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This paper describes an accurate and computationally efficient surrogate method, known as the poly-
nomial dimensional decomposition (PDD) method, for estimating a general class of density-based f-
sensitivity indices. Unlike the variance-based Sobol index, the f-sensitivity index is applicable to random
input following dependent as well as independent probability distributions. The proposed method in-
volves PDD approximation of a high-dimensional stochastic response of interest, forming a surrogate
input–output data set; kernel density estimations of output probability density functions from the sur-
rogate data set; and subsequent Monte Carlo integration for estimating the f-sensitivity index. Developed
for an arbitrary convex function f and an arbitrary probability distribution of input variables, the method
is capable of calculating a wide variety of sensitivity or importance measures, including the mutual
information, squared-loss mutual information, and 1-distance-based importance measure. Three nu-
merical examples illustrate the accuracy, efficiency, and convergence properties of the proposed method
in computing sensitivity indices derived from three prominent divergence or distance measures. A finite-
element-based global sensitivity analysis of a leverarm was performed, demonstrating the ability of the
method in solving industrial-scale engineering problems.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Global sensitivity analysis rooted in the output variance has
been a longstanding staple for modeling and simulation of
complex systems [1–4]. In many applications, however, the
variance provides a restricted summary of output uncertainty.
Therefore, sensitivity measures derived solely from the variance
should be guardedly interpreted. A more rational sensitivity
analysis should account for the entire probability distribution of
an output variable, meaning that the probabilistic character-
istics above and beyond the variance should be considered [5–
9]. Addressing this fundamental concern has triggered the de-
velopment of a generalized density-based sensitivity index, re-
ferred to as the f-sensitivity index, which is founded on the
well-known f-divergence between conditional and uncondi-
tional output probability measures [6]. Unlike the variance-
based Sobol index [1], the f-sensitivity is applicable to random
input following dependent as well as independent probability
distributions. Since the class of f-divergences supports numer-
ous divergence or distance measures, a bevy of density-based
sensitivity measures are possible, including the mutual in-
formation [10], squared-loss mutual information [11], and

1-distance-based importance measure [5], to name a few,
Grant No. 1462385.
providing diverse choices to sensitivity analysis. A few re-
searchers have applied existing divergence or distance measures
for sensitivity analysis of engineering systems [12–15].

While the formulation of the f-sensitivity index is not overly
complicated, its calculation in general is more intricate than the
calculation of the variance-based sensitivity index. This is chiefly
because the probability density functions required in defining the
convex function f are harder to estimate than the variance. If the
function f is already selected, resulting in a specific sensitivity
index, then one can exploit the functional structure of f to devise
accurate and efficient methods of calculation. This is exemplified
in the works of Borgonovo [5], Liu and Homma [16], and Wei et al.
[17], which present several estimation procedures for calculating
the 1-distance-based importance measure. Here, the author
delves into calculating the f-sensitivity index derived from a
general convex function f, so that the method proposed is ap-
plicable to a host of density-based sensitivity indices. Nonetheless,
if the sample size concomitant with a required accuracy in esti-
mating the sensitivity index is very large, say, in the order of
millions or more, then existing methods [5,16,17] will be limited to
problems or functions that are inexpensive to evaluate. In a
practical setting, however, the response function is often de-
termined via time-consuming, costly finite-element analysis (FEA)
or similar numerical calculations. In which case, an arbitrarily
large sample size is no longer viable, and hence alternative routes
to estimating the output probability densities, leading to the f-
sensitivity index, should be explored.
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This paper presents an accurate and computationally efficient sur-
rogate method, known as the polynomial dimensional decomposition
(PDD) method, for estimating a general class of density-based f-sensi-
tivity indices. The method is based on (1) PDD approximation of a
high-dimensional stochastic response, forming a surrogate input-out-
put data set; (2) kernel density estimations (KDEs) of output prob-
ability density functions from the surrogate data set; and (3) sub-
sequent Monte Carlo integration for estimating the f-sensitivity index.
Section 2 formally defines the f-sensitivity index, summarizes its fun-
damental properties, and cites a few special cases. Section 3 briefly
reviews the PDD approximation and explains how the integration of
the PDD approximation with KDE leads to calculating the f-sensitivity
index. Numerical results from two mathematical functions, as well as
from a computationally intensive solid-mechanics problem, are re-
ported in Section 4. Finally, conclusions are drawn in Section 5.
2. A general sensitivity measure

Let ={ …} : 1, 2, , = ∪ { } : 00 , =( − ∞ ∞) : , , and =[ ∞)+ : 0,0
represent the sets of positive integer (natural), non-negative in-
teger, real, and non-negative real numbers, respectively. For ∈ k ,
denote by k the k-dimensional Euclidean space and by k

0 the k-
dimensional multi-index space. These standard notations will be
used throughout the paper.

2.1. f-Divergence

Let Ψ( ), be a measurable space, where Ψ is a sample space
and is a s-algebra of the subsets of Ψ, and μ be a s-finite
measure on Ψ( ), . Let be a set of all probability measures on
Ψ( ), , which are absolutely continuous with respect to μ. For two
such probability measures ∈P P,1 2 , let μdP d/1 and μdP d/2 denote
the Radon–Nikodym derivatives of P1 and P2 with respect to the
dominating measure μ, that is, μ< <P1 and μ< <P2 . For abso-
lutely continuous measures in terms of probability theory, take Ψ
to be the real line and μ to be the Lebesgue measure, that is,

μ ξ=d d , ξ ∈ , so that μdP d/1 and μdP d/2 are simply probability
density functions, denoted by ξ( )f1 and ξ( )f2 , respectively.

Let [ ∞) → ( − ∞ ∞]f : 0, , be an extended real-valued function,
which is (1) continuous on [ ∞)0, and finite-valued on ( ∞)0, ;
(2) convex on [ ∞)0, ; (3) strictly convex at t¼1; and (4) equal to
zero at t¼1, that is, ( ) =f 1 0. The f-divergence, describing the
difference or discrimination between two probability measures P1
and P2, is defined by the integral [18–21]

∫( ) ξ
ξ

ξ ξ∥ =
( )
( )

( )
( )

⎛
⎝⎜

⎞
⎠⎟

D P P f
f
f

f d: .
1

f 1 2
1

2
2

The divergence measure in Eq. (1) was introduced in the 1960s by
Csiszár [18,19], Ali and Silvey [20], and Morimoto [21].

2.2. f-sensitivity index

Let Ω( )P, , be a complete probability space, where Ω is a
sample space, is a s-field onΩ, and → [ ]P: 0, 1 is a probability
measure. With N representing the Borel s-field on N , ∈ N ,
consider an N-valued absolutely continuous random vector

Ω=( … ) ( ) → ( )X XX : , , : , ,N
N N

1 , describing the statistical un-
certainties in all system and input parameters of a general sto-
chastic problem. The probability law of X, which may comprise
independent or dependent random variables, is completely de-
fined by its joint probability density function → + f : N

X 0 . Let u be
a non-empty subset of { … }N1, , with the complementary set
− ={ … }⧹u N u: 1, , and cardinality ≤ | | ≤u N1 , and let

= ( … )| |X XX , ,u i i u1 , ≤ < ⋯ < ≤| |i i N1 u1 , be a subvector of X with
=− { … } ⧹X X:u N u1, , defining its complementary subvector. Then, for a
given ∅ ≠ ⊆ { … }u N1, , , the marginal density function of Xu is

∫( ) = ( ) −−| |
f f dx x x:u uX Xu N u .

Let ( ) = ( … )y y X XX : , , N1 , a real-valued, continuous, measurable
transformation on Ω( ), , define a general, square-integrable stochastic
response function of interest. Define = ( )Y y X: to be the associated
output random variable. Denote by PY and |PY Xu the output probability
measures and by ξ( )fY and ξ( | )|f xY uXu

the probability density functions
of random variables Y and |Y Xu, respectively, where |Y Xu stands for Y
conditional on Xu, which is itself random. Setting =P PY1 , =f fY1 ,

= |P PY X2 u, and = |f fY X2 u
in Eq. (1), the f-divergence between the un-

conditional and conditional probability measures of Y becomes

∫( ) ξ
ξ

ξ ξ∥ =
( )
( | )

( | )
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|
|

|

⎛
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⎞
⎠
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
D P P f

f
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f d
X
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2

f Y Y
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X
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For density-based importance analysis, suppose that the sensi-
tivity of Y with respect to a subset Xu, ∅ ≠ ⊆ { … }u N1, , , of input
variables X is desired. As unveiled in a prequel [6], such a sensitivity
measure can be linked to the f-divergence in Eq. (2). However, the f-
divergence is random because Xu is random. Therefore, apply the
expectation operator with respect to the probability measure of Xu

on Eq. (2), thereby defining the f-divergence-rooted f-sensitivity
index [6]

( )= ∥ ( )|
⎡⎣ ⎤⎦H D P P: 3u f f Y YX X, u u

of Y for Xu. Applying the definition of the expectation operator in
Eq. (3) and then substituting the expression of ( ∥ )|D P Pf Y Y Xu from Eq.
(2) yields the f-sensitivity index

∫
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where | =PY X xu u and ξ( | )|f xY uXu
are the probability measure and the

probability density function, respectively, of Y conditional on
=X xu u, and ξ( )f x ,Y uX ,u

is the joint probability density function of
( )YX ,u . The last equality in Eq. (4) is formed by recognizing

ξ ξ( ) = ( | ) ( )|f f fx x x,Y u Y u uX X X,u u u
and is useful for calculating the sen-

sitivity index, to be discussed in Section 3.

2.3. General properties

It is important to emphasize a few general properties of the f-
sensitivity index Hu f, inherited from the f-divergence measure. The
properties, originally derived in a prior work [6], are described in
conjunction with six propositions as follows.

Proposition 1 (Non-negativity). The f-sensitivity index Hu f, of Y for
Xu, ∅ ≠ ⊆ { … }u N1, , , is non-negative and vanishes when Y and Xu

are statistically independent.

Proposition 2 (Range of values). The range of values of Hu f, is

≤ ≤ ( ) + ( ) ( )⁎H f f0 0 0 , 5u f,

where ( ) = ( )→ +f f t0 limt 0 and ( ) = ( ) = ( )⁎
→ →∞+f tf t f t t0 lim 1/ lim /t t0 .

Proposition 3 (Importance of all input variables). The f-sensitivity
index { … }H N f1, , , of Y for all input variables = ( … )X XX , , N1 is

= ( ) + ( ) ( ){ … }
⁎H f f0 0 , 6N f1, , ,
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where ( ) = ( )→ +f f t0 limt 0 and ( ) = ( ) = ( )⁎
→ →∞+f tf t f t t0 lim 1/ lim /t t0 .

Proposition 4 (Importance for an independent subset). Let ∅ ≠ u,
⊆ { … }v N1, , , ≠u v. If Y and Xv are statistically independent, then

= ( )∪ ⧹H H . 7u v f u v f, ,

In addition, if u and v are disjoint subsets, that is, ∩ = ∅u v , then

= ( )∪H H . 8u v f u f, ,

Proposition 5 (Invariance). The f-sensitivity index Hu f, of Y for Xu,
∅ ≠ ⊆ { … }u N1, , is invariant under smooth and uniquely invertible
transformations (diffeomorphisms) of Y and Xu.

Proposition 6 (Bounds for metric f-divergences). Let ∅ ≠ u,
⊂ { … }v N1, , be two disjoint subsets such that ∩ = ∅u v . For

probability measures PY, |PY Xu, and | ∪PY Xu v, let f be a select convex
generating function, which produces metric f-divergences from PY to

| ∪PY Xu v, from PY to |PY Xu, and from |PY Xu to | ∪PY Xu v, satisfying the tri-
angle inequality

( ) ( ) ( )∥ ≤ ∥ + ∥ ( )| | | |∪ ∪D P P D P P D P P . 9f Y Y f Y Y f Y YX X X Xu v u u u v

Then

≤ ≤ + ( )∪ |H H H H , 10u f u v f u f v u f, , , ,

where = [ ( ∥ )]| | |∪ ∪H D P P:v u f f Y YX X X, u v u u v is the conditional sensitivity
index of |Y Xu for ∪Xu v. Furthermore, if Xu and Xv are statistically
independent, then

≤ ≤ + ( )∪H H H H . 11u f u v f u f v f, , , ,

Readers interested in proofs of all six propositions are referred
to the prior work [6].

Propositions 1 through 6 reveal a number of fundamental
theoretical properties of the f-sensitivity index. First, the f-sensi-
tivity index is non-negative. Second, the index is endowed with a
range of values, where the smallest value is zero, but the largest
value may be finite or infinite, depending on the generating
function f chosen. The index vanishes or attains the largest value
when the unconditional and conditional probability measures
coincide or are mutually singular. Third, the index reaches the
largest value for all input variables. Fourth, if the output variable
and a subset of input variables are statistically independent, then
there is no contribution from that subset of input variables to the
sensitivity of the output variable. Fifth, unlike the variance-based
Sobol index, which is invariant only under affine transformations,
the f-sensitivity index is invariant under nonlinear but smooth and
uniquely invertible transformations. Sixth, for a metric divergence,
the resultant f-sensitivity index for a group of input variables in-
creases from the unconditional sensitivity index for a subgroup of
input variables, but is limited by the residual term emanating from
the conditional sensitivity index.

2.4. Special cases

A multitude of f-sensitivity indices are possible by appro-
priately selecting the convex function f in Eqs. (2)–(4). Listed in
Table 1 are 10 such convex functions and resultant sensitivity in-
dices derived from the forward and reversed Kullback–Leibler di-
vergences [22], total variational distance [23], Hellinger distance
[24], Pearson χ2 divergence [25], Neyman χ2 divergence [25], α
divergence [26], Vajda χ α divergence [27], Jeffreys distance [28],
and triangular discrimination [29]. Three prominent sensitivity
indices, for example, the mutual information [10]
∫ ξ
ξ

ξ ξ=
( )

( ) ( )
( ) =

( )×
′| |

⎡
⎣
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I
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f d d H

x
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x x: ln

,
, :

12
u
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X

X
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,
, ,u

u

u
u

between Xu and Y, the squared-loss mutual information [11]

∫
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between Xu and Y, and the 1-distance-based importance measure
[5]

∫
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of Xu on Y, are rooted in reversed Kullback–Leibler, Neyman, and
total variational divergences or distances, respectively. Indeed,
many previously used sensitivity or importance measures are
special cases of the f-sensitivity index derived from the f-
divergence.

2.5. Univariate index

For practical applications, one may be interested in performing
sensitivity analysis pertaining to individual random variables only.
Setting = { }u i , where = …i N1, , , in Eqs. (3) and (4), the uni-
variate f-sensitivity index of Y with respect to a variable Xi is

∫( )
( )

ξ

ξ
ξ ξ= ∥ =

( ) ( )
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( ){ } |

×
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where ( )f xX ii
and ξ( )f x ,X Y i,i

are the marginal density of Xi and the
joint density of ( )X Y,i , respectively. Again, depending on the
choice of the convex function f in Eq. (15), many univariate f-
sensitivity indices from Table 1 with = { }u i can be generated. For
instance, the univariate f-sensitivity indices derived from the total
variational distance, reversed Kullback–Leibler divergence, and
Hellinger distance are
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respectively. The univariate indices defined in Eqs. (16a), (16b) and
(16c) will be referred to as total variational, Kullback–Leibler, and
Hellinger sensitivity indices, respectively, in the paper.
3. The PDD method

According to the last line of Eq. (4), the f-sensitivity index Hu f, is
exactly calculated when both the integrand function f, which



Table 1
Ten special cases of the f-sensitivity index [6].

f-Divergence f(t)a Sensitivity index

Forward Kullback–Leibler divergence t tln
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a All generating functions have been normalized, that is, ( ) =f 1 0.
b α ≠ ± 1.
c α ≥ 1. If α = 1, then =H Hu V u TV, , .
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depends on the probability densities ξ( )fY and ξ( )f x ,Y uX ,u
, and the

subsequent (| | + )u 1 -dimensional integral with respect to the
probability measure of ( )YX ,u are exactly determined. For an ar-
bitrary response function or probability distribution of random
input, obtaining exact probability densities of responses is un-
realistic. In which case, the probability densities should be as-
sessed using approximate methods, say, the KDE methods, leading
to their respective estimates ξ¯ ( )fY and ξ¯ ( )f x ,Y uX ,u

. Furthermore,
pursuing analytical integration is nearly impossible since the
convex function f is arbitrary. Indeed, for a general function f, the
integral must be approximated, for instance, by the Monte Carlo
estimator

∑ ξ

ξ
¯ =

¯ ( ) ( )
¯ ( ) ( )

( )

=

( ) ( )

( ) ( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟H

L
f

f f

f

x

x
:

1
, 17

u f
L

l

L
Y

l
u
l

Y u
l l

X

X
,

1 ,

u

u

of Hu f, , where ∈ L is the sample size and ξ{ }( ) ( )
= …x ,l l

l L1, , is a data
set comprising L input–output sample pairs of ( )YX, . Un-
fortunately, generating such a data set for large L becomes com-
putationally burdensome, if not prohibitive, when the output
function y is determined via an expensive numerical analysis or
algorithm. Therefore, Eq. (17) must be recast by exploiting math-
ematically rigorous yet computationally efficient surrogate ap-
proximations of the output function.

Modern surrogate approximations include polynomial chaos
expansion (PCE) [30], stochastic collocation [31], and PDD [32,33],
to name a few. All of these methods, commonly used for un-
certainty quantification of complex systems, are known to offer
significant computational advantages over crude Monte Carlo si-
mulation. But there is one major limitation: most, if not all, sur-
rogates are valid for independent input probability measures, al-
though PDD has recently been extended to work also for
dependent variables [3]. For independent random input, the PDD
and PCE are equivalent, but their respective approximations due to
truncations are not the same. Indeed, numerical analyses of
mathematical functions or simple dynamic systems reveal mark-
edly higher convergence rates of the PDD approximation than the
PCE approximation [34]. Furthermore, for truly high-dimensional
problems, the PCE and collocation methods require astronomically
large numbers of terms or coefficients, succumbing to the curse of
dimensionality. The PDD reduces the computational effort, but
more importantly, it deflates the curse of dimensionality to an
extent determined by the degree of interaction among input
variables [32,33]. This property, in addition to general applicability
of PDD, was the principal motivation for coupling PDD, KDE, and a
Monte Carlo integrator, to be described in the following subsec-
tions. The end product is referred to as the PDD method in this
paper.

3.1. PDD approximation of stochastic response

For a given ∅ ≠ ⊆ { … }u N1, , , ≤ | | ≤u N1 , let
= ( … ) ∈| | | |

| |j jj , ,u u
u

1 0 represent a | |u -dimensional multi-index. De-
note the associated space of the | |u -variate analysis-of-variance
(ANOVA) [3] component functions of y by Ω( )P, ,u u u2 , which is a
Hilbert space. Let ψ{ ( ) ∈ }| |

| |
| |

X j,u u u
u

j 0u
be a set of multivariate or-

thonormal polynomials that is consistent with the probability
measure ( )f dx xu uXu

of Xu. Then ψ{ ( ) ∈ }| |
| |

| |
X j,u u u

u
j 0u

, if its span is
dense, constitutes a basis of 2. The standard Hilbert space theory
states that every non-constant ANOVA component function of a
square-integrable function y can be expanded in terms of
ψ{ ( ) ∈ }| |

| |
| |

X j,u u u
u

j 0u
. The result is the polynomial dimensional de-

composition (PDD) [3,32,33],



S. Rahman / Reliability Engineering and System Safety 155 (2016) 224–235228
∑ ∑ ψ( ) = + ( )
( )

∅
∅≠ ⊆ { … } ∈| | | |

| | | |


y y CX X ,
18u N

u u u
j

j j
1, , u u

u u

representing a finite, hierarchical expansion of y in terms of
polynomials of input random variables with increasing dimen-
sions. Here, the expansion coefficients of PDD are defined or de-
termined from [3]

∫= ( ) ( ) ( )∅


y y f dx x x: 19aXN
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∑ ∑+ =
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where

∫ ψ= ( ) ( ) ( ) ( ) ( )−| | | | −


I y f f dx x x x x: 19cu u u u uj j X Xu N u u u

and

∫ ψ ψ= ( ) ( ) ( ) ( ) ( )∩− ∪| | | | | ∪ | | | | | ∩−


J f f dx x x x x: 19du v u u v v u v u v uj k j k X X,u v v u u v u v u

are integrals that must be calculated. The definition of ∅y in Eq.
(19a) is valid whether or not the random input X comprises in-
dependent or dependent variables. So is the linear system of
equations, that is, Eq. (19b), from which the expansion coefficients

| |Cu j u , ∅ ≠ ⊆ { … }u N1, , , ∈| |
| |ju
u
0 , are calculated.

When the input variables are statistically independent with a
product-type density function ( ) = ∏ ( )=f f xx i

N
X iX 1 i

, then the defi-
nitions of the PDD expansion coefficients simplify such that
[32,33]

∫ ∏= ( ) ( )
( )

∅
=

y y f x dxx:
20ai

N

X i i
1

N i

and

∫ ∏ψ= ( ) ( ) ( )
( )=

| | | |


C y f x dxx x: .
20b

u u u
i

N

X i ij j
1

u N u i

Once the expansion coefficients are ascertained, whether obtained
from Eqs. (19a) to (19d) or Eqs. (20a) and (20b), the PDD in Eq. (18)
delivers a mean-square convergent expansion of any square-in-
tegrable function y [3,32,33].

Although Eq. (18) provides an exact mean-square representa-
tion, it contains an infinite number of coefficients, emanating from
infinite numbers of orthonormal polynomials. In practice, the
number of coefficients must be finite, say, by retaining at most
mth-order polynomials. Furthermore, in many applications, the
function y can be approximated by a sum of at most S-variate
ANOVA or PDD component functions, where ≤ ≤S N1 is another
truncation parameter, resulting in the S-variate, mth-order PDD
approximation

∑ ∑ ∑ ψ˜ ( ) = + ( )

( )

∅
∅≠ ⊆ { … }

≤| |≤
=| | =

∏ ≠
| |

=
| |

| | | |y y CX X ,
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S m
u N

u S
k u
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j

u u u
j

j j,
1, ,

1 0
u

i
u

i

u u

1

which includes interactive effects of at most S input variables
…X X, ,i iS1 , ≤ ≤ ⋯ ≤ ≤i i N1 S1 , on y. Here, ∥ ∥| |ju is a suitable norm

of | |ju , for instance, ∥ ∥ = + ⋯ +| | | |j jj :u u1 1 as the 1-norm or
∥ ∥ = ( … )| | ∞ | |j jj : max , ,u u1 as the ∞-norm. By selecting S¼1 and
S¼2, the functions ˜ ( )y Xm1, and ˜ ( )y Xm2, , respectively, provide uni-
variate and bivariate mth-order PDD approximations, contain
contributions from all input variables, and should not be viewed as
first- and second-order approximations, nor do they limit the
nonlinearity of ( )y X . Depending on how the component functions
are constructed, arbitrarily high-order univariate and bivariate
terms of ( )y X could be lurking inside ˜ ( )y Xm1, and ˜ ( )y Xm2, . The
fundamental conjecture underlying this decomposition is that the
component functions arising in the function decomposition will
exhibit insignificant S-variate effects cooperatively when →S N ,
leading to useful lower-variate approximations of ( )y X . When

→S N and → ∞m , ˜ ( )y XS m, converges to ( )y X in the mean-square
sense, that is, Eq. (21) generates a hierarchical and convergent
sequence of approximations of ( )y X . Further details of PDD are
available elsewhere [3,32,33].

The determination of the PDD expansion coefficients ∅y and

| |Cu j u in Eqs. (19a)– (20b) requires calculating various N-dimen-
sional integrals over N . For large N, a full numerical integration
employing an N-dimensional tensor product of a univariate
quadrature formula is computationally prohibitive. The author
proposes to apply the dimension-reduction Gaussian-integration
scheme, originally developed by Xu and Rahman [35], to estimate
the coefficients efficiently. The scheme entails approximating a
high-dimensional integral of interest by a finite sum of lower-di-
mensional integrations and then using the Gauss quadrature for-
mula. For instance, when the input variables are independent, this
is accomplished by replacing the N-variate function y in Eqs. (20a)
and (20b) with an R-variate truncation of the referential dimen-
sional decomposition (RDD) at a chosen reference point [36],
where ≤ ≤S R N . The result is a reduced integration scheme, re-
quiring evaluation of at most R-dimensional integrals [35]. When
the reduced integrals for R¼S are numerically estimated, say, by a
measure-consistent n-point Gauss quadrature rule ( ∈ n ), then
the computational expense for an S-variate, mth-order PDD ap-

proximation involves a maximum of ( )∑ =
= nk

k S N
k

k
0 function evalua-

tions [32]. In consequence, the computational complexity of the S-
variate PDD approximation is an Sth-order polynomial with re-
spect to the number of random variables or integration points.
Therefore, PDD with dimension-reduction integration of the ex-
pansion coefficients alleviates the curse of dimensionality to an
extent determined by S.

It is important to note that the dimension-reduction integra-
tion scheme is theoretically convergent [35]. In other words, when
R¼N, the resulting dimension-reduction reproduces the original
integral, regardless of how the reference point is selected. When

<R N , the error from the dimension-reduction integration de-
pends not only on R, but also on the reference point. The in-
tegration error is related to the approximation error due to the
truncation of RDD [36]. Furthermore, for a general function, one
must use the Gauss quadrature formula to approximate all R- and
lower-dimensional integrals, stemming from the dimension-re-
duction integration. The quadrature error can be regulated, given
the continuity and/or smoothness of the integrand.

3.2. Kernel density estimation

Let ˜ = ˜ ( )Y y X:S m S m, , define the S-variate, mth-order PDD approx-
imation of the output random variable Y. Given the PDD truncation

parameters S, m, and a sample size ∈ L , let { }ξ̃( ) ( )

= …
x ,l

S m
l

l L
,

1, ,
be

the set of input–output sample pairs of ( ˜ )YX, S m, , where the output
samples are calculated from (21). Using this surrogate sample set,
the KDEs of the probability density functions of ỸS m, and ( ˜ )YX ,u S m,
are obtained as [37,38]
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respectively, where → K :Xi , ∈i u, and → K :Y are univariate
kernel functions, and hXi, ∈i u, and hY are smoothing parameters
called the bandwidths. It is well known that the asymptotic mean-
squared error committed by the KDE increases with the band-
width size but decreases in the product of bandwidth and sample
sizes. Therefore, for the KDE error to decline as → ∞L , the band-
width must decrease, but not at a rate faster than the sample size.
This is sufficient to establish pointwise convergence of the KDE.

3.3. Calculation of sensitivity index

Substituting the probability densities in the last line of Eq. (4)
with their KDEs in Eqs. (22a) and (22b) results in the PDD–KDE–
Monte Carlo estimator
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1

,
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u

of Hu f, . From the mean-square convergence properties [3,32,33],
the sequence of PDD approximations { ˜ ≤ ≤ ≤ < ∞}y S N m; 1 , 1S m,
also converges to y in probability and in distribution as →S N and

→ ∞m . Therefore, the estimator ˜ ( )
Hu f

L S m
,
, ,

in Eq. (23) is anticipated to
deliver a good approximation of Hu f, when L is sufficiently large,
provided that the PDD truncation parameters S and m are chosen
wisely.

The input probability density ( )f xX of X is assumed to be
known, so that the marginal density ( )f xuXu

of Xu for any
∅ ≠ ⊆ { … }u N1, , is exactly determined. This assumption is com-
monly invoked or fulfilled in uncertainty quantification, where the
objective is propagating input uncertainties to determine the
probabilistic characteristics of an output response. However, there
are also data-driven stochastic problems, where raw input data,
generated from either physical testing or field measurements, are
supplied. In which case, the input density must also be estimated,
say, by employing KDE to generate the approximate density
¯ ( )f xuXu

, imparting, therefore, an added layer of approximation to
the proposed method.

Remark 1. Although the PDD approximations for dependent [3] or
independent [32,33] random input were originally developed in
past works, the current work describes how PDD can be effectively
integrated with KDE and Monte Carlo simulation to estimate the
density-based sensitivity indices. The integration proposed is no-
vel in its own right.

Remark 2. Since the truncated PDD in Eq. (21) furnishes a sur-
rogate approximation for an arbitrary random input, Eq. (23) is
valid whether or not X comprises independent or dependent
variables. In consequence, the proposed estimator can be viewed
as a generalized version of the PDD estimator presented in an
earlier work [6]. Moreover, it is important to emphasize that Eq.
(23) constitutes single-loop (single simulation) samplings as op-
posed to double-loop computations required by several existing
methods [5,16,17]. Therefore, the proposed estimator should be
markedly more efficient than the existing methods even when
computing old sensitivity indices.

Remark 3. It is important to emphasize that the output samples
from the PDD approximation should not be confused with those
generated from the original function. In a practical setting, the
numerical calculations of y for generated input samples can be
computationally expensive or even prohibitive, particularly when
the sample size needs to be very large. In contrast, the samples
generated from the PDD approximation ỹS m, entail inexpensive
evaluations of simple polynomial functions. Therefore, a relatively
large sample size can be accommodated in the PDD method even
when y is expensive to evaluate.
4. Numerical examples

Three numerical examples involving two elementary mathe-
matical functions and an industrial-scale solid-mechanics problem
are presented to illustrate the proposed PDD method for calcu-
lating three density-based sensitivity indices: the total variational
sensitivity index { }H i TV, , the reversed Kullback–Leibler sensitivity
index { } ′H i KL, , and the Hellinger sensitivity index { }H i H, . Two distinct
norms of | |ju in Eq. (21) were used: 1-norm for Example 1 and
∞-norm for Examples 2 and 3. In Examples 1 and 2, classical
Hermite orthogonal polynomials, which are consistent with the
dependent or independent Gaussian distributions of random in-
put, were employed. In Example 3, classical Legendre polynomials
were used for uniform distributions, whereas measure-consistent
orthogonal polynomials generated from the Stieltjes procedure
[32] were applied for lognormal distributions. The expansion
coefficients involved in the first example were exactly calculated
since | |Iu j u and

| | | |Ju vj k,u v
can be analytically determined [3]. In the

remaining two examples, dimension-reduction integration and
Gauss quadrature formulae consistent with orthogonal poly-
nomials were employed to evaluate the PDD expansion coeffi-
cients. The dimension-reduction integration was performed with
the mean input as the reference point and the truncation para-
meter R¼S, so that an S-variate PDD approximation requires at
most S-variate numerical integration [35]. Due to the large sample
sizes chosen, only the means of Monte Carlo estimators are
reported.

4.1. Example 1

The first example involves a quadratic transformation [3]

( ) = + + + + + + ( )y X X X X X X X X XX 12 4 4 4 241 2 3 1 2 1 3 2 3

of a trivariate Gaussian random vector = ( ) ∈ X X XX , ,1 2 3
3, which

has mean [ ] = ∈ X 0 3, positive-definite covariance matrix
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comprising variances σ = 1i
2 of Xi for =i 1, 2, 3 and correlation

coefficients ρij between Xi and Xj, =i j, 1, 2, 3, ≠i j, and joint
probability density function

( ) ( )π ϕΣ Σ Σ( ) = − = ( )
( )

− − −⎡
⎣⎢

⎤
⎦⎥f x x x x2 det exp

1
2

: ; .
26

T
X X X X X

3
2

1
2 1

Three distinct cases of correlation coefficients were examined: (1)
ρ ρ ρ= = = 1/512 13 23 (equal correlation), (2) ρ = 1/512 , ρ = 2/513 ,
ρ = 4/523 (positive correlation), and (3) ρ = − 1/512 , ρ = 2/513 ,
ρ = − 4/523 (mixed correlation). The objective of this simple yet
insightful example is to illustrate how the proposed method can
be applied to determine f-sensitivity indices for dependent input,
thereby ranking input variables concomitant with their correlation
properties.

Given the Gaussian probability density function of X , the
marginal probability densities ϕ Σ( )x ;uX Xu u of Xu, ∅ ≠ ⊆ { }u 1, 2, 3 ,
are also Gaussian and are easily derived as
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where Σ = [ ] X X: u u
T

Xu is the covariance matrix of Xu. The prob-
ability density ϕ Σ( )x ;uX Xu u induces multivariate Hermite ortho-
gonal polynomials
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1
1 . Given the inner product

∫ ϕ Σ( ) = ( )ϕ


y z yz dx x, : ;X XNX , they eventually form a set of multi-
variate Hermite orthonormal polynomials

{ }ψ ψ ψ ψ= ˜ ( ˜ ˜ ) ∈ ( )ϕ | |
| |

| | | | | | | | j: / , , 29u u u u u
u

j j j j 0u u u u uX

that are consistent with the probability measure of Xu. From these
orthonormal polynomials and the function y, the integrals | |Iu j u and

| | | |Ju vj k,u v
were exactly calculated from their definitions in Eqs. (19c)

and (19d). Using S¼2, m¼2 in Eq. (21) and these two sets of in-
tegrals, a system of linear equations was generated and then
solved to determine exactly the expansion coefficients | |Cu j u for
∅ ≠ ⊆ { }u 1, 2, 3 and ∥ ∥ ≤| | mju 1 . Since y is a sum of at most bi-
variate, second-order polynomials, the selection of S¼2 and m¼2
is adequate to reproduce y from the PDD approximation. Conse-
quently, the sensitivity estimates generated from the original
function y and its bivariate, second-order PDD approximation are

identical, that is, ¯ = ˜
{ }
( )

{ }
( )

H Hi f
L

i f
L

, ,
,2,2

.
For mixed correlation (Case 3), the bivariate, second-order

(S¼2, m¼2) PDD approximation and the corresponding surrogate
data set ξ{ ˜ }( ) ( )

= …x ,l
S m

l
l L, 1, , were employed in Eqs. (22a) and (22b) to
Fig. 1. Various KDE-generated probability density functions in Example 1 using the biv
densities of ỸS m, for =L 104 , 106, and 108; (b) joint density of ( ˜ )X Y, S m1 , for =L 104; (c)
obtain the KDE-generated densities ξ¯ ( )˜fYS m,
of ỸS m, and ξ¯ ( )˜f x ,X Y, 1S m1 ,

of ( ˜ )X Y, S m1 , . Fig. 1(a) presents the marginal densities obtained for
three progressively larger sample sizes: =L 104, =L 106, and

=L 108. The joint densities, also produced for the same three
sample sizes, are depicted in Figs. 1(b)–(d), respectively. The joint
densities involving the two other input variables are similar and
are, therefore, not shown or discussed. When the sample size in-
creases, all KDE-generated densities, whether marginal or joint,
converge as expected. In fact, the probability densities obtained for

=L 106 and =L 108 are virtually indistinguishable to the naked
eye.

Given a sample size L of a surrogate data set, define for the
input variable Xi the 1 error

=
˜ − ˜

˜
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,
, ,

,
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in estimating the univariate f-sensitivity index by the S-variate,
mth-order PDD approximation and KDE, that is, by using Eq. (23).
Since there exists no exact solution of { }H i f, , the estimated PDD
solution obtained for the larger sample size was used as the re-
ference solution. Again, for mixed correlation (Case 3), Figs. 2(a)–
(c) display the 1 errors ( )ei

L S m, , committed by the bivariate, second-
order PDD approximation in estimating the univariate f-sensitivity
indices { }H i TV, , { } ′H i KL, , and { }H i H, , respectively, for all three variables.
The errors emanating from the PDD approximation drop with the
sample size regardless of the variant of sensitivity indices
examined.

Table 2 presents the PDD estimates ˜
{ }
( )

H i TV
L S m

,
, , , ˜

{ } ′
( )

H i KL
L S m

,
, , , and ˜

{ }
( )

H i H
L S m

,
, ,

of the univariate sensitivity indices of Y for three input variables,
ariate, second-order ( = = )S m 2 PDD method for mixed correlation; (a) marginal
joint density of ( ˜ )X Y, S m1 , for =L 106; (d) joint density of ( ˜ )X Y, S m1 , for =L 108.
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Fig. 2. 1 errors committed by the bivariate, second-order ( = =S m 2) PDD method in estimating three variants of sensitivity indices in Example 1 for mixed correlation;
(a) total variational sensitivity index { }H i TV, ; (b) Kullback–Leibler sensitivity index { } ′H i KL, ; (c) Hellinger sensitivity index { }H i H, .
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obtained using S¼2, m¼2, and =L 108. The results are tabulated
for all three cases of correlation properties. The parenthetical
numbers indicate relative rankings of all three variables, except
when there is a tie. For identical correlation structures, such as the
equally correlated case, all three variables are equally important,
forming a three-way tie, as y is a symmetric function. For the
positively correlated case, where the correlation coefficient in-
creases monotonically from 1/5 to 4/5, X1 and X3 are the least and
the most important variables, respectively, while the significance
of X2 is intermediary. The order of ranking should reverse if the
correlation coefficient decreases monotonically. When the
Table 2

Bivariate, second-order ( = = )S m 2 PDD estimates of the total variational, Kullback–Leib

Random variable Case 1: equal correlation Case 2: positive c
ρ ρ ρ( = = = )1/512 13 23 ρ ρ( = =1/5, 212 13

˜{ }
( )

H i TV
L S m

,
, , ˜{ } ′

( )
H i KL

L S m
,
, , ˜{ }

( )
H i H

L S m
,
, , ˜{ }

( )
H i TV

L S m
,
, ,

H̃

X1 0.569 (1) 0.328 (1) 0.168 (1) 0.550 (3) 0
X2 0.569 (1) 0.328 (1) 0.168 (1) 0.789 (2) 0
X3 0.569 (1) 0.328 (1) 0.168 (1) 0.944 (1) 0
correlation coefficients are both positive and negative, that is, for
the mixedly correlated case, X1 and X2 become the most and the
least important variables, respectively. Clearly, the correlation
structure heavily influences global sensitivity analysis and, there-
fore, rankings of input variables.

4.2. Example 2

The next example originates from Bayesian sensitivity analysis
involving a mixture of trigonometric and quadratic polynomial
functions, described by [39]
ler, and Hellinger sensitivity indices in Example 1 with =L 108.

orrelation Case 3: mixed correlation
ρ = )/5, 4/523 ρ ρ ρ( = − = = − )1/5, 2/5, 4/512 13 23

{ } ′
( )
i KL
L S m

,
, , ˜{ }

( )
H i H

L S m
,
, , ˜{ }

( )
H i TV

L S m
,
, , ˜{ } ′

( )
H i KL

L S m
,
, , ˜{ }

( )
H i H

L S m
,
, ,

.301 (3) 0.158 (3) 0.869 (1) 0.737 (1) 0.353 (1)

.604 (2) 0.306 (2) 0.158 (3) 0.043 (3) 0.018 (3)

.899(1) 0.426 (1) 0.347 (2) 0.150 (2) 0.071 (2)
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( ) = + + + ( )y X a X a X a X X MXsin cos , 31T T T T
1 2 3

where = ( … ) ∈ X XX , , T
1 15

15 is a 15-dimensional standard Gaussian
input vector (N¼15) with mean vector [ ] = { … } = ∈ X 00, , 0 :T 15

and covariance matrix [ ] = [ … ]= ∈ × XX Idiag 1, , 1 :T 15 15;
=( … ) ∈ X XXsin : sin , , sin T

1 15
15; =( … ) ∈ X XXcos : cos , , cos T

1 15
15;

and ∈ ai
15, =i 1, 2, 3, and ∈ ×M 15 15 are coefficient vectors and

matrix, respectively, obtained from Oakley and O'Hagan's paper [39].
The coefficient vectors were selected so that the first five variables
are unimportant, the next five variables are slightly important, and
the last five variables are very important. The coefficient matrix re-
flects interactive effects from all pairs of random variables. The
function y in Eq. (31) has been used for variance-based global sen-
sitivity analysis [39,40].

Although → y: 15 , each term on the right side of Eq. (31)
includes at most bivariate combinations of random variables.
Therefore, a bivariate PDD approximation (S¼2) is adequate and
was employed to perform sensitivity analysis. The expansion
coefficients were estimated using Hermite polynomials of largest
orders ≤ ≤m2 6 and dimension-reduction numerical integration
(Gauss–Hermite quadrature rule) with = =R S 2 and = +n m 1.
Two bivariate PDD approximations with two distinct values of
m¼2 and m¼6 and the associated surrogate data sets ( = )L 106

were employed to calculate by KDE the following PDD-generated
densities: two marginal densities ξ¯ ( )˜fYS m,

of ỸS m, and two joint

densities ξ¯ ( )˜f x ,X Y, 1S m1 ,
of ( ˜ )X Y, S m1 , . For comparisons, both the mar-

ginal density ξ¯ ( )fY of Y and the joint density ξ¯ ( )f x ,X Y, 11
of ( )X Y,1

were also computed by KDE using the original function y and the
corresponding data set ( = )L 106 . Fig. 3(a) contrasts the two PDD-
Fig. 3. Various KDE-generated probability density functions in Example 2 with =L 106; (
order (S¼2, m¼6) PDD approximations, and the original function; (b) joint density usin
bivariate, sixth-order (S¼2, m¼6) PDD approximation; (d) joint density using the origi
generated marginal densities with the density generated from the
original function y. Similarly, Figs. 3(b) and (c) portray the two
PDD-generated joint densities, whereas Fig. 3(d) depicts the joint
density of ( )X Y,1 obtained using the original function y. For larger
m, that is, for m¼6, all KDE-generated marginal and joint den-
sities, whether obtained from the PDD approximation or the ori-
ginal function, are practically coincident.

Table 3 presents the estimates ˜
{ }
( )

H i TV
L S m

,
, , , ˜

{ } ′
( )

H i KL
L S m

,
, , , and ˜

{ }
( )

H i H
L S m

,
, , of the

univariate sensitivity indices of Y for all 15 variables using the
bivariate PDD method (S¼2) for three polynomial orders, m¼2,
m¼4, and m¼6, including the requisite numbers of original
function evaluations. For comparison, the estimates of respective
sensitivity indices determined from the original function y, that is,
¯
{ }
( )H i TV
L

, , ¯
{ } ′
( )H i KL
L

, , and ¯
{ }
( )H i H
L

, , are also enumerated in Table 3. In all cases,
the sample size =L 106. When m¼2, the lowest polynomial order
selected, there exist some discrepancies between the indices es-
timated by the PDD and the original function, although the relative
importance of input variables is clearly recognized already. When
m increases, the accuracy of the estimated indices improves ra-
pidly, however, with increased computational demand. When
m¼6, the largest polynomial order considered, the PDD-estimated
indices are nearly identical to those generated from the original
function. The computational efforts by the PDD method, measured
in terms of the number of original function evaluations, vary from
451 to 3871, depending on the values of m chosen; nonetheless,
they are markedly lower than the 106 function evaluations re-
quired in generating the benchmark results of Table 3. Therefore,
for sensitivity analysis of complex systems, where y is expensive to
evaluate, generating sensitivity indices solely from the original
a) marginal densities using bivariate, second-order (S¼2, m¼2) and bivariate, sixth-
g bivariate, second-order (S¼2, m¼2) PDD approximation; (c) joint density using
nal function.



Table 3
Estimates of the total variational, Kullback–Leibler, and Hellinger sensitivity indices in Example 2 using various bivariate PDD (S¼2) approximations and original function

with =L 106.

Random
variable

˜ ¯{ }
( )

{ }
( )H H,i TV

L S m
i TV
L

,
, ,

,
˜ ¯{ } ′

( )
{ } ′
( )H H,i KL

L S m
i KL
L

,
, ,

,
˜ ¯{ }

( )
{ }
( )H H,i H

L S m
i H
L

,
, ,

,

(Total variational sensitivity index) (Kullback–Leibler sensitivity index) (Hellinger sensitivity index)

PDD
(m¼2)

PDD
(m¼4)

PDD
(m¼6)

Orig. func. PDD
(m¼2)

PDD
(m¼4)

PDD
(m¼6)

Orig. func. PDD
(m¼2)

PDD
(m¼4)

PDD
(m¼6)

Orig. func.

X1 0.0643 0.0609 0.0607 0.0606 0.0103 0.0098 0.0097 0.0097 0.0028 0.0025 0.0025 0.0025
X2 0.0442 0.0379 0.0377 0.0377 0.0078 0.0073 0.0073 0.0072 0.0017 0.0014 0.0014 0.0014
X3 0.0681 0.0625 0.0621 0.0620 0.0132 0.0121 0.0120 0.0120 0.0039 0.0034 0.0034 0.0034
X4 0.0608 0.0558 0.0556 0.0555 0.0086 0.0080 0.0080 0.0080 0.0021 0.0018 0.0018 0.0018
X5 0.0550 0.0491 0.0489 0.0487 0.0070 0.0067 0.0067 0.0067 0.0015 0.0013 0.0013 0.0013
X6 0.1131 0.1146 0.1151 0.1151 0.0190 0.0183 0.0182 0.0182 0.0071 0.0068 0.0067 0.0067
X7 0.1142 0.1143 0.1147 0.1147 0.0201 0.0191 0.0191 0.0191 0.0075 0.0071 0.0071 0.0071
X8 0.1236 0.1251 0.1256 0.1257 0.0222 0.0216 0.0215 0.0215 0.0083 0.0081 0.0080 0.0080
X9 0.1371 0.1366 0.1371 0.1372 0.0289 0.0278 0.0278 0.0278 0.0114 0.0110 0.0110 0.0110
X10 0.0870 0.0884 0.0889 0.0889 0.0127 0.0127 0.0127 0.0127 0.0042 0.0041 0.0041 0.0041
X11 0.2249 0.2323 0.2335 0.2337 0.0639 0.0622 0.0621 0.0621 0.0280 0.0280 0.0279 0.0279
X12 0.2431 0.2604 0.2630 0.2633 0.0741 0.0769 0.0772 0.0772 0.0329 0.0354 0.0356 0.0356
X13 0.2154 0.2299 0.2318 0.2320 0.0608 0.0618 0.0618 0.0618 0.0265 0.0278 0.0279 0.0279
X14 0.2127 0.2261 0.2283 0.2286 0.0571 0.0591 0.0593 0.0593 0.0248 0.0264 0.0265 0.0265
X15 0.2382 0.2521 0.2543 0.2545 0.0703 0.0722 0.0722 0.0722 0.0311 0.0329 0.0330 0.0329
No. of func.

eval.a
451 1741 3871 106 451 1741 3871 106 451 1741 3871 106

a The number of function evaluations for a bivariate, mth-order PDD approximation is ( − )( − ) + ( − ) + = + +N N n N n m m1 1 /2 1 1 105 15 12 2 , where N¼15, = +n m 1.
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function will not be practical, and an approach invoking the PDD
method becomes necessary; it will be demonstrated next.

4.3. Example 3

The final example illustrates the PDD method for sensitivity
analysis of an industrial-scale, solid-mechanics problem. It involves
FEA of a leverarm in a wheel loader, depicted in Fig. 4(a), commonly
used in the heavy construction industry. The loading and boundary
conditions of a single leverarm are shown in Fig. 4(b). Figs. 4(c)–(d)
present a computer-aided design model and a finite-element mesh
comprising 48,312 second-order tetrahedral elements of the lever-
arm, respectively. Two random loads PH and PV acting at pin E can
be viewed as input loads due to other mechanical components of
the wheel loader. The essential boundary conditions, sketched in
Fig. 4(b), define random prescribed displacements uxF and uyF at pin
F and uxG, and uyG at pin G. The leverarm is made of cast steel with
random Young's modulus E and random Poisson's ratio ν. The input
vector ν= ( ) ∈ P P E u u u uX , , , , , , ,H V xF yF xG yG

8 comprises eight in-
dependent random variables with their statistical properties spe-
cified in Table 4. The von Mises stress and maximum principal
strain distributions in Figs. 4(e) and (f), respectively, calculated for
an arbitrarily selected sample input, are commonly used for ex-
amining material yielding or fatigue damage in mechanical systems.
Several PDD approximations with measure-consistent orthogonal
polynomials and Gauss quadrature rules were employed for den-
sity-based sensitivity analysis of a strain response.

Unlike the previous two examples, the PDD truncation para-
meters S and m for this complex problem cannot be ascertained a
priori. Therefore, a limited convergence study was performed by
progressively increasing the values of S (e.g., S¼1, 2) and m (e.g.,
m¼2, 3) and then watching what happens to the final result. A more
rigorous approach entails an adaptive truncation strategy, where
higher-variate and/or higher-order PDD component functions are
automatically drawn in by fulfilling a judicious set of pruning criteria
[41]. No adaptive strategy was employed in this work.

Table 5 presents the univariate (S¼1) and bivariate (S¼2) PDD

estimates ˜
{ }
( )

H i TV
L S m

,
, , , ˜

{ } ′
( )

H i KL
L S m

,
, , , and ˜

{ }
( )

H i H
L S m

,
, , of univariate sensitivity
indices of the maximum principal strain for all eight variables. The
PDD expansion coefficients were estimated by S-variate dimen-
sion-reduction integration, requiring one- (S¼1) or at most two-
dimensional (S¼2) Gauss quadratures. The order m of orthogonal
polynomials and the number n of Gauss quadrature points in the
dimension-reduction numerical integration are ≤ ≤m2 3 and

= +n m 1, respectively. The indices are broken down according to
the choice of selecting S¼1, 2 and m¼2, 3. In all PDD approx-
imations, the sample size =L 106. The sensitivity indices by the
PDD method in Table 5 for each variant quickly converge with
respect to S and/or m. Since FEA is employed for response eva-
luations, the computational effort of the PDD method comes pri-
marily from numerically determining the PDD expansion coeffi-
cients. The expenses involved in estimating the PDD coefficients
vary from 25 to 33 FEA for the univariate PDD approximation and
from 277 to 481 FEA for the bivariate PDD approximation, de-
pending on the two values of m. Based on the sensitivity indices in
Table 5, the horizontal boundary conditions (uxF and uxG) are
highly important; the vertical load (PV), elastic modulus (E), and
vertical boundary conditions (uyF and uyG) are slightly important;
and the horizontal load (PH) and Poisson's ratio (ν) are unim-
portant in influencing the maximum principal strain. All three
variants of the sensitivity indices lead to the same conclusion.

Note that the respective univariate and bivariate PDD solutions
in this particular problem are practically the same. Therefore, the
univariate PDD solutions are not only accurate, but also highly
efficient. This is because of a realistic example chosen, where the
individual main effects of input variables on the maximum prin-
cipal strain are dominant over their interactive effects. Finally, this
example also demonstrates the non-intrusive nature of the PDD
method, which can be easily integrated with external commercial
codes for analyzing large-scale engineering systems.
5. Conclusion

A surrogate method, referred to as the PDD method, is pro-
posed to estimate a general class of density-based f-sensitivity
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Fig. 4. FEA of a leverarm; (a) two leverarms in a wheel loader; (b) geometry and boundary conditions; (c) computer-aided design model; (d) finite-element mesh (48,312
elements); (e) von Mises stress contours for a sample input; (f) maximum principal strain contours for a sample input.

Table 4
Statistical properties of input variables in Example 3.

Random variable Probability distribution Mean St. dev.

PH
a , kN Lognormal 507.69 76.15

PV
a, kN Lognormal 1517.32 227.60

E, GPa Lognormal 203 10.15
ν Lognormal 0.3 0.015
uxF, mm Uniformb �5 5/ 3
uyF, mm Uniformc 5 5/ 3
uxG, mm Uniformc 5 5/ 3
uyG, mm Uniformb �5 5/ 3

a To be distributed equally (halved) on the front and back sides of pin E.
b Uniformly distributed over [ − ]10, 0 mm; to be applied on both sides.
c Uniformly distributed over [ ]0, 10 mm; to be applied on both sides.
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indices. The method is based on PDD approximation of a high-
dimensional stochastic response, forming a surrogate input–out-
put data set; kernel density estimations of output probability
density functions from the surrogate data set; and subsequent
Monte Carlo integration for estimating the f-sensitivity index.
Developed for an arbitrary convex function f, the method is cap-
able of calculating a wide variety of sensitivity or importance
measures, including the mutual information, squared-loss mutual
information, and 1-distance-based importance measure. In ad-
dition, the method can account for dependent as well as in-
dependent probability distributions of input random variables. The
PDD method, predicated on an efficient surrogate approximation,
becomes increasingly relevant when analyzing high-dimensional
complex systems, demanding expensive function evaluations.
Therefore, the computational burden of existing methods that



Table 5

Estimates of the total variational, Kullback–Leibler, and Hellinger sensitivity indices in Example 3 using various PDD approximations with =L 106.

Random variable ˜{ }
( )

H i TV
L S m

,
, , ˜{ } ′

( )
H i KL

L S m
,
, , ˜{ }

( )
H i H

L S m
,
, ,

(Total variational sensitivity index) (Kullback–Leibler sensitivity index) (Hellinger sensitivity index)

Univariate PDD Bivariate PDD Univariate PDD Bivariate PDD Univariate PDD Bivariate PDD
(S¼1)a (S¼2)b (S¼1)a (S¼2)b (S¼1)a (S¼2)b

m¼2 m¼3 m¼2 m¼3 m¼2 m¼3 m¼2 m¼3 m¼2 m¼3 m¼2 m¼3

PH 0.0204 0.0204 0.0204 0.0204 0.0046 0.0046 0.0046 0.0046 0.0003 0.0003 0.0003 0.0003
PV 0.0856 0.0856 0.0843 0.0843 0.0173 0.0172 0.0166 0.0166 0.0056 0.0056 0.0053 0.0053
E 0.0333 0.0332 0.0328 0.0328 0.0060 0.0060 0.0059 0.0059 0.0009 0.0009 0.0009 0.0009
ν 0.0181 0.0181 0.0177 0.0178 0.0044 0.0044 0.0044 0.0044 0.0002 0.0002 0.0002 0.0002
uxF 0.4251 0.4249 0.4231 0.4224 0.3604 0.3604 0.3622 0.3613 0.1120 0.1118 0.1108 0.1101
uyF 0.0845 0.0845 0.0846 0.0847 0.0069 0.0069 0.0070 0.0070 0.0046 0.0046 0.0046 0.0046
uxG 0.4249 0.4250 0.4233 0.4236 0.3597 0.3597 0.3614 0.3606 0.1117 0.1118 0.1110 0.1110
uyG 0.0859 0.0859 0.0860 0.0862 0.0070 0.0070 0.0071 0.0071 0.0046 0.0046 0.0046 0.0046
No. of FEA 25 33 277 481 25 33 277 481 25 33 277 481

a The number of function evaluations for a univariate, mth-order PDD approximation is + = ( + ) +Nn m1 8 1 1, where N¼8, = +n m 1.
b The number of function evaluations for a bivariate, mth-order PDD approximation is ( − ) + + = ( + ) + ( + ) +N N n Nn m m1 /2 1 28 1 8 1 12 2 , where N¼8, = +n m 1.
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mandate original function evaluations can be significantly deflated
by the PDD method. Numerical results illuminate the accuracy,
computational efficiency, and convergence properties of the pro-
posed method in computing sensitivity indices derived from three
prominent divergence or distance measures. Finally, a successful
evaluation of an FEA-based sensitivity analysis of a leverarm de-
monstrates the ability of the proposed method in solving large-
scale practical engineering problems.
References

[1] Sobol IM. Global sensitivity indices for nonlinear mathematical models and
their monte carlo estimates. Math Comput Simul 2001;55:271–80.

[2] Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, et al. Global
sensitivity analysis: the primer.West Sussex: Wiley; 2008.

[3] Rahman SA. Generalized ANOVA dimensional decomposition for dependent
probability measures. SIAM/ASA J Uncertain Quantif 2014;2:670–97.

[4] Sudret B. Global sensitivity analysis using polynomial chaos expansions. Reliab
Eng Syst Saf 2008;93:964–79.

[5] Borgonovo E. A new uncertainty importance measure. Reliab Eng Syst Saf
2007;92:771–84.

[6] Rahman S. The f-Sensitivity index. SIAM/ASA J Uncertain Quantif 2016;4:130–
62.

[7] Borgonovo E, Castaings W. Tarantola, model emulation and moment-in-
dependent sensitivity analysis: an application to environmental modeling.
Environ Model Softw 2012;34:105–15.

[8] Ratto M, Pagano A. Using recursive algorithms for the efficient identification of
smoothing spline ANOVA models. Adv Stat Anal 2010;94:367–88.

[9] Borgonovo E, Hazen G, Plischke E. A common rationale for global sensitivity
measures and their estimation. Risk Anal 2016:1–24. http://dx.doi.org/10.1111/
risa.12555.

[10] Cover TM, Thomas JA. Elements of information theory.New York, NY: John
Wiley and Sons, Inc; 1991.

[11] Suzuki T, Sugiyama M, Kanamori T, Sese, J. Mutual information estimation
reveals global associations between stimuli and biological processes. BMC
Bioinform 2009;10:S52:1–12.

[12] Liu H, Chen W, Sudjianto A. Relative entropy based method for probabilistic
sensitivity analysis in engineering design. ASME J Mech Des 2006;128: p. 326–
36.

[13] Greegar G, Manohar CS. Global response sensitivity analysis using probability
distance measures and generalization of Sobol's analysis. Probab Eng Mech
2015;41:21–33.

[14] Greegar G, Manohar CS. Global response sensitivity analysis of uncertain
structures. Struct Saf 2016;58:94–104.

[15] Abhinav S, Manohar CS. Global response sensitivity analysis of randomly ex-
cited dynamic structures. ASCE J Eng Mech 2015;142:04015094-1–10.

[16] Liu Q, Homma T. A new computational method of a moment-independent
uncertainty importance measure. Reliab Eng Syst Saf 2009;94:1205–11.

[17] Wei P, Lu Z, Yuan X. Monte Carlo simulation for moment-independent sen-
sitivity analysis. Reliab Eng Syst Saf 2013;110:60–7.
[18] Csiszár I. Eine informationstheoretische ungleichung und ihre anwendung auf
den beweis der ergodizitat von markoffschen ketten. Magyar Tud Akad Mat
Kutato Int Kozl 1963;8:85–108.

[19] Csiszár I. Information-type measures of difference of probability distributions
and indirect observation. Stud Sci Math Hung 1967;2:299–318.

[20] Ali SM, Silvey SD. A general class of coefficients of divergence of one dis-
tribution from another. J R Stat Soc—Ser B: Methodol 1966;28:131–42.

[21] Morimoto T. Markov processes and the H-theorem. J Phys Soc Jpn
1963;18:328–31.

[22] Kullback S, Leibler AS. On information and sufficiency. Ann Math Stat
1951;22:79–86.

[23] Kolmogorov AN. A new invariant for transitive dynamical system. Dokl Akad
Nauk USSR 1957;119:861–9.

[24] Hellinger E. Neue begründung der theorie quadratischen formen von un-
endlichen vielen veränderlichen. J Reine Angew Math 1909;136:210–71.

[25] Pearson K. On the criterion that a given system of deviations from the prob-
able in the case of correlated system of variables is such that it can be rea-
sonable supposed to have arisen from random sampling. Phil Mag
1900;50:157–72.

[26] Dragomir SS. Inequalities for Csiszár f-Divergence in information theory.
Edited monograph, Victoria University, Melbourne, Australia; 2000. On line:
〈http://rgmia.vu.edu.au〉.

[27] Vajda I. On f-divergence and singularity of probability measures. Period Math
Hung 1972;2:223–34.

[28] Jeffreys H. An invariant form for the prior probability in estimating problems.
Proc R Soc Lond 1946;186A:453–61.

[29] Topsoe F. Some inequalities for information divergence and related measures
of discrimination. Res Rep Coll RGMIA 1999;2:85–98.

[30] Wiener N. The homogeneous chaos. Am J Math 1938;60:897–936.
[31] Babuška I, Nobile F, Tempone R. A stochastic collocation method for elliptic

partial differential equations with random input data. SIAM J Numer Anal
2007;45:1005–34.

[32] Rahman S. Extended polynomial dimensional decomposition for arbitrary
probability distributions. J Eng Mech 2009;135(12):1439–51.

[33] Rahman S. A polynomial dimensional decomposition for stochastic comput-
ing. Int J Numer Methods Eng 2008;76:2091–116.

[34] Rahman S, Yadav V. Orthogonal polynomial expansions for solving random
eigenvalue problems. Int J Uncertain Quantif 2011;1:163–87.

[35] Xu H, Rahman S. A generalized dimension-reduction method for multi-di-
mensional integration in stochastic mechanics. Int J Numer Methods Eng
2004;61:1992–2019.

[36] Rahman S. Approximation errors in truncated dimensional decompositions.
Math Comput 2014;83(290):2799–819.

[37] Rosenblatt M. Remarks on some non-parametric estimates of a density
function. Ann Math Stat 1956;27:832–7.

[38] Parzen E. On estimation of a probability density function and mode. Ann Math
Stat 1962;33:1065–76.

[39] Oakley J, O'Hagan A. Probabilistic sensitivity analysis of complex models: a
Bayesian approach. J R Stat Soc: Ser B 2004;66:751–69.

[40] Rahman S. Global sensitivity analysis by polynomial dimensional decom-
position. Reliab Eng Syst Saf 2011;96(7):825–37.

[41] Yadav V, Rahman S. Adaptive-sparse polynomial dimensional decomposition
for high-dimensional stochastic computing. Comput Methods Appl Mech Eng
2014;274:56–83.

http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref1
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref1
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref1
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref2
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref2
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref4
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref4
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref4
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref5
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref5
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref5
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref7
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref7
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref7
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref7
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref8
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref8
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref8
http://dx.doi.org/10.1111/risa.12555
http://dx.doi.org/10.1111/risa.12555
http://dx.doi.org/10.1111/risa.12555
http://dx.doi.org/10.1111/risa.12555
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref10
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref10
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref13
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref13
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref13
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref13
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref14
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref14
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref14
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref15
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref15
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref15
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref16
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref16
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref16
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref17
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref17
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref17
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref18
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref18
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref18
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref18
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref19
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref19
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref19
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref20
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref20
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref20
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref21
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref21
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref21
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref22
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref22
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref22
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref23
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref23
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref23
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref24
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref24
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref24
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref25
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref25
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref25
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref25
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref25
http://rgmia.vu.edu.au
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref27
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref27
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref27
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref29
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref29
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref29
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref30
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref30
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref31
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref31
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref31
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref31
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref32
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref32
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref32
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref33
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref33
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref33
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref34
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref34
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref34
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref35
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref35
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref35
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref35
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref36
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref36
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref36
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref37
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref37
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref37
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref38
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref38
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref38
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref39
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref39
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref39
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref40
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref40
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref40
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref41
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref41
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref41
http://refhub.elsevier.com/S0951-8320(16)30207-1/sbref41

	A surrogate method for density-based global sensitivity analysis
	Introduction
	A general sensitivity measure
	f-Divergence
	f-sensitivity index
	General properties
	Special cases
	Univariate index

	The PDD method
	PDD approximation of stochastic response
	Kernel density estimation
	Calculation of sensitivity index

	Numerical examples
	Example 1
	Example 2
	Example 3

	Conclusion
	References




