## 53:139 FOUNDATIONS OF STRUCTURES

College of Engineering
The University of Iowa
Spring Semester, 2009

1. For the slope shown below, find the critical thickness $D$ of the soil layer that yields shear failure along the soil-rock interface. Given $\beta=20^{\circ} ; \gamma=17.3 \mathrm{kN} / \mathrm{m}^{3} ; \phi=15^{\circ}$; and $\mathrm{c}=12 \mathrm{kPa}$.


Solution: For an infinite slope without seepage occurring, we have:

$$
F S=\frac{c}{\gamma D \sin \beta \cos \beta}+\frac{\tan \phi}{\tan \beta}
$$

Setting FS=1 and solving for D yields:

$$
D_{c r}=\frac{c}{\gamma \cos ^{2} \beta(\tan \beta-\tan \phi)}
$$

Plugging the numbers yields: $D_{c r}=8.18 m$
2. For the figure shown above with the same soil parameters, assume that the soil is saturated $\left(\gamma_{\text {sat }}=19.5 \mathrm{kN} / \mathrm{m}^{3}\right)$ and that seepage is occurring parallel to the slope face. What is the factor of safety against shear failure along the interface?

Solution: Letting $D=D_{c r}=8.18 \mathrm{~m}$ we have for a saturated slope in which seepage is occurring:

$$
F S=\frac{c}{\gamma_{s a t} D \sin \beta \cos \beta}+\frac{\gamma_{b} \tan \phi}{\gamma_{s a t} \tan \beta}
$$

Plugging the numbers yields:

## $F S=0.60$ Observe: the addition of moisture and seepage to this scenario reduces the stability.

3. Soil of properties $\mathrm{c}=80 \mathrm{kPa} ; \phi=25^{\circ} ; \gamma=18 \mathrm{kN} / \mathrm{m}^{3}$ comprises a steep slope of height $\mathrm{H}=20 \mathrm{~m}$ and $\beta=72^{\circ}$.
a. What is the factor of safety along a planar mechanism passing through the toe at an inclination of $35^{\circ}$ with respect to the horizontal?
b. What is the slope system's critical factor of safety against shear failure?
c. What angle does the critical failure mechanism make with respect to the horizontal?
d. What height of the slope would yield a critical factor of safety of one against failure?

## Solution:

a. For a slope of height H and a planar mechanism at inclination $\theta$ passing through the toe the expression developed in the class notes for the factor of safety is:
$F S=\frac{2 c \sin \beta}{\gamma H \sin (\beta-\theta) \sin \theta}+\frac{\tan \phi}{\tan \theta}$. So plugging in all of the given values with $\theta=35^{\circ}$ yields $F S=1.89$
b. Using the approximation that $\theta_{c r} \cong \frac{1}{2}(\beta+\phi)=48.5^{\circ} \Rightarrow F S=1.83$
c. $\theta_{c r} \cong \frac{1}{2}(\beta+\phi)=48.5^{\circ}$
d. Setting $\mathrm{FS}=1$ and letting $\theta=\theta_{\text {cr }} \cong \frac{1}{2}(\beta+\phi)$ and solving for H yields:

$$
H_{c r}=\frac{4 c}{\gamma} \frac{\sin \beta \cos \phi}{1-\cos (\beta-\phi)} \text {. Plugging the numbers gives: } H_{c r}=48.2 m
$$

4. In Culmann's method, the critical failure mechanism passing through the toe of the slope is approximated by $\theta_{c r}=\left(\beta+\phi_{d}\right) / 2$. For the soil and slope properties of Problem \#3, write a program to compute and plot $F S(\theta)$ vs. $\theta$. Compare and briefly discuss the values of $\theta_{c r}$ from your plot and from the approximate formula $\theta_{c r}=(\beta+\phi) / 2$. Are they roughly the same or far apart? Is the approximation acceptable in this case?

Solution: Consider the spreadsheet results below in which the computed FS is computed vs. $\theta$ for both $\mathrm{H}=20 \mathrm{~m}$ and also $\mathrm{H}=48.2 \mathrm{~m}$. For the case $\mathrm{H}=20 \mathrm{~m}$, the actual value of $\theta_{c r}=43^{\circ}$ is should be compared to the approximate value $\theta_{c r} \cong\left(\beta+\phi_{d}\right) / 2=48.5^{\circ}$. While the angle values are somewhat different, the associated values of FS are close (1.78 vs. 1.83). For the case $\mathrm{H}=48.2 \mathrm{~m}$, the actual value of $\theta_{c r}=48.5^{\circ}$ is the same as $\theta_{c r} \cong\left(\beta+\phi_{d}\right) / 2=48.5^{\circ}$. Thus the approximation seems acceptable.


|  |  |  |  |
| :---: | :---: | :---: | :---: |
| theta(deg) | theta(rad) | FS | FS <br> th |
|  |  |  |  |
| 35 | 0.610865 | 1.890487 | 1.17406 |
| 36 | 0.628319 | 1.865268 | 1.149473 |
| 37 | 0.645772 | 1.843341 | 1.126915 |
| 38 | 0.663225 | 1.824626 | 1.106298 |
| 39 | 0.680678 | 1.80907 | 1.087555 |
| 40 | 0.698132 | 1.796652 | 1.070632 |
| 41 | 0.715585 | 1.78738 | 1.055494 |
| 42 | 0.733038 | 1.781293 | 1.042122 |
| 43 | 0.750492 | 1.778461 | 1.030513 |
| 44 | 0.767945 | 1.77899 | 1.020682 |
| 45 | 0.785398 | 1.783023 | 1.012663 |
| 46 | 0.802851 | 1.790749 | 1.006508 |
| 47 | 0.820305 | 1.802404 | 1.002293 |
| 48 | 0.837758 | 1.818283 | 1.000122 |
| 49 | 0.855211 | 1.83875 | 1.000125 |
| 50 | 0.872665 | 1.86425 | 1.00247 |
| 51 | 0.890118 | 1.89533 | 1.007368 |
| 52 | 0.907571 | 1.932659 | 1.015083 |
| 53 | 0.925025 | 1.977061 | 1.025941 |
| 54 | 0.942478 | 2.029559 | 1.040355 |
| 55 | 0.959931 | 2.091428 | 1.058842 |
| 56 | 0.977384 | 2.164272 | 1.082057 |
| 57 | 0.994838 | 2.250139 | 1.110838 |
| 58 | 1.012291 | 2.35167 | 1.146273 |
| 59 | 1.029744 | 2.472335 | 1.189792 |
| 60 | 1.047198 | 2.61677 | 1.243309 |

5. A cut slope is to be excavated in a saturated clay soil with $\mathrm{c}=\mathrm{c}_{\mathrm{u}}=500 \mathrm{psf}$ and $\phi_{\mathrm{u}}=0^{\circ}$ and $\gamma_{\mathrm{sat}}=110 \mathrm{pcf}$. Answer the following questions using the Mass Method.
a. If the slope angle is to be $56^{\circ}$, how deep can the slope be excavated?
b. Where would the critical circular mechanism intersect the slope system?
c. How deep could the same slope be excavated while maintaining a $\mathrm{FS}=2.5$ ?
d. If the slope angle were reduced to $45^{\circ}$, how deep could the slope be excavated?
e. With a slope angle of $45^{\circ}$, identify where the circular mechanism will intersect the slope system.

## Solution: Since there is no mention of $\mathbf{D}$ in the problem statement, assume $D \rightarrow \infty$

a.

The slope stability number for $\beta=56^{\circ}$ and $\mathrm{D} \rightarrow \infty$ can be found from Fig. 14.9 of Reference $\# 1$ as $\mathrm{m}=0.185$.

$$
H_{c r}=\frac{c_{u}}{\gamma m}=\frac{500 p s f}{110 p c f * 0.185}=24.6 \mathrm{ft}
$$

b.

Since $\beta=56^{\circ}$ and $\mathrm{D} \rightarrow \infty$, this should be a toe circle. From Fig. 14.10 of Ref. $1, \alpha=32^{\circ}$ and $\theta=77^{\circ}$. In this case, the scarp will intersect the top of the slope at a distance
$L=H\left(\frac{1}{\tan \alpha}-\frac{1}{\tan \beta}\right)=24.6 \mathrm{ft} *\left(\cot 32^{\circ}-\cot 56^{\circ}\right)=23 \mathrm{ft}$. from the crown of the slope.
c. With a $\mathrm{FS}=2.5$, the critical slope height would be:

$$
H_{c r}=\frac{c_{u}}{F S * \gamma m}=\frac{500 p s f}{2.5 * 110 p c f * 0.185}=9.84 \mathrm{ft} \rightarrow 10 \mathrm{ft}
$$

d. With $\beta=45^{\circ}$ and $\mathrm{D} \rightarrow \infty$, the slope stability number from Fig. 14.9 is $\mathrm{m}=0.18$. Therefore,

$$
H_{c r}=\frac{c_{u}}{z m}=\frac{500 p s f}{110 p c f * 0.180}=25.25 \mathrm{ft}
$$

e. With $\beta=45^{\circ}$ and $\mathrm{D} \rightarrow \infty$, the mechanism should still be a toe circle with $\alpha \cong 25^{\circ}$ and $\theta \cong 85^{\circ}$. Accordingly, the scarp would intersect the top of the slope at a distance L from the crown, where

$$
L=H\left(\frac{1}{\tan \alpha}-\frac{1}{\tan \beta}\right) \cong 25.25 f t *\left(\cot 25^{\circ}-\cot 45^{\circ}\right) \cong 29 \mathrm{ft} .
$$

6. A cut slope $\left(\beta=40^{\circ}\right)$ was excavated in a saturated clay $\operatorname{soil}\left(\gamma_{\text {sat }}=18.5 \mathrm{kN} / \mathrm{m}^{3}\right)$ and the slope experienced failure when depth of the excavation reached $\mathrm{H}=8.5 \mathrm{~m}$. Previous subsurface site exploration indicated the presence of a rock stratum 12 m beneath the original ground surface.
a. Estimate the undrained cohesion of the saturated clay soil.
b. What would be the expected nature of the critical circle?
c. With reference to the top of the slope, at what distance did the surface of sliding intersect the bottom of the excavation?

Solution: From the problem statement, one deduces that $\mathrm{D}=(12 \mathrm{~m} / 8.5 \mathrm{~m})=1.41$
a.

The slope fails, which indicates that it has a FS just less than unity. Thus the undrained cohesion of the soil can be estimated as follows: (note $m \cong 0.175$ ) from Fig. 14.9.

$$
c_{u}=\gamma m H_{c r}=\left(18.5 \mathrm{kN} / \mathrm{m}^{3}\right) \cdot(0.175) \cdot(8.5 \mathrm{~m})=27.5 \rightarrow 28 \mathrm{kPa} .
$$

b.

Using Fig. 14.9 once again, it appears that the critical mechanism should be a midpoint circle.
c.

Reading from Fig. 14.11 of Reference 1 , with $\mathrm{D}=1.4$ and $\beta=40^{\circ}$ gives $n \cong 0.8$. Accordingly, the midpoint circle should intersect the base at a distance $n H=0.8 * 8.5 \mathrm{~m}=6.8 \mathrm{~m}$ from the toe of the slope.
7. A slope of height 4 m is cut in a saturated clay deposit in which the undrained cohesion increases linearly with depth as follows: $c_{u}(\mathrm{kPa})=5 \mathrm{kPa}+3 \mathrm{z}$ where z is the depth beneath the original ground surface. If $\beta=27^{\circ}$ and $\gamma_{\mathrm{sat}}=18.5 \mathrm{kN} / \mathrm{m}^{3}$, what is the factor of safety for the slope system?

## Solution:

For this problem $c_{u}(z)=c_{u}(z=0)+a_{0} z=5 \mathrm{kPa}+3 \mathrm{kPa} \cdot \mathrm{m}^{-1} \mathrm{z}$. Thus $a_{0}=3 \mathrm{kPa} \cdot \mathrm{m}^{-1}$.
Using Koppula's formulas from Section 14.6 of Reference \#1, the product of slope stability number and factor of safety is given by:

$$
F S * m=\frac{c_{u}(z=0)}{\gamma H}=\frac{5 \mathrm{kPa}}{\left(18.5 \mathrm{kNm}^{-3}\right)(4 \mathrm{~m})}=.0676
$$

The quantity $\mathrm{c}_{\mathrm{R}}$ represents the ratio of the increase in cohesion at the depth of the cut to that at the top of the cut:

$$
c_{R}=\frac{a_{0} H}{c_{u}(z=0)}=\frac{\left(3 \mathrm{kPa} \cdot \mathrm{~m}^{-1}\right)(4 \mathrm{~m})}{(5 \mathrm{kPa})}=2.4
$$

Reading Table 14.1 of Reference $\# 1$ with $c_{\mathrm{R}}=2.4$ and $\beta=27^{\circ}$ and using linear interpolation gives:

$$
\mathrm{m}=0.6^{*}(.0529)+.4^{*}(.0402)=.0478
$$

Thus the factor of safety for the slope system can be computed as

$$
F S=\frac{F S * m}{m}=\frac{.0676}{.0478}=1.4
$$

It is worth noting here that if we had used the Mass-Method (Fellenius-Taylor solution) with $D \rightarrow \infty$ and an average undrained cohesion estimated from a depth $(2 / 3) \mathrm{H}$ beneath the original ground surface, that is: $\bar{c}_{u} \cong 5 \mathrm{kPa}+2.67 \mathrm{~m} * 3 \mathrm{kPa} \cdot \mathrm{m}^{-1}=13 \mathrm{kPa}$, the slope stability number would be 0.18 (Fig. 14.9) and the resulting FS for the slope system would be:

$$
F S=\frac{\bar{c}_{u}}{\gamma H m}=\frac{13 \mathrm{kPa}}{\left(18.5 \mathrm{kN} \cdot \mathrm{~m}^{-1}\right)(4 \mathrm{~m})(0.18)}=1.1
$$

8. A sandy soil has a unit weight of $17 \mathrm{kN} / \mathrm{m}^{3}$ and a friction angle $35^{\circ}$ makes a slope of height 30 m and angle $\beta=20^{\circ}$. For the mechanism shown in the Figure below, compute the factor of safety against shear failure: For each case, divide the slope system into 10 slices, each having an equal lateral dimension.
a. Using the ordinary method of slices;
b. Using Bishop's simplified method of slices.

Solution:
a. For the Ordinary Method of Slices: $F S=\frac{\sum_{n=1}^{N}\left(c_{n} L_{n}+W_{n} \cos \left(\alpha_{n}\right) \tan \left(\phi_{n}\right)\right)}{\sum_{n=1}^{N} W_{n} \sin \left(\alpha_{n}\right)}$;
b. For Bishop's Method of Slices: $F S=\frac{\sum_{n=1}^{N}\left(c_{n} b_{n}+W_{n} \tan \left(\phi_{n}\right)\right) * \frac{1}{m_{\alpha, n}}}{\sum_{n=1}^{N} W_{n} \sin \left(\alpha_{n}\right)}$ where $m_{\alpha, n}=\cos \left(\alpha_{n}\right)+\frac{\tan \left(\phi_{n}\right) \sin \left(\alpha_{n}\right)}{(F S)_{n}}$


Bishop's Method of Slices

| slice index | FS (assumed) | c | $\tan$ (phi) | height (m) | b(m) | W(kN) | alpha(deg) | alpha(rad) | L(m) | m_n | Numerator | Denominator |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 3.14 | 0 | 0.7 | 9.57 | 9.57 | 1557 | 62.6 | 1.093 | 20.80 | 0.658 | 1656 | 1382 |
| 2 | 3.14 | 0 | 0.7 | 26.8 | 15.96 | 7271 | 49.8 | 0.869 | 24.73 | 0.816 | 6240 | 5554 |
| 3 | 3.14 | 0 | 0.7 | 38.3 | 15.96 | 10392 | 36.9 | 0.644 | 19.96 | 0.934 | 7792 | 6239 |
| 4 | 3.14 | 0 | 0.7 | 42.8 | 15.96 | 11612 | 25.7 | 0.449 | 17.71 | 0.998 | 8147 | 5036 |
| 5 | 3.14 | 0 | 0.7 | 42.8 | 15.96 | 11612 | 16.2 | 0.283 | 16.62 | 1.022 | 7950 | 3240 |
| 6 | 3.14 | 0 | 0.7 | 38.9 | 15.96 | 10554 | 5.91 | 0.103 | 16.05 | 1.018 | 7260 | 1087 |
| 7 | 3.14 | 0 | 0.7 | 33.8 | 15.96 | 9171 | 3.16 | 0.055 | 15.98 | 1.011 | 6351 | 506 |
| 8 | 3.14 | 0 | 0.7 | 25.5 | 15.96 | 6919 | -14.4 | -0.251 | 16.48 | 0.913 | 5304 | -1721 |
| 9 | 3.14 | 0 | 0.7 | 16.6 | 15.96 | 4504 | -25.8 | -0.450 | 17.73 | 0.803 | 3925 | -1960 |
| 10 | 3.14 | 0 | 0.7 | 7.7 | 15.96 | 2089 | -36.8 | -0.642 | 19.93 | 0.667 | 2192 | -1251 |
|  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  | 56816 | 18111 |
|  |  |  |  |  |  |  | Trial \# | FS_assumed | FS_output |  |  |  |
|  |  |  |  |  |  |  | 1 | 1 | 2.95 |  |  |  |
|  |  |  |  |  |  |  | 2 | 2.95 | 3.14 |  |  |  |
|  |  |  |  |  |  |  | 3 | 3.13 | 3.14 |  |  |  |

Ordinary Method of Slices

| slice index | c | $\tan (\mathrm{phi})$ | height (m) | b(m) | W(kN) | alpha(deg) | alpha(rad) | L(m) | Numerator | Denominator |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0.7 | 9.57 | 9.57 | 1557 | 62.6 | 1.093 | 20.80 | 502 | 1382 |
| 2 | 0 | 0.7 | 26.8 | 15.96 | 7271 | 49.8 | 0.869 | 24.73 | 3285 | 5554 |
| 3 | 0 | 0.7 | 38.3 | 15.96 | 10392 | 36.9 | 0.644 | 19.96 | 5817 | 6239 |
| 4 | 0 | 0.7 | 42.8 | 15.96 | 11612 | 25.7 | 0.449 | 17.71 | 7325 | 5036 |
| 5 | 0 | 0.7 | 42.8 | 15.96 | 11612 | 16.2 | 0.283 | 16.62 | 7806 | 3240 |
| 6 | 0 | 0.7 | 38.9 | 15.96 | 10554 | 5.91 | 0.103 | 16.05 | 7349 | 1087 |
| 7 | 0 | 0.7 | 33.8 | 15.96 | 9171 | 3.16 | 0.055 | 15.98 | 6410 | 506 |
| 8 | 0 | 0.7 | 25.5 | 15.96 | 6919 | -14.4 | -0.251 | 16.48 | 4691 | -1721 |
| 9 | 0 | 0.7 | 16.6 | 15.96 | 4504 | -25.8 | -0.450 | 17.73 | 2838 | -1960 |
| 10 | 0 | 0.7 | 7.7 | 15.96 | 2089 | -36.8 | -0.642 | 19.93 | 1171 | -1251 |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  | 47193 | 18111 |
|  |  |  |  |  |  | FS | 2.61 |  |  |  |

