The University of Iowa
 Department of Civil \& Environmental Engineering
 SOIL MECHANICS 53:030
 Midterm Exam
 (1 Hour)

Fall 1998
Instructor: C.C. Swan

To get full credit, please show all of your work.

Problem \#1: (25 points)
The saturated unit weight of a soil is $126 \mathrm{lb} / \mathrm{ft}^{3}$. The water content of the saturated soil is 18.2%. Assuming that $\gamma_{w}=62.4 \mathrm{lb} / \mathrm{ft}^{3}$ compute the following:
a. The dry unit weight of the soil (assuming no shrinkage upon drying);
b. The void ratio of the soil; and
c. The specific gravity G_{s} of the soil solids.

Hint: Usage of a block diagram for the soil may prove very helpful for this problem.

Problem \#2: (25 points)
a. How does specific surface area vary with soil grain sizes?
b. How does specific surface area affect soil permeabilities or conductivities?
c. Write down the expression for relative density D_{r} of a soil.
d. Clearly explain the meaning of the different parameters in this expression.
e. What types of soils generally get the highest ratings in the AASHTO classification system for usage as subgrade soils beneath pavements?

Problem \#3: (50 points)
A levee structure is shown in Figure 1 below.
a. In your exam booklet, please draw the problem to scale and draw a proper flownet.
b. Based on your flow net, what is the rate of seepage beneath the levee per unit width of levee?
c. Using your flownet, compute the fluid pressure at point A midway along the base of the levee.
d. Compute the factor of safety against heaving in the critical region of this problem.

Figure 1. Levee problem.

Bonus Question: (10 extra points!!) Answer this question after questions 1-3.
Assume that for problem \#3 above, the horizontal permeability of the soil $k_{x}=16 \cdot 10^{-3} \mathrm{~m} / \mathrm{s}$ while the vertical permeability $k_{z}=1.0 \cdot 10^{-3} \mathrm{~m} / \mathrm{s}$. What would be the flow rate beneath the dam in this case? (To get credit, show all supporting work.)

