL¼ 20 log 10½p=ðpref

ffiffiffi
2

p
Þ�, where p is

the pressure in Pa obtained in mode-based steady-dynamic
analysis, and pref ¼ 2� 10�5 Pa is the zero or reference sound
pressure, which is considered as the threshold of human hearing.

Fig. 8 shows various percentiles of sound pressure level in the
vicinity of the driver's ear calculated from the univariate, second-
order hybrid PDD approximation. The percentiles were calculated
from 5000 embedded MCS of the hybrid PDD approximation at
200 evenly spaced points in the excitation frequency range of
35–120 Hz. Fig. 9 presents the probability density function of the
maximum sound pressure level in the excitation frequency range
of 35–120 Hz, as calculated from 5000 embedded MCS of the
hybrid PDD approximation. These results provide vital information
pertaining to the acoustic performance of the vehicle operating
under several random input parameters. A designer can utilize
these valuable results for optimizing the vehicle design to achieve
a desired acoustic performance.

8. Conclusion

A new hybrid PDD method was developed for uncertainty
quantification of high-dimensional complex systems. The method
is built from a linear combination of an additive and a multi-
plicative PDD approximation, both obtained from lower-
dimensional ANOVA component functions of a general, square-
integrable multivariate function. When a stochastic response is not
endowed with a specific dimensional hierarchy, the hybrid PDD

approximation, optimally blending the additive PDD and multi-
plicative PDD approximations, is the best choice. A theorem and a
corollary proven herein give analytical expressions for the model
parameters that form the linear combinations of additive PDD and
multiplicative PDD approximations, resulting in the hybrid PDD
method. Using properties of orthonormal polynomials, explicit
formulae were derived for calculating the response statistics by
the univariate hybrid PDD approximation.

The univariate truncation of the hybrid PDD was employed to
calculate the second-moment properties and tail probability dis-
tribution in two numerical problems, where the output functions
are either simple mathematical functions or eigenvalues of a
simple linear oscillator. For a function with a mixed additive and
multiplicative structure, the univariate hybrid PDD approximation
commits remarkably lower errors in calculating the variance
compared with both univariate additive and multiplicative PDD
approximations. The univariate hybrid PDD approximation is also
more accurate than either the univariate additive or multiplicative
PDD methods, and is more efficient than the bivariate additive
PDD method in determining the tail probabilistic characteristics of
eigenvalues of the dynamic system examined. Therefore, the
univariate truncation of the hybrid PDD is ideally suited to solving
stochastic problems that may otherwise mandate expensive
bivariate or higher-variate additive or multiplicative PDD approx-
imations. Finally, a successful evaluation of random eigensolutions
of a pickup truck, subjected to 46 input random variables, invol-
ving coupled acoustic-structure analysis demonstrates the ability
of the new method in solving large-scale practical engineering
problems.

Appendix A. Governing equations for coupled acoustic-
structural analysis

A coupled acoustic-structural analysis involves solution of the
acoustic variational equation
Z
Vf

δp
1
Kf

€pþ γ
ρf Kf

_p

 !
þ 1
ρf

∂δp
∂x

� ∂p
∂x

" #
dV�
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δpT0 dS

þ
Z
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δp

γ
ρf c1
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ρf k1

þ 1
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_pþ 1
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dSFig. 8. Percentiles of sound pressure levels in the vicinity of the driver's ear in a

pickup truck by the hybrid PDD approximation.
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Fig. 9. Probability density function of the maximum sound pressure level in
excitation frequency range of 35–120 Hz by the hybrid PDD approximation.
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and the structural virtual work equationZ
V
δϵ : σ dVþ

Z
V
αcρδum � _um dVþ

Z
V
ρδum � €um dV

þ
Z
Sfs
pδum � n dS�

Z
St
δum � t dS¼ 0 ðA:2Þ

simultaneously for the structural displacement um and the
acoustic “displacement” or pressure p. In Eqs. (A.1) and (A.2), Kf

is the bulk modulus of the fluid acoustic medium of volume Vf; γ is
the volumetric drag, or force per unit volume per velocity, in the
fluid; ρf is the mass density of the fluid; δp is the pressure
variation in the fluid; x is spatial position of the fluid particle; T0
is the prescribed boundary traction over Sft, the acoustic boundary
subregion where the normal derivative of the acoustic medium is
prescribed; 1=c1 and 1=k1 are the proportionality coefficients
between the pressure and velocity, and the pressure and displace-
ment, respectively, normal to the surface of the fluid; Sfr is the
reactive acoustic boundary subregion; Sfi is the radiating acoustic
boundary subregion; Sfrs is the acoustic boundary subregions
where the displacements are linearly coupled but not necessarily
identically equal due to the presence of a compliant or reactive
intervening layer; n� is the outward normal to the structure; σ is
the stress at a point on the structure; δϵ is the strain variation in
the structure; αc is the mass proportional damping factor; ρ is the
mass density of the structure; and t is the surface traction applied
over the surface St of the structure. Further details are available
elsewhere [25].
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