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Abstract This paper presents a new univariate decompo-
sition method for design sensitivity analysis and reliability-
based design optimization of mechanical systems subject to
uncertain performance functions in constraints. The method
involves a novel univariate approximation of a general
multivariate function in the rotated Gaussian space for
reliability analysis, analytical sensitivity of failure proba-
bility with respect to design variables, and standard
gradient-based optimization algorithms. In both reliability
and sensitivity analyses, the proposed effort has been
reduced to performing multiple one-dimensional integra-
tions. The evaluation of these one-dimensional integrations
requires calculating only conditional responses at selected
deterministic input determined by sample points and
Gauss—Hermite integration points. Numerical results indi-
cate that the proposed method provides accurate and
computationally efficient estimates of the sensitivity of
failure probability, which leads to accurate design optimi-
zation of uncertain mechanical systems.
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1 Introduction

Reliability and optimization are two key elements of
engineering design of structural and mechanical systems.
Reliability-based design optimization (RBDO) is a mathe-
matical framework for solving optimization problems in the
presence of uncertainty, typically manifested by probabilis-
tic description embedded in objective and/or constraint
functions. With new models and formulations appearing
almost every year, RBDO has, indeed, evolved as a viable
paradigm for engineering design under uncertainty.
Existing RBDO processes involving constraints with
random description can be broadly classified based on the
method employed in performing the underlying reliability
analysis: (1) the first-order reliability method (FORM,;
Enevoldsen and Sorensen 1994; Kuschel and Rackwitz
1997; Kirjner-Neto et al. 1998; Chiralaksanakul and
Mahadevan 2005; Tu et al. 1999; Agarwal and Renaud
2006) and (2) simulation methods (Royset and Polak 2004;
Qu and Haftka 2004). The FORM-based approach involves
linearization of the performance function associated with
each constraint at a most probable point (MPP), which is
located by solving a deterministic constrained optimization
problem. A traditional FORM-based optimization requires
nested design and reliability iteration loops and, therefore,
constitutes a double loop (Enevoldsen and Sorensen 1994).
For the double-loop RBDO, two equivalent approaches,
known as the reliability index and the performance measure
approaches, have emerged (Tu et al. 1999). In fact, most
double-loop methods available today belong to one of these
two approaches. Nevertheless, a double-loop method is
expensive because, for each design (outer) iteration, a set of
reliability (inner) iterations involving costly function
evaluations has to be generated for locating MPP. To
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overcome high computational expense, single-loop formu-
lations exploiting the Karush—Kuhn-Tucker optimality
condition at MPP have appeared (Kuschel and Rackwitz
1997; Liang et al. 2004). These single-loop methods, which
satisfy constraints only at an optimal point, significantly
improve the efficiency of an RBDO process. To avoid
nested loops, a sequential optimization method has also
been introduced (Du and Chen 2004). However, a funda-
mental requirement of existing double- and single-loop
methods is FORM, which may provide inaccurate reliabil-
ity estimates for highly nonlinear performance functions. In
fact, FORM and its quadratic counterpart, the second-order
reliability method (SORM), have two major sources of
errors. First, FORM/SORM provide strictly asymptotic
solutions that are valid and useful when the distance
between the origin and MPP approaches infinity. For non-
asymptotic applications involving a highly nonlinear
performance function, its linear or quadratic approximation
may not be adequate; therefore, resultant FORM/SORM
predictions should be interpreted with caution (Bjerager
1988; Nie and Ellingwood 2000). Second, if multiple MPPs
exist in either asymptotic or non-asymptotic applications,
classical FORM/SORM may yield erroneous failure prob-
ability estimates (Der Kiureghian and Dakessian 1998).
Therefore, methods that can account for one or both sources
of these potential errors are required. Indeed, recent results
from Zou and Mahadevan (2006) and the present work
show that FORM-based RBDO processes may produce
infeasible or inaccurate designs. In contrast, simulation-
based RBDO approaches, such as those employing Monte
Carlo simulation, do not exhibit such limitations and,
therefore, can be utilized for highly accurate reliability
analysis. However, simulation-based RBDO methods gen-
erally require considerably more extensive calculations than
the former methods and are consequently limited to solving
simple mathematical problems.

Recently, the authors have developed new decomposi-
tion methods for solving highly nonlinear reliability
problems (Xu and Rahman 2005; Rahman and Wei 2006;
Wei and Rahman 2007). A major advantage of these
decomposition methods, based on the mean point (Xu and
Rahman 2005) or MPP (Rahman and Wei 2006; Wei and
Rahman 2007) of random input as reference points, over
FORM/SORM is that higher-order approximations of
performance functions can be achieved using function
values alone. Employing the mean point as the reference
point in the decomposition methods has the advantage that
a performance function can be approximated without
requiring the MPP, which can sometimes be difficult to
locate for a certain class of reliability problems. However,
the mean-point-based decomposition methods may also
require bivariate or higher-variate approximations to ade-
quately represent a performance function, leading to
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quadratic or higher-order cost scaling with respect to the
number of random variables. An attractive alternative is the
MPP-based univariate decomposition method that main-
tains a linear cost scaling, however, with the additional
expense of identifying the MPP. In fact, the MPP-based
univariate method developed in authors’ previous work was
demonstrated to yield both accurate and computationally
efficient solutions of reliability. The present work extends
previous work in solving RBDO problems.

This paper presents a univariate decomposition method
for the RBDO of mechanical systems. The method involves
(1) higher-order, univariate approximation of performance
functions for reliability analysis; (2) analytical sensitivities
of failure probability with respect to design variables; and (3)
standard gradient-based optimization algorithms. Section 2
gives a brief exposition of the RBDO formulation studied.
Section 3 summarizes the MPP-based univariate decompo-
sition method, develops new sensitivity equations for design
variables, and presents a design optimization algorithm with
computational flow. Two sets of examples, each involving
mathematical functions and structural/solid-mechanics prob-
lems, illustrate the sensitivity analysis and RBDO method
developed in Section 4. Comparisons have been made with
alternative FORM/SORM and simulation-based methods to
evaluate the accuracy and computational efficiency of the
new RBDO method. Finally, Section 5 provides conclusions
and future outlook.

2 Reliability-based design optimization

2.1 General RBDO problem

The mathematical formulation of a general stochastic
optimization problem 7P; involving a single objective
function, and 1 < K < oo constraint functions entail the
statement

min co(d) = B[ fH(X;d)]
) deDCRM
P subjectto ¢x(d) = P[X € 2pi(d)] <p;k=1,--- K

dp <d;<dy;i=1,---,M
(1)

in which d ={dy,---,dy}’ €D is an M-dimensional
design vector with a non-empty, closed set D C RM; X =
{Xl,---,XN}T € RY is an N-dimensional random vector
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with the joint probability density function f,(x) defined on a
probability space (2, F, P), where Q is the sample space, F
is the o-algebra, and P is the probability measure;
Qpp(d) C2,k=1,---,K is the kth failure domain that
may depend on d, and 0 < p;, < 1,k =1,---,K are target
failure probabilities, and d;; and d;;; are respectively the
lower and upper bounds of d;. The design vector d can be
deterministic parameters of objective and constraint func-
tions and/or distribution parameters of X (e.g., mean of X ).
The objective function ¢, is obtained by applying an
appropriate risk functional B:f, .x on a random state
function fy(X; d). For example, a common characterization
of ¢y obtained by applying the expectation operator E :
fx = R is ¢y(d) = E] f/o(X;d)], which involves statistical
moment analysis. In contrast, the constraint function ¢,
depicted in (1), requires reliability analysis. For component-
reliability analysis, the failure domain 2p; = {x: g
(x;d) < 0}, where gi(x;d) is a single performance function
for each constraint. Similar performance functions can be
defined for a system-reliability analysis. Equation (1) defines
a generic, single-objective RBDO problem.

2.2 Special RBDO problem

In engineering applications, RBDO is commonly formulat-
ed assuming a deterministic state function as the objective
function and calculating component failure probabilities in
constraint functions, leading to problem P, with the
mathematical statement

p )

€

P2t q subjectto i (d) = Plgp(X;d) <0 <pik=1,---,K
dp <d;i<dy;i=1,---,M

(2)

which is a special case of problem P;. Solving problem P,
requires only component reliability analysis in evaluating
constraints and is the focus of the current paper. The scope
of problem P, can be expanded by including constraints
involving system-reliability analysis, which is not consid-
ered in the present study. The optimal solution is denoted
by d* € RM.

3 Univariate decomposition method

Consider a continuous, differentiable, real-valued perfor-
mance function gi(x;d) =0 that depends on x=

{xl,--~,xN}T S RY and d = {dl, s ,dM}T S RM. Ifu=
{uy, - 7uN}T e RY is the standard Gaussian space, let uf
denote the MPP or beta point, which is the closest point on
the limit-state surface to the origin. The MPP has a distance
Gi(d), which is commonly referred to as the Hasofer—Lind
reliability index (Madsen et al. 1986; Rackwitz 2001), is
determined by a standard, nonlinear, constrained optimiza-
tion. Construct an orthogonal matrix R; € RY*" whose Nth
column is af = u% /B, ie., Ry = [Ri;|af], where Ry €
RY*N-1 satisfies a*” Ry = 0 € R"*V~!. The matrix R,
can be obtained, for example, by the Gram—Schmidt
orthogonalization. For an orthogonal transformation

u=Ryv, let v, = {vk‘l, e ,vkﬁN}T cRY represent the

rotated Gaussian space with the associated MPP
T T

viE={vE v vE T =1{0,-+-,0,3,} . The trans-

formed limit states /i (w;d) =0 or yi(v;d) =0 are,
therefore, the maps of the original performance function
gk(x;d) = 0 in the standard Gaussian space (u space) and
the rotated Gaussian space (v, space), respectively, as
shown in Fig. 1 for N=2.

MPP-based
univariate method
U (1 (visd) = 0] Vi2
* Y,
'
/ .
| ./ Failure set
| Yived) <0
N I/
N\ \
B
Corn N\ 3(visd) =0
7~
Brr \\\\ —_ -
MPP (" orv,") \ SORM
AN - U
Vi1

Fig. 1 Various approximations of the performance function of the Ath
constraint
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3.1 Reliability analysis

3.1.1 MPP-based univariate decomposition of performance
function

Consider a univariate approximation of y;(v;d), denoted
by (Rahman and Wei 2006)

Vi s d) =1 (e, - views d)

N
= E Vi, (Vk,i;
i=1

where i (visd) = yi(0,---,0,8:d) and yi;(vess d) = i
(0,--+,0,v,,0 ,O,ﬂk, ),z =1, N are univariate com-
ponent functions. From the authors’ past work (Xu and
Rahman 2005), it can be shown that the univariate approx-
imation Yy 1(vk;d) leads to a residual error yi(vi;d)—
Vi1 (vesd), which includes contributions from terms of
dimension two and higher. For a sufficiently smooth
vi(vi;d) with a convergent Taylor series, the coefficients
associated with higher-dimensional terms are usually much
smaller than those associated with one-dimensional terms.
As such, higher-dimensional terms contribute less to the
function and, therefore, can be neglected. Nevertheless, (3)
includes all higher-order wunivariate terms. In contrast,
FORM entails a univariate approximation retaining only
linear terms. Hence, (3) should provide in general a higher-
order approximation of the performance function than
FORM. The curvature-fited SORM has cross-terms, but
is limited to a quadratic approximation. If the second-order
cross-terms are negligibly small, the univariate decomposi-
tion may also provide a better approximation than SORM.

d) — (N = D)yi(vi:d) (3)

3.1.2 Failure probability analysis for constraint evaluations

Because yy (vi;d) = 0, the univariate approximation in (3)
can be rewritten as

Via v d) =y (viws d +Zy/” Viisd (4)
where, due to the rotational transformation of the co-
ordinates (see Fig. 1), the Nth univariate component
function yg v (vk,v; d) is expected to be a linear or a weakly
nonlinear function of vy. In fact, y; v (vk,N; d) is linear with
respect to vy in classical FORM/SORM approximations of
a performance function in the v, space. Hence, consider a
linear approximation yey(vin:d) = Bi(d) + bro(d)+
by (d)viny and a quadratic approximation yj y (vka;d) =
Bi(d) + bro(d) + b (d)vin +bia(d)v? . respectively,
where coefficients by, € R;m =0,1,2 are obtained by
least-squares approximations from exact or numerically

simulated responses {y/c,N(v,({f})\,;d),~-~,yk.N<v,({'f})\,;d)} at n
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sample points along the v, coordinate. The function
v (veysd) also depends on 3, (d), which is included in
both approximations. Invoking these linear and quadratic
approximations of yy x (Vk,N; d) and noting that ¥} » follows
standard Gaussian distribution, the component failure
probability embedded in the kth constraint can be expressed
by (Wei and Rahman 2007)"

Ck(d) = P[yk(Vk;d) < 0] %P[j/\k_l(Vk;d) < O}

N-1
—Bid)=bro(d)= Y yii(Viisd)

i=1
Bl |1 (@)] ’

linear

1*’7k.z(d)/|b1\.z(d)‘
2

—by. b ) ‘
+E [‘D( : I(dH\/ d>2;.:(d<;i [ e +B(Vk dﬂ)} , quadratic
b (d)—\ /82 (d) -4t (d) [ 5y () +B(Vica) |
-E |:(D ( \/ - 2bi2(d)
(5)

where @(z) = (1/v27) [7__ exp (—&*/2)d¢ is the cumu-
lative d1str1but10n function of a standard Gaussian random
variable, I7k = {Vk,l, V- 1} is an N-1-dimensional
standard Gaussian random vector, and B Vk,d) =
byo(d)+ Zl | yk,(Vk,,d). Note that both expressions in
(5) provide higher-order estimates of the failure probability
than those provided by FORM/SORM if univariate com-
ponent functions yy; (vk7,»;d),i = 1,N — 1 are approximat-
ed by higher than second-order terms. Integrating with
respect to v = {Vi1, -, Vi1 }T e R¥! yields

fRJV*IfI)

exld) = 1=bi2(d) /| bia(d)|

2
b1 (d)+ /B2 | (d) 42 (d) 3 (@) +B(ead) \ V=L
+IRH¢( Saavats z)m(ii)( il ) IT ¢(vki)dvs,, quadratic

i=1
*f 5 b1 (d) = /B2 | (d)=4bia(d
RV 2bi2(d)

I

N-—1
D=bg )=y i) \ vy
[T o0kdve,

i=1

linear

b1 (d)|

Bi(d)+B(v:d

) T & (vis)dvi;
(6)

where ¢ (vi,i) = db(vi,) [dvii = (1/v2r) exp (2 /2) s
the probability density function of a standard Gauss1an
random variable. Regardless of the linear or quadratic
approximations, the constraint evaluation requires
performing multidimensional integrations over R !,

! Compared with the work of Wei and Rahman (2007), (5) contains
the, term, 3, (d) as a part of by and does not include the term
Vi (vk, ) which is zero.
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3.2 Design sensitivity analysis

In gradient-based optimization algorithms, derivatives of
both objective and constraint functions with respect to each
design variable are required. For problem P,, calculating
derivatives of the objective function is trivial. However, the
formulation of gradients for a constraint function is
dependent on how the underlying reliability analysis is
performed. A new, analytically derived sensitivity analysis
of general constraint functions ci(d);k =1,K was con-
ducted as follows.

The integrand of the multi-dimensional integration (6)
depends on (3, (d) and v (d), each of which in turn depends
on design d. By applying the chain rule in (6), the partial
derivative of the constraint function ¢ (d) with respect to a
design variable d; is

aCk(d) - aCk 8ﬂk Z aCk
ad, 98, ad, av,” d;

which involves four partial derivatives in the right-hand
side, described as follows. Like reliability analysis, (7) also
provides higher-order approximations of design sensitivities
than those calculated from FORM/SORM.

3.2.1 Partial derivative of ci(d) with respect to [

The evaluation of Jci(d)/0F; can be simplified by
assuming that the coefficients by o(d), by, (d), bro(d) of
ViN (vka;d), univariate functions ykﬂ-(vk‘,-;d);i =1,N—-1,
and hence, B(v;;d) do not change significantly with [;.
With the assumption of their constancy at a given design,

Ocy (d) —Bi(d) — bro(d) — ‘\‘Ziflym(w.;d) 1 N-l
=~ — = J)dvii
o5, /m' ¢ @] {bk,l(d)\l.l:[ & (Vi) dve.

(f)c; d ~ _b/c.l(
(r)//a(k):fRN’l - |:¢(
n ¢< by (d)— \/b (d)—4by»(d) B4 (d)+B(; d)])]

d)+ /b7 (d)=4bi2 (d) [0 (d) +B0isd)]
2012 (d)

2byo(d)

N-1

[T & (ves)dv.i,

1
\/b (d)=4bi 2 (d)[Be(d)+B(Visd)] i

©)

for linear and quadratic approximations, respectively, of
VN (vk,N; d). Both (8) and (9) require evaluating multivar-
iate integrals over RY ™!

3.2.2 Partial derivative of ci(d) with respect to vy ;
Using linear and quadratic approximations of yj y (vka; d) s

the partial derivatives of the failure probability defined by
the constraint function ¢, (d) with respect to vy ; are

9e, (d) Bd)=bro(d Zym(% a) | 2ulu)
k ~ _ Vk,j
Iy fRN?] ¢ |be1 (d | |b/(,1(:1)|
—Bi(d)=byo(d Zykz Vk,is ) N-1
—& ) iy | TT & (vies)dves
|b1 (@)] i=1
(10)

)+ /B () =4y 2 () [0y (d)+B(visd )] L")(:; )
) \/

2by2(d) )—4byo (d) (B, (d)+B(Vi:d))

*bA.I(d)Jr\/bf (d)—4b2(d
+ e (d) Vij H & (vei)dve
@)= 1, @-ahia@ ”(7”)
fR“‘"' ¢ 2bi2(d) —
—4bia(d) [ B (d)+B(v:d )|

B(%)] %
—bei(d)— [ B2 | (d)=4bes ()| B (d)+B (V) | N—
-2 ( \/ 2bi 2 (d) ) Vk,/:| \_i_[ll ¢(Vk.i)dvk.i

respectively, where yy;(vi;;d) /vy, can be calculated di-
rectly or by taking the partial derivative of the Lagrange
interpolation of yx x (vk7N; d) (Rahman and Wei 2006). Again,
both (10) and (11) involve multivariate integration over RV

3.2.3 Partial derivatives of i and vy ; with respect to d;
Of the two remaining gradients, the partial derivative of the

reliability index [, with respect to design variable, d; is
(Ditlevsen and Madsen 1996)

B thk(u;d)T aul 12)

ad; | [[Vh(u;d)]| od; |

where Vh; = {Ohy /Oy, - - 0y /Ouy}', ||| is the L,
norm, and the vector derivative du/dd; = {0u,/0d;,- - -,
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Ouy/8d;}" is obtained from the x—u transformation. In
(12), Vhy(u; d)T represents a vector of structural response
sensitivities, is problem dependent, and is calculated either
analytically or numerically by a finite-difference approxi-
mation. Finally, the partial derivative Ovy; / dd; included in
(7) is obtained from the x—v; transformation. Both x—u and
x—v,. transformations depend on the probability distribution
of X and, hence, on a specific RBDO problem to be solved.

3.3 Univariate numerical integration for reliability
and sensitivity analyses

The expressions of the constraint function in (6) and partial
derivatives in (8), (9), (10), and (11) involve multivariate
integrations over RY~!. A generic evaluation of these
integrals requires calculating [ov- ﬁ((ﬁ)Hﬁ\Sl & (Vi) dviis
where f; : RV"!' — R is the multivariate part of the
integrand, is non-negative, and depends on how univariate
component functions ygy (vy;d) are constructed. The
exact calculation of this integral is not possible in general.
Direct numerical integration is not efficient when the
dimension exceeds three or four.

In reference to (3), consider again a univariate approx-
imation of In[f;(%)] at ¥ ={0,---,0} =0eR"",
expressed by

In[f,(%,)] Zln[fk, vii)] — (N = 2)In [£,(0)] (13)

where fkﬁi(vk?l-) Efk(O7 -, 0, Vi is 0,---
component functions of f,(v,) and f,(0)
Hence,

Jr ) = exp {In[f, (v)]}
exp{Zln [sz sz (N=2)In[f,.(0 )]}

, 0) are univariate

IR

N—1
1;[1 ﬁc,i (Vk,i)
fi(0)¥72

yielding

N-1
/ T H¢ Vi, dvk:

i=1

+00
)"~ N2 H/ Jei ()0 (Vi) v (15)

@ Springer

which involves a product of N-1 univariate integrals. Using
(15) with appropriately defined f; (v;) in (6) and (8), (9), (10),
and (11), the failure probability and their derivatives are as
follows.

3.3.1 Linear approximation

N—-1
—+00 =B, (d)=b o (d)=y, (v
IT/< 45( @l . ))¢<vkvf)dvk~f

d —B,(d)=b, ,(d) N2
|b, (@)]

(16)

H f+oo ¢< |b ol rki(v}cyi;d)> ¢(Vk,i) dvk,i

Jc,(d) ~
o s @-b @ \1" 2
A
‘bk,l(d)‘ |:¢( 5,1 (@)] >:|
(17)
de(d) i:l.i#‘ﬁoc ¢< |b,ﬁ,(d)| ) 9( lm) ki y
= 2

M 8, (d)—b, o(d) "
|bk1(d>| o TR0
' b“(d)|

f+oo o) (ﬂ"(d)b’f-”(d>y’f=/(vk=/‘;d)) aykj(vk,/;d)
N

‘bk.l (d)| oy ¢(Vk<,)dvk,/_

N-1 B (d)— —y, (v
- N=-2
& —By(d)=by ()
by @)

too x [ —Bild)—beo(d)—y, (v, :d)
2@ b (d o Ve \ Ve )
[ (@)

X

(18)
3.3.2 Quadratic approximation
co(d) = 1 k2 (dz)/ LEICIN L(d) + L(d) (19)
ag“ék") ~ Iy(d) + Is(d), (20)
62’; g) = I5(d) + Is(d) + I (d) + Is(d) (21)
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where

N-1 b )+ \/ B2 ()b, () [Be () +B
. :
1:[ f—;oc (D< 2bio(d)

(viid)]
) CI)(vk,l-)dvk_’l-

I (d) = = )
~bald)+ /5, @ b @@ e\ 1Y
2b,,(d)
(22)
N-1 % —by, (d)— (d)— 41’/( ) [Be(d)+B: (v, :d) |
H} [Ze ( \/ b, D (v ;) dvy;
L(d)=—
>(d) biy(d \/bz “aho @@ Bean) 1 '
|: < ZbAz() ):l
(23)
b u>+\/h£k| (@)=t o) By 8 (v g ) |
N-1 L @ Wiy @
Ig(d) = — H 17;0 (D<vk,i>dvkl
=1

\/b;] (d)~4by () [Py (d)+B: (viid )|

—-(N-2),
—bpy (,1)+\/h§_l (d)—4by 5 (d)[ B (d)+B(0:d)] (
@ 2y 5 (d)
\/bA 1

)—4b, 5 (d) [B, (d)+B(0:d)]

(24)

o (4%, (@)- \/hfl (@)—4by 5 (d) [BA (d)+B; (v,uv.d)] )
() (Vk‘i) de,,' X

N-1 oo 2by2(d)
Ld)=—TI [°2
i=1 \/bi_l (d) b (d) [P (d) 4B, (vessd) |
—(N=-2),
—bg (i \/b (d)—4by 5 (d)[By, (d)+B(0:d)] ( )
25 @)

57 (d)—4bi2(d) By (d) 1 B(0d)

(25)

@/ sty o) )81 ()]
N-1 +OO¢ by 5 (d)
Ld)y=— 1] [ D (vei) dvi; X
i=1,i \/ b2 (d)=4bio(d) [ (d)+Bi (viisd)]

2by 5 (d)

o by )+ \/bi] (d)~aby 5 (d) [pk (@)+8; (vkj;d)]
+00 i (visd)

Ovij

(I)(ka)dkax7

\/ b2 (d)=4by 2 (d) [y (@)+B(vij5d)]
(1},{1 g/ @4t o) )+b‘(l};d)]) -(N-2)

by 5 (d)

b2 (d)—4be(d) (B, (d)+B(0:d)]

(26)
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—by (d)+ bz (d)—4bi(d [BA +Bi(vk.l;d):|
Is(d) = +°°<1>( \/ T )qn(vk,,-)dvk,,-x
—bkl<d>+ B2 (d)—=4bio (d) [By (d)+B; (vij5d) ]
iad) Vkqu)(VkJ)deJ‘X,
o)+ /B @ @b soar) ]
Q)
2b(d)
(27)
b )=y /B2 | @)=ty 5 (@) [Bk(d)+E, (v,‘_,.a)]
N-1 +OC“’ B2 @
17(11 = — H j; (D(vk,,-)dvk,,-x

L V”f» )
(bu

+oo
-~ \/bz ()12 (@) [Be ) +B, (1,5
o (bm (d)—\/bg_l (d)—aby o (d)[By (d)+B(0:d)]> -N-2)

2by o (d)
\/b (d)—4by2(d) By (d)+B(0:d))]

(d)=4by 5 (d) [13,(<d>+3j(vk1,;4)]
2@

> i (vesid) ®

ey (Vi) v

(28)
Nolo b=y 57 @)= dbea ) B+ (veisd )]
Ig(d) = Jiﬂ( \/ @ D (vi)dviix
i=1,i#f
. ~bia(d)— /2 (d)~4bea(d) [Be (@)+B; (vijid))
L@ 2b2 (d) viej O (Vi) dvi %

b () /5 @b @@ B ]
@ 2by 2 (d)

(29)

and B;(vii;d) = B(0,--+,0,v,0,--+,0;d). After deter-
mining the coefficients by o(d),br1(d),and byo(d), the
reliability index pS;(d), and the univariate component
functions y;(vi;d);i=1,N — 1, the univariate integra-
tion involved in (16), (17), (18), (22), (23), (24), (25), (26),
(27), (28), and (29) can be easily evaluated by one-
dimensional Gauss—Hermite quadrature (Abramowitz and
Stegun 1972). Equation (7), with partial derivatives
formulated in (17), (18), (20), and (21), provides design
sensitivities for gradient-based design optimization.
Equations (16), (17), and (18) represent generalized
expressions that can be degenerated to existing FORM/
SORM equations by selecting appropriate values of by o(d),
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b, 1(d) and univariate component functions y;(vi;d);
i=1,N —1. For example, the selection of b 4(d)=0,
bri(d) =—1 and ykﬁi(vk’,-;d) =0;i=1,N—1 in (16)
(17), and (18) leads to c¢x(d)=®(—B,(d)) and
Ocr(d)/0d; = —D(—Pi(d))OB;(d)/0d;, which are the
well-known first-order (FORM) approximations of the
failure probability and design sensitivity, respectively. A
similar reduction process can be employed to derive the
second-order (SORM) approximations. In contrast, (16),
(17), and (18) provide failure probability and design
sensitivity estimates of an arbitrarily high order, where the
order is determined by the selection of univariate compo-
nent functions y;(vi;d) =0;i=1,N — 1. Therefore,
(16), (17), and (18) are capable of providing estimates of
ck(d) and Ocy(d)/0d; that are superior to those provided by
commonly used FORM/SORM approximations. More
importantly, the design sensitivities are calculated without
incurring function evaluations in addition to those required
for reliability analysis. It is worth noting that, unlike (16),
(17), and (18), (19), (20), and (21) cannot be reduced to
FORM/SORM equations, as yi v (v,v; d) contains a second-
order term.

3.4 Computational flow and effort

In summary, the overall process for solving the RBDO
problem P, can be described by the following steps:

1. Define an initial design with d=d,. Use the final result
of mean-based or other relevant reference-point-based
optimization if available.

2. Evaluate both objective and constraint functions for the
current design vector. For constraint functions, use the
proposed univariate decomposition method (16 or 19)
for reliability analysis.

3. Evaluate the gradients of both the objective and
constraint functions for the current design vector. For
gradients of constraint functions, use the proposed
univariate decomposition method (7, 17 and 18, or 7,
20, and 21) for design sensitivity analysis.

4. Perform deterministic optimization to solve (2) by a
selected gradient-based algorithm.

5. Check for the convergence of the objective function
and design vector. If the convergence is reached, stop.
If not, update the design vector to find the next design
vector and repeat steps 2 through 4.

Define PDF of random input (X)

Setj=0;

Initialize design variables (d; = d)

(Step 1)

Y

Reliability analysis by
univariate decomposition
method

Evaluate objective [c(d))]
& constraints [¢(d)), k=1, K]
(Step 2)

Y

Design sensitivity
analysis by univariate
decomposition method

( . .. B
Evaluate gradients of objective
& constraints with respect todj |

(Step 3)

\

(Perform standard gradient—based\
design optimization
(Step 4)

Update system:
j=j+1

.

Yes
Stop [*

Fig. 2 Flowchart of the proposed RBDO process
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Figure 2 depicts the flowchart of the proposed RBDO Table 1 Gradients of two mathematical constraint functions
process. New methods were developed in the shaded areas. G adicnts Methods
For determining computational effort, consider y;
(sz,d) =y (0 30,V 0, Bys ) i=1,N, for FORM SORM U.nivariate Monte
Wthh n functlon values yk,<v,”, ) —y(O O,vﬁfl?, (linear) Carlo
0, Bysd);j=1,---.n are required either at sample  5c/(a)/ad, 0007896 0007896  0.01390  0.01389
points (0,-++,0,7) to obtain coefficients of vy (vinid)  dei(d)/Ody 0007896 -0.007896 -0.00475  ~0.00482
or at integration points (0,---,0,v),0, - Bk),l =1,N—1 0Oc:(d)/ddr 0004132  0.004132  0.001945 0.001944
to perform an n-point Gauss— Hermite quadrature for the ith ~ Oc2(d)/0dy —0.004132  —0.004132  —0.001945  —0.001944

integration in (16), (17), and (18) or (19), (21), (22), (23),
(24), (25), (26), (27), (28), and (29). The same procedure is
repeated for all univariate component functions, i.e., for all
vii(vkisd),i=1,...,N, and for all constraint functions, i.e., for
all yi(vi;d),k=1,...,K. Therefore, the total cost of the
proposed univariate method entails a maximum of nNK
function evaluations. Note that the above cost is in addition
to any function evaluations required for locating the MPP in
each constraint.

4 Numerical examples

Two example sets, one involving two sensitivity problems
and the other involving four RBDO problems, are presented
to illustrate the proposed decomposition method. Con-
straints associated with both mathematical functions (exam-
ples 1 and 3) and structural problems (examples 2—6) were
included. Comparisons have been made with FORM/
SORM and direct Monte Carlo simulation to evaluate the
accuracy and efficiency of the new method. SORM
sensitivities in examples 1 and 2 are based on constant
principal curvatures with respect to design parameters. In
solving RBDO problems (examples 4—6), all approximate
methods employed the nested double loop for design and
reliability iterations. No single-loop FORM-based methods,
although available in the current literature, were included,
as the objective was to determine how the accuracy and
efficiency of a reliability analysis influence an optimization
process. All structural sensitivities were obtained by the
finite-difference method involving 1% perturbations. The
optimization algorithms selected were sequential quadratic
programming in examples 3, 4, and 6, and sequential linear
programming in example 5. The sensitivity analysis in the
univariate method employed the linear approximation of
Vi (vivs d) for all RBDO examples.

In solving all example problems with the univariate
method, 5 or 7 sample points were selected with vi-_? =
vi,—(m=1)/2,vi = (n=3)/2,--- v -, v +(n=3)
/2,v¢ +(n71)/2 where v =0;i=1,N—1 and
vio= Bk Following Lagrange interpolations of all univar-
iate component functions, the same value of n was selected
as the number of integration points in evaluating various
univariate integrals. Hence, the total number of function

2Sample size=10° for each simulation; finite difference with 1%
perturbation

evaluations required by the univariate method, in addition
to those required for locating the MPP, is (n—1)NK. When
comparing computational efforts by various RBDO meth-
ods, the number of original performance function evalua-
tions was chosen as the primary metric in this work.

4.1 Example set [—design sensitivity analysis

4.1.1 Example 1—elementary mathematical functions
Consider two constraint functions c(d) = Plgi(X;d)
< 0]; k =1,2, where the cubic and quartic performance

functions, respectively, are expressed by
g1(X;d) =2.2257

0.025v2
- T(Xl (d\) + Xa(dn) — 20)°
+ 2 ) - Xad) (30)
140 <1\ 2%
‘ 360in 360in
|
1 ’ 6
o]
360 in
[9]
7
1 2 ?7
100,000 Ib 100,000 1b

Fig. 3 A ten-bar truss structure; a boxed number indicates a member
number
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Table 2 Gradients of constraint for the ten-bar truss

Gradients® Methods
FORM SORM Univariate (linear) Univariate (quadratic) Monte Carlo®

Je(d)/0d, -0.2107 -0.3156 ~0.3038 —0.2851 ~0.2824
Oc(d)/0dy —0.0155 ~0.0232 -0.0217 -0.0210 ~0.0260
Oc(d)/0d; -0.0086 -0.0129 -0.0121 -0.0116 —0.0136
Oc(d)/0dy —0.0086 -0.0129 -0.0121 -0.0116 —0.0124
Oc(d)/0ds —0.2005 -0.3003 -0.2850 -0.2712 —0.2720
Jc(d)/0ds -0.0729 ~0.1092 ~0.1042 —0.0982 -0.1092
dc(d)/0d; —0.0769 -0.1152 —0.1094 —0.1037 —0.1144
Jc(d)/0ds 0.0007 0.0010 0.0010 0.0009 0.0008
Oc(d)/ddy ~0.0250 ~0.0375 ~0.0357 -0.0338 ~0.0352
Oc(d)/9dyo —0.0464 —0.0695 —0.0664 ~0.0626 —0.0640

# Truss members 1-10 are identified in Fig. 3.

" Sample size=10° for each simulation; finite difference with 1% perturbation

and
gz(X,’d) :g—Fﬁ(X] (d]) —|—X2(d1) — 20)4
33
_W(Xl(dl) —Xp(d2)) (31)

where X (d) = {Xi(d)),X2(d>)}" is a bivariate, indepen-
dent Gaussian random vector with means p;=10 and
standard deviations o,=3; i=1,2. From an MPP search,
vi= {0,2.2257}" and B, = ||vi]| = 2.2257 for the cubic
function, and v = {0,2.5}" and 8, = | = 2.5 for the
quartic function. For the univariate method, a value of n=5
was selected, resulting in an additional 16 function
evaluations for both functions. The design vector is
d = {u,m}" = {10,10}".

Table 1 presents partial derivatives dc;(d)/0d;;i = 1,2
and dc,(d)/0d;;i = 1,2, calculated by FORM/SORM, the
proposed univariate decomposition method (linear approx-
imation), and Monte Carlo simulation using 10° samples.
The univariate method yields very accurate estimates of
gradients of both constraints with a maximum error of less
than 1% when compared with simulation results. In
contrast, existing FORM/SORM for this particular example
contains maximum errors of 64 and 113% for cubic and
quartic performance functions, respectively. The SORM
results are the same as the FORM results, indicating that
there is no improvement over FORM for problems
involving inflection point (cubic function) or high nonlin-
earity (quartic function).

.
Va

4.1.2 Example 2—ten-bar truss
A linear-elastic, ten-bar truss structure shown in Fig. 3

was studied to examine the accuracy and efficiency of the
proposed univariate method for calculating gradients. The

@ Springer

Young’s modulus of the material is 107 psi. Two concen-
trated forces of 10° Ib are applied at nodes 2 and 3. The
cross-sectional area X;(d) for each bar is independent,
follows normal distribution, and has a mean ;,=2.5 in.?
and standard deviation 0,=0.5 in.%; i = 1,---,10. Accord-
ing to the loading condition, the maximum displacement
[(vs(Xi(d1),- -, X10(d10))] occurs at node 3, where a
permissible displacement is limited to 18 in. Therefore,
the constraint function is described by c¢(d) =
P[IS — V3(X1(d1), cee ,Xlo(dl())) < 0]

From an MPP search, the reliability index is
B = |v*|| = 1.3642. Table 2 lists ten gradients of the failure
probability of the truss, i.e., dc(d)/dd;i=1,---,10,
which were calculated using the proposed univariate
method employing both linear and quadratic approxima-
tions of the Nth univariate function, FORM, SORM, and
direct Monte Carlo simulation (10° samples). For the

10.0
9.5
\ —4&— Monte Carlo
9.0 Q\ --®-- FORM
\

. 85| \\\\ ¢~ SORM
£ \ —¥-- Univariate Method
g 8.0 -
£
o 75
Z
8 70 1
S

6.5

6.0 -

55

5.0 I I I I I I

0 1 2 3 4 5 6 7

Iteration Number

Fig. 4 History of the mathematical objective function
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Table 3 Optimization results by various methods for mathematical functions

Methods®

FORM SORM Univariate Monte Carlo
No. of iterations 6 5 4 4
No. of function evaluations 1,406 1,226 949 26x10°
Final design, d* = {d},d;}"
di 3.4391 3.4544 3.4544 3.4547
d, 3.2867 3.2760 3.2740 3.2741
Constraint functions
c1(d*)—D(-3) 1.35x10°* -9.00x10°¢ 4.00x10°° 0
ex(d*)—D(-3) -2.33x107* -2.80x107° -2.90x107° -5.00x10°¢
c3(d*)—D(—4) -1.17x107° -5.67x107° -5.67x107¢ -5.67x107¢
Objective function
co(d*) 6.7258 6.7304 6.7284 6.7288

*Initial design, dy={5, 5}"

univariate method, a value of n=7 was selected. As can be
seen from Table 2, both SORM and the univariate method
predict derivatives of the failure probability more accurately
than FORM. This is because the univariate method (linear
or quadratic) and SORM are able to approximate the
performance function embedded in the constraint more
accurately than FORM. The total numbers of function
evaluations required by the univariate method (linear or
quadratic), FORM, SORM, and Monte Carlo simulation are
187, 127, 365, and 10°, respectively. Therefore, the
univariate method is not only accurate, but also more
computationally efficient than SORM.

From Table 2, the linear and quadratic options of the
univariate method have similar accuracy, although the latter
option provides slightly improved results for the two largest
gradients (Oc(d)/0d; and Oc(d)/0ds). Nonetheless, both
options lead to superior gradients when compared with
FORM. For simplicity, the linear option was selected for
solving the following RBDO problems with the univariate
method.

4.2 Example set [I—reliability-based design optimization
4.2.1 Example 3—mathematical functions

Consider a mathematical example with two independent
Gaussian random variables and three nonlinear constraints.
The RBDO problem is defined by

min co(d) =d\ + da
deR?

2
subject to Xi(d)

e1(d) =P[TX2W— 1< 0} < o(-3)

e (d) :p[(xl(m)%(dz)—ﬂz + W) o) 1Py 0] < D(-3)

C3(d) = P{ﬁ

(32)

where X (d) = {X(d)),X»(d>)}" € R is an independent,
bivariate Gaussian random vector with means p;, and
standard deviations ¢,=0.3; i=1, 2. The design vector is
d= {d17d2}T = {:ul’:uZ}T'

Using the initial design dy = {5,5}", Fig. 4 depicts the
optimization history when the constraints are evaluated by
the univariate decomposition method, FORM, SORM, and
Monte Carlo simulation involving 10° samples for each
failure probability calculation. The detailed results pre-
sented in Table 3 suggest that all four methods are able to
reach an optimum state in 4—6 iterations, which yield very
close optimal solutions. Hence, each method can be used to
solve this optimization problem. It is interesting to note that
SORM requires fewer function evaluations than FORM,
which is somewhat counterintuitive because reliability
analysis by SORM is generally more expensive than that
by FORM. However, an exception may occur when SORM
leads to fewer design iterations than FORM in the outer
loop, as observed in this particular problem. Nevertheless,
the univariate method is more efficient than FORM or
SORM because the fewest number of function evaluations
were required to solve this example.

d>

}( 100 in )‘ d

Fig. 5 A cantilever beam subjected to end loads

@ Springer



256

S. Rahman, D. Wei

Table 4 Statistical properties of random input for the cantilever beam

Random Mean Standard Probability
variable deviation distribution
X1, b 1,000 100 Gaussian
X5, b 500 100 Gaussian
X;, psi 40,000 200 Gaussian
X, psi 29x10° 1.45x10° Gaussian

4.2.2 Example 4—cantilever beam

In this example, the design of a fixed cantilever beam with
a deterministic length =100 in., a random vertical load X7,
and a random lateral load X5, as shown in Fig. 5, was
studied. The beam material has random uniaxial yield
strength X3 and random elastic modulus X4. The objective
is to minimize the area of the beam cross-section, where
width d, and height d, are two design variables. Two
nonlinear failure modes were examined. The first failure
mode is due to yielding at the fixed end of the cantilever,
and the second failure mode is associated with the tip
displacement exceeding a permissible value of 2.5 in. The
RBDO problem is stated as

min
deR?
subjectto ¢;(d) = P[X — ‘Zodoz (i,(—zl—i-)d(—f) < O] < O(-2.5)

6 XZ Xz
c(d) = P[z.s - w/d—é +3 < o} < ®(-3.5),

0 <d; <5inches;i=1,2

C()(d) = d]dz

(33)

9.4
93 |-
92
9.1
9.0 |-
89 -
88 |-
87 -
86 -/
8.5
8.4
8.3
8.2
8.1
8.0

Monte Carlo
FORM
SORM
Univariate Method

Objective Function

Iteration Number

Fig. 6 History of objective function for the cantilever beam

where X = {XI,XQ,X3,X4}T € R* is an independent, four-
dimensional Gaussian random vector in which each random
variable has the mean and standard deviation listed in
Table 4. The design vector is d = {d;,d,}". The initial
design vector is dy = {2,4}" in.

Figure 6 illustrates the optimization history of the
proposed univariate method, FORM, SORM, and Monte
Carlo simulation. Table 5 compares the accuracy and
efficiency of three approximate methods by using the Monte
Carlo benchmark solution. The results suggest that all three
methods attain the same optimum value (9.21 in.?) of the
objective function. The univariate method is slightly more
expensive than FORM because of (1) the additional
function evaluations required after locating MPPs and (2)
the larger design iterations involved in this particular
example. Even if the numbers of design iterations are the
same, the univariate method will require slightly more

Table 5 Optimization results by various methods for the cantilever beam

Methods®
FORM SORM Univariate Monte Carlo
No. of iterations 4 5 6 6
No. of function evaluations 992 1412 1373 29x%10°
Final design, d* = {d},d;}"
dy, in. 2.4530 2.4580 2.4683 2.4629
d;, in. 3.7550 3.7476 3.7326 3.7403
Constraint function
c(d*)— ®(-2.5) 0 -9.00x10°¢ -2.80x107° -5.00x10°¢
e(d)— B(-3.5) 424x107° 2.14x107° -2.26x107° -2.40x10°¢
Objective function
co(d*), in.? 9.2109 9.2117 9.2132 9.2119

*Initial design, do={2, 4} in.
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Table 6 Failure probability of the cantilever beam at optimum design

Methods ci(d*)? oo(d*)° Comment

FORM 0.006210  0.0002750  Violates 2nd constraint by
18%

SORM 0.006201  0.0002540  Violates 2nd constraint by
9%

Univariate 0.006182  0.0002100  Satisfies both constraints

Monte Carlo  0.006205  0.0002350  Satisfies both constraints

?The allowable value for the first constraint is @ (—2.5)=0.00620968.
®The allowable value for the second constraint is ®(—3.5)=
0.000232673.

function evaluations than FORM. In this example, both
FORM and univariate methods are more efficient than
SORM, a trend that is expected unless the number of design
iterations required by SORM is significantly fewer than
others.

Because the univariate method and FORM/SORM entail
approximate reliability analysis, the constraints associated
with the optimal design generated by each method were
evaluated using the Monte Carlo simulation (10 samples).
Table 6 presents the values of the failure probability
embedded in each constraint. It appears that both FORM
and SORM slightly violate the second constraint with a
maximum error of 18 and 9%, respectively, in calculating
the failure probability. In contrast, no such violations are
observed in the univariate method. This is because the
proposed univariate method is more accurate than FORM/
SORM in performing reliability analysis in this example.

Table 7 Optimization results by various methods for the ten-bar truss

13000
12000 —4— Monte Carlo
i --@-- FORM

: --4-- SORM
8 11000 —¥-- Univariate Method
B L
Z
o 10000
B
3 I
8 9000 |-

8000

7000 T T O O S T Y R R B B

o 1 2 3 4 5 6 7 8 9 10 I1 12 13 14 15 16

Iteration Number

Fig. 7 History of objective function for the ten-bar truss
4.2.3 Example 5—ten-bar truss

A ten-bar truss, illustrated in Fig. 3, was designed by
minimizing its total volume given that the truss reliability is
no less than a target value of ¢(2) = 0.9772. The RBDO
formulation is

;11Iian co(d) = 360[d| +dy+ds+ds+ds +ds + \/z(d(, +d7+do+ dl(J)]
€
subject to (d) = P[14 — v3(Xy(dy), -+, Xi0(dyg)) < 0] < D(-2)

d,

1
0<d;<5in.;i=1,10

(34)
where X = {X,(d)), -, Xi0(d1o)}" € R is an indepen-

dent Gaussian random vector, with each component represent-
ing a random cross-section of the truss. The random variable

Methods®
FORM SORM Univariate Monte Carlo
No. of iterations 15 12 13 11
No. of function evaluations 2,694 4,894 3,113 117x10°
Final design, d* = {d’{, . ,d;‘o}r (in.%)
dy 3.998 4.072 3.935 421
d; 1.944 1.968 1.947 1.918
d; 1 1 1 1
d 1 1 1 1
ds 4.388 4.384 4381 4.268
dg 2.827 2.783 2.94 2.669
d; 2.225 2.284 2.117 2.436
dy 1 1.001 1 1.001
dy 1 1 1 1.039
di, 2.754 2.77 2.743 2.728
Constraint function
c1(d*)—D(-2) 1.25x1072 -1.13x107° 23x107* 23x107°
Objective function (in.”)
co(d*®) 9,282 9,332 9,327 9,340

*Initial design, do={3, ..., 3}7 in.
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Fig. 8 Initial design of the torque-arm geometry at mean values of shape parameters

X; follows Gaussian distribution and has means p; and
standard deviation ¢;=0.2 in% i=1,---,10. The design
vector is d = {dy,---,dyo} = {uy, -, 30} . The initial
design point is dy = {3,---,3}" in.2.

Figure 7 and Table 7 present the optimization history and
optimization results by various methods, respectively. The
optimal volumes achieved by the univariate method, SORM,
and Monte Carlo vary from 9,327 to 9,340 in3. In contrast,
FORM leads to a lower optimal volume, which is 9,282 in.2.
A Monte Carlo reliability analysis at optimal designs
obtained by FORM, SORM, and the univariate method
reveals that the failure probability estimates have associated
absolute errors of 55, 5, and 1%, respectively. Hence,
FORM violates the constraint leading to the lower optimum
volume of the truss. Both SORM and the univariate method
satisfy the constraint and, hence, provide acceptable
designs. However, the univariate method proposed is more
efficient than SORM in solving the truss problem.

4.2.4 Example 6—torque arm

The final example involves designing a torque-arm, where
eight random shape parameters X;(d;);i = 1,8 describe its
outer and inner boundaries, as shown in Fig. 8, for the
mean input at the initial design. The left hole of the
structure is fixed, and two deterministic forces F;=2,789 N
and F,=5,066 N are applied at the center of the right hole.
The torque-arm material has a mass density p=7,800
kg/m3, elastic modulus E=207 GPa, Poisson’s ratio v=
0.3, and uniaxial yield strength $,=400 MPa. The objective
is to minimize the mass of the structure m(d) by changing
the shape of the geometry (i.e., by X(d) € R®) such that the
von Mises stresses at five selected points do not exceed S,.
The locations of these five points, marked as finite element
nodes 90, 98, 106, 173, and 175, are illustrated in Fig. 9.
Mathematically,

node 98 node 173
node 90 Ije 106 node 175
AN A 44///
NSNS 7 7
SNV 77 7
T TN
RN
/Xff TN

Fig. 9 Locations of points for prescribing constraints of the torque arm
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S, Mises

(Ave. Crit.: 75%)
+1.304e+02
+1.195e+02
+1.087e+02
+9.780e+01
+8.693e+01
+7.607e+01
+6.520e+01
+5.434e+01
+4.347e+01
+3.261le+01
+2.175e+01
+1.088e+01
+1.735e-02

Maximum von Mises
stress at node 98

Fig. 10 Contour of von Mises stress at mean values of shape parameters from initial design

min co(d) =m(d)
deR!"
subjectto  cx(d) = P[S, — o(X;d) < 0] < D(-3);k=1,5
—Imm < d; < Imm
—Imm < d, < Imm
—Imm < d; < Imm
—2mm < ds < Imm

—5mm < ds < Imm
—0.5mm < dg < 2mm
—Imm < d7 < 6mm
—0.5mm < dg < Imm

(35)

where oy .(X; d) is the von Mises equivalent stress at the
kth selected point. The finite element mesh includes 657
nodes and 177 eight-noded quadrilateral elements. A plane
stress condition was assumed. The independent random

S, Mises
(Ave. Crit.: 75%)
+2.563e+02
+2.349e+02
+2.136e+02
+1.922e+02
+1.709e+02
+1.495e+02
+1.282e+02
+1.068e+02
+8.544e+01
+6.408e+01
+4.273e+01
+2.137e+01
+1.223e-02

node 98: 256 MPa

vector X, which represents manufacturing variability, fol-
lows Gaussian distribution. The components X; have means
u; and standard deviations ¢;=0.2 mm; i = 1,---,10. The
design vector is d = {d,---,ds}" = {p, -, g}’

The initial design point is dg = {0, ---,0}" mm with the
corresponding finite element mesh depicted in Fig. 9.
Following linear-elastic stress analysis, Fig. 10 presents
the contour plot of the von Mises stress at the initial design
when shape parameters assume their mean values. Due to
conservative initial design, the maximum von Mises stress of
130 MPa, which occurs at node 98, is much lower than the
uniaxial yield strength (S,=400 MPa). During design
iterations, the nodal movements that control shape parame-
ters X;(d;); i = 1, 8 were performed by a design velocity field
involving isoparametric mapping (Choi and Chang 1994).

For computational efficiency, the optimal design was
obtained in two steps. In the first step, a coarse RBDO was

node 106: 247 MPa

node 173: 226 MPa

Fig. 11 Contour of von Mises stress at mean values of shape parameters from reliability-based optimum design

@ Springer



S. Rahman, D. Wei

Objective Function

1.8 T T N N
01 2 3 45 6 7 8 9 1011 1213 14 15 16 17 18 19 20

Iteration Number

Fig. 12 Optimization history of objective function for the torque arm

performed using the initial design dy = {0,---,0}" and an
approximate reliability method, known as the mean-value
first-order second moment method (Madsen et al. 1986).
The resultant design after ten iterations in the first step
(coarse RBDO) is do={-0.427,—1,-0.063, -2,
—0.327,2,0.234, 0.875}Tmm. In the second step, a refined
RBDO involving the proposed univariate method and the
result of step 1 as the initial design (i.e., dy = dy) was
employed. After nine iterations, the final design was
attained, which is d* = {-0.709,—-0.721,—-0.077, -2,
70.247,2,0.258,0.524}Tmm, with the corresponding
mean shape presented in Fig. 11. The optimal mass of the
torque arm is 2.035 kg—a 30% reduction from the initial
mass of 2.915 kg. Figure 11 also displays the contour plot
of the von Mises stress at the optimal design when the
shape parameters assume their mean values. Compared
with the conservative initial design of Fig. 10, larger
stresses, for example, 256, 247, and 226 MPa at nodes

S, Mises
(Ave. Crit.: 75%)
+4.049e+02
+3.711le+02
+3.374e+02
+3.037e+02
+2.699e+02
+2.362e+02
+2.024e+02
+1.687e+02
+1.350e+02
+1.012e+02
+6.749e+01
+3.375e+01
+1.020e-02

98, 106, and 173, respectively, can be safely tolerated in the
final design of Fig. 11. The larger area of the slotted hole
and movement of outer boundaries have led to significant
alteration of the shape of the initial design. Figure 12
shows the optimization history of the objective function.

If the uncertainty of X is ignored and the constraints
in (35) are replaced by S, —oy.(d;d)0;k=1,5 as
commonly adopted in traditional design optimization,
13 iterations led to d* = {—1,—1,-0.062,—2,—1.785,2,
1.676,0.795}Tmm and a corresponding optimal mass of
1.861 kg—a 36% reduction from the initial mass.
Therefore, a traditional risk-ignoring optimization process
may lead to a smaller mass than that obtained from
RBDO, but with higher stresses, as depicted in the con-
tour plot of Fig. 13. If uncertainties are included, the
optimal design in Fig. 13 is highly likely to violate the
reliability constraints. By comparing optimal designs from
RBDO (Fig. 11) and risk-ignoring optimization (Fig. 13),
it appears that the outer boundaries generated by both
designs are similar. However, the inner slot from the RBDO
is smaller than that from the risk-ignoring optimization.
The primary reason is that the latter optimization does not
account for variability of shape parameters and of the
performance function. In addition, the sensitivity of the von
Mises stress with respect to shape parameters in the inner
boundary is much larger than that in the outer boundary.
Finally, a few finite elements in both meshes of Figs. 11 and
13 are distorted. Although remeshing or mesh-free compu-
tations during design iterations should alleviate this
problem, the fundamental observations discussed above
will remain unaltered. No remeshing was performed in the
present work.

In summary, the univariate method consistently provides
very accurate RBDO solutions. Of the three methods

Maximum stress at
nodes 98 and 173

Fig. 13 Contour of von Mises stress at mean values of shape parameters from risk-ignoring optimum design
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studied, the FORM-based RBDO is the most efficient
method; however, it may lead to infeasible or inaccurate
designs. Both SORM and the univariate method have
comparable accuracies, but the univariate method is less
expensive than SORM. Nevertheless, for industrial-scale
design applications, further research is required in making
the proposed univariate method computationally more
efficient by potentially decoupling the design and reliability
iterations or exploring the possibility of single-loop
formulations.

5 Conclusions and outlook

A new univariate decomposition method was developed for
design sensitivity analysis and RBDO of mechanical
systems subject to uncertain performance functions in
constraints. The method involves a novel univariate
approximation of a general multivariate function in the
rotated Gaussian space for reliability analysis, analytical
sensitivity of failure probability with respect to design
variables, and standard gradient-based optimization algo-
rithms. In both reliability and design sensitivity analyses,
the proposed effort can be viewed as performing multiple
one-dimensional integrations. The evaluation of these one-
dimensional integrations requires calculating only condi-
tional responses at selected deterministic input determined
by sample points and Gauss—Hermite integration points.
More importantly, the design sensitivities are calculated
without incurring additional function evaluations to those
required for reliability analysis. Results of two numerical
examples involving mathematical functions and truss
problems indicate that the proposed method provides
reasonably accurate and computationally efficient estimates
of the sensitivity of failure probability. Subsequent results
of four design problems, entailing mathematical functions
and structural/solid-mechanics applications, indicate that
the new sensitivity equations developed facilitate an
accurate and/or efficient method for RBDO of mechanical
systems. Although significant strides are made, further
research is required in potential decoupling or single-loop
formulation in conjunction with the univariate method.
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