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I. Stress Transformations

A. Key Ideas of Stress

Stress is defined as force per unit area. When working with stresses, we need to be very specific
about the directionality of the forces and the directionality of the area on which the forces are
acting. This is done by representing stress as a rank-2 tensor as follows:
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The diagonal entries in the stress tensor are said to be normal stresses because the associated force
component acts normal to the plane.
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The off-diagonal entries in the stress tensor are called
shear stresses, because the associated force
components act parallel to the plane.

Itis very straightforward to demonstrate that the stress
tensor is symmetric, or specifically that:
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B. Key Ideas of Strain

1. Normal strains

Normal strain measures the change in length of an infinitesimal “fiber” of material relative to the
original length of that fiber.

g = 950 dso undeformed fiber
dso /
ds ~_ deformed fiber

—

& < 0= reduction of length
& =0=no change of length
& > 0= increase of length

2. Shear Strains

Shear strain represents the negative change in angle (radians) during deformation between two
infinitesimal fibers that were initially perpendicular.

. shear strain: y,, =%—<9

undeformed deformed

To describe the change in length of fibers aligned with Cartesian reference axes, and to quantify
change in angles between these fibers, a second rank strain tensor is used:
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C. Hooke’s Law for Isotropic, Elastic Material

i) =) () o o o
1-2v 1-2v 1-2v
e ) =) ) o 0 o
* 1-2v 1-2v 1-2v
IS = = =
on|__E |\1-2v) 1-2v) \1-2v
o | vl 0 0 1 0 0
Ty, 2
| Tax 0 0 0 0 1 0
2
0 0 0 0 0 1
2

_gxx_ 1 -V -v 0 0 0
Ey -V 1 -V 0 0 0
&, 1| —v -V 1 0 0 0
Yw| E| 0 0 0 20+v) 0 0
Yy 0 0 0 0 21+v) 0
Vo | 0 0 0 0 0 2(1+v) |
Example:

The principal stresses at a point are shown in the figure. If

the material is aluminum for which E,=1*10* ksi and
va=0.33, determine the principal strains.

o, =10ksi; o, = -15ksi; o, = —26ksi
1

o = Toie [10 - (~15)— 1 (- 26)] = +.00237

1
6 =400+ (-15)- 1(- 26)]= 000967
&, = !

“ 10%ksi

[-1(10)-1(~15)+ (- 26)] = -.00277

10 ksi

26 ksi

Spring 2014

15 ksi
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D. Axial Strains and Deformations

Constant force, area

F
Gaxial = F/A\
O-axial F AL
Caiall = = T A=
E AE L,
S AL = FL,
F AE

»
»

Variable force, area

_F(¥)
d”_Au)
_o(x)
dw_ﬂm_

Is<X> —I

Indeterminate Axially Loaded Members

In this illustrative example, there is
only one relevant equation of

equilibrium (z F = O) but there are
two support reactions at A and C to

solve for. Thus the system is statically
indeterminate.

To solve for both support reactions, we
need an additional condition. Here,
since the supports at both A and C are
taken to be rigid, we can say that
dc/a=0 or that overall the axial member
does not change its length.

Example: The bronze 86100 pipe
has an inner radius of 0.5 in. and a
wall thickness of 0.2 in. If the gas
flowing through it changes the
temperature of the pipe uniformly
from Ta=200°F at A to Tg=60°F at
B, determine the axial force it exerts
on the walls. The pipe was fitted
between the walls when T=60°F.

E=15,000ksi and «=9.6-10°/°F

\

Fa
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Solution:

From a free-body diagram, there are two equal and compressive wall forces Fa=Fg acting on the
pipe that tend to compress it. Alternatively, the temperature increase in the pipe generates
thermal strains that causes expansion. The resulting axial strain is as follows:

£(X) = aAT (x)—% where AT (x) = AT, (1—%) and AT, =140°F

Because the two walls are rigid can be no change in length of the pipe.

. r x\ F,
AL = j £(X)dx=0= ! {aATO (1—EJ —E}dx

0

QAT AE

Solving for Fg gives:|F; =7.6kip=F,

E. Torsion and Twist

Circles remain
circular

_ Longitudinal

“lines become
twisted
~—
Radial lines
remain straight ‘
After deformation
y= p—d¢ =2,
max
dx ¢

where: y is the material' s shear strain
p is thedistance of a material point
from the centroidal axis
cis theradius of thecircular cross -section
¢ is theangle of twistin the member
x is the coordinate variable along the
member's centroidal axis

The shear strain for the
material increases linearly
with p, i.e., 7= (0/¢) ¥ max
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Integrating the moment of shear stresses over a circular cross-section about the longitudinal axial of the
member we obtain the relation between shear stresses and torque:

T=[prda 1= pdA ;- Ic
A A J
= J.27np2dp
0
_ o 7€
c 2
Sign Convention: " @

¢ Internal torques and their associated angle change are positive when the resultant
vector points away from the cut face on which it acts.

H% ’Wﬂ

Positive sign convention
for Tand ¢
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Indeterminate Torsion Example:

From statics: Ta+Te=Tc

Additional constraint: ¢ag=0

Ppe =0
C B
:ITAC dx+'[TCBdX
) JG 2 JG
_ Talac _ (Tc T )LBC
JG JG
TA(LAC +Leg ) =TcLgc
T, Telee T, = Telac
LAB LAB
vv\TB
w(x)
F. Bending Behaviors T/TH““H
Shear and Bending Moment Diagrams '
Bending occurs in members that experience loads Positive external distributed load
perpendicular to the longitudinal axis. v ‘
v _ =wW(x) = ( AV IW(X)dX Posilivclinlcrtal shear |
dx M M
d—M—V(x):(AM IV(x)dx i : 7 (
dx Positive internal moment
Beam sign convention
The flexure formula:
One-way bending: o= —Tl\/ly; Oy = _TMC
M z
Biaxial Bending:  o(y,z) =— Y 4 .
z y

Bending stress variation
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Composite sections:
Beams are often made of different materials in order to efficiently carry a load.

V2

Steel reinforcing rods

Steel plates
(a) (b)

e What is the elastic bending stress distribution on the composite cross-section?
The cross section of the beam must be transformed into a single material if the flexure formula

(which is based on homogenous materials) is to be used to compute the bending stress. A
transformation factor “n=E1/E,” is used for this purpose. Once the section is transformed, 1* is

computed.
y
by =nb \
\ b

}‘flt n'h

Beam transformed to material (2) Beam transformed to material (1)
©)] 0
To calculate stresses on the cross-section:
-My

. . . -nM
e Inthe original material: o= e In the transformed material: o = y

*

The transverse shear formula: VQ  where 0= J‘y dA"
A

T=——"
Shear Flow: q= v TQ

e Shear Flow is denoted by “q” and denotes the shear force per unit length transmitted
along a specified longitudinal section.

e Usually, we are interested in the shear flow along sections where different members
are joined.

e Here, Q is the moment about the NA of the cross-sectional area connected to the
remainder of the section along the longitudinal section of interest.

8
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Example: The cantilever beam is subjected to the S P
loading shown, where P=7kN. Determine the average
shear stress developed in the nails within region AB of
the beam. The nails are located on each side of the beam
and are spaced 100mm apart. Each nail has a diameter of
smm.
Solution:
V..« =10kN from Ato B
3 3

I= (310)(150) ~ (250)(90) 7910 mm*

12 12

q= VI—Q take the Q for the top board

Q=y'A’=(30)(250)(60) = 4.5-10°mm’ R M /L
\ Cw— i
(10kN )(4.5-10*m?) S0 mM——"" 1250 mm 30 mm
q= =5 105 =62.5kN /' m 30 mm
Half of this shear flow comes along each edge of the board
Shear flow along one edge of board is 31.25kN/m
Shear force Vnai in a nail is shear flow along edge * spacing: o g/z.
Vs = (3L.25kN /m)(0.1m) = 3.125kN %
r = 3A2KN 5005, Y
A %(.005m)
Computing Deflections in Beams:
1. Determinate Beams: dv d’v
a. Starting with M(x), integrate to find 0(x). FVl w(x) = El v
b. Integrate 6(x) to obtain v(x). M ey

. . . — =V(¥)=El—5
2. Indeterminate Beams: (Use kinematic constraints from  dX dx

excess support reactions to solve for the coefficientsof dg M(x) d?v
integration.) Bl dl x(X)
a. Starting with w(x), integrate to obtain V(x) av =0(x)
b. Integrate VV(x) to obtain M(x) dx
c. Integrate M(x) to obtain 6(x)
d. Integrate 6(x) to obtain v(x)
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Example: Compute the slope of the elastic curve at A and B, and the deflection at C. El is

constant. Solution:
V(X)) =-wx+c,

=—wx+W—L since V(0) = wb
2 2
2
M(x):—W; +—WI2‘X+C2

Wx?2

2

3
EI@(X):—%+

+WTLX since M(0)=0

wLx?

+C,

wx*  wbx®
+

24 12

wx®  wbx®

Elv(x)=- +CX+C,

=— + +C,X since v(0)=0

24 12
3

ElvV(L)=0 —>c, = %

. V(X)

—WX
= SAE] [x3 —2Lx?* - LSJ

Principle of Superposition
e Statically

w

(Lj —5wL*

Ve =V| = |=

2 ) 384El

—wL®

0 0)=

»=0(0) 24E|
wL®

L =

(L) 24E|

w

indeterminate
beams are those

that have more

supports than
there are relevant

equilibrium |
equations. For

such beams, one
cannot just use

the equations of

static equilibrium

to solve for the

support reactions.
e Solving for the

v1(X)

displacements,
slopes, shears, and

moments in
statically

V2(X, RB)

10

Wl

Solve for Rg
such that:
vi (L) + v2(L)=0
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indeterminate beams is actually very straightforward, because whenever a support
condition exists for the beam, there is a corresponding kinematic constraint on the
beam.

e Usage of superposition is one way to solve statically indeterminate beam problems.

G. Euler Buckling Loads with different types of supports

Buckling is primarily a concern or issue in long slender members subjected to axial compression.
Elz?

(KLY
where: E is the Young’s modulus, | is the minimum moment of inertia of the cross-section, and
L is the length of the member.

The critical axial compression load that will cause buckling is computed as P, =

Depending upon the manner in which the compression member is restrained at its ends, the
effective length factor K will change as shown in the diagrams below.

P
i’ P
w0
L
L,=0.7L
= L=2L L L(,:OSL
i T
‘ \\‘ = v
Pinned ends ol and\ijree i Fixed ends Pinned and fixed ends
(a.) (b) (L) ( d')

11
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H. Energy Methods

1. Elastic Strain Energies

a. Axial Loading

x N*
U=[udv= j v IZE Adx = -[ZAZ dx:jZAde

b. Bending
0= Juay = [MOT gy (M09 fyagn g (M0

c. Torsional Deformation

T2

T2 2
U=[udv= j—dv P Adx = L

2GJ?

2. Conservation of Energy (quasi-static systems)

P.A _ U 27M?
_— A:_:_
5 U Knowing U and P, can solve for A P P-C[ZEI
P
e
A

Spring 2014

Using Conservation of Energy, displacement can only be computed at the same point

and in the same direction as the applied load.

3. Principle of Virtual Work (More General)

e A mechanical system will be subjected to a real set of loads F, and this will result in real

strains € in the material that comprises the system.

e Imagine that before the system is subjected to the real loads F it is first subjected to an
infinitesimally small virtual load fy at the point in the system where we desire to know the

12



57:019 Review for Mechanics of Deformable Bodies Spring 2014

Example:

displacement, in the direction we wish to quantify the displacement. This virtual load
will give rise to equilibrium virtual stresses oy and virtual strains ey in the system.
Next, the real loads F are applied to the system resulting in real displacements &
throughout the system as well as real equilibrium stresses o and strains ¢ in the system.
Externally, the work done by the virtual force as the structure undergoes real
displacementsis: W, =f, -8

Internally, the virtual strain energy associated with the real strains and the virtual stresses

isU, = J.(GV 1g)dV
\Y
Equating the external virtual work with the internal virtual strain energy we get:

_fﬁ_[ g)dv =U,

The real dlsplacement magnitude at the location of the virtual force and parallel to the
direction of the virtual force is:

e

Deformation Strain Internal
caused by energy virtual work
L2 nN
Axial load N N
xial loa j:)zEAdx fEAd"x
Leyr2
kY- . f'vV
Shear V A 2GAd)m - dx
0
LMZ LmM
Bending moment M =—dx f ——dx
b 2FEI b El
L bor
Torsional moment T f 57 dx f —dx
b 2GJ - GJ
P
Consider the cantilever /B l
beam shown. If we ;! A
wanted to compute the
vertical displacement at A, | L ‘ L ‘
we could use conservation ! 2 | 2 |
of energy.

But if we wanted to compute the slope at B, the principle of virtual work might be more
direct.

13
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e First, we apply a virtual moment
at B as shown below.

B
e The resulting virtual moment '

distribution my(x) in the beam
from the virtual moment at B would be as follows:

m(x)_1 0<x<L/2
CTl0 x> L2

e The virtual bending stresses in the beam would be as follows:

- -y <x<
wen =2 T pexstE
x>L/2

e When the real load P is applied to the tip of the beam, the real moment distribution in
the beam is:

X
M (X) = —PL(l—EJ

M)y .

e The resulting real bending strains in the beam are e(x,y)= =l

e The virtual strain energy in the beam would be as follows:

L

Im(x)M(x)y W jm(X)M‘X’j A e _jm(x)“"(x)d

_ dex:—_F’Lf(l_i]dxz—_”[k_k}

o El El 3 L ElIl |2 8
B -3PL?
8EI
* The external virtual work is: W, =1- 6,
. . , . . -3PL?
e Equating the external virtual work and virtual strain energy gives: 0, = H

14
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I. STRESS TRANSFORMATIONS

1. Plane Stress

e A state of plane stress at a point is
defined by specifying the normal and
shear stress components on two
perpendicular planes: For example:oy,

Oy: Txy R
e All combinations of normal and shear Gy =
on other planes passing through the
same point plot on a circle (Mohr’s
circle) in o-t space.
e The radius R of the circle and the
center C on the c-axis are given by the  * (b)
following relations:

2
_|foc—oy - o, +0,
R\/( 2 ]”*y e

e Once the Mohrs Circle is known, the in-plane principal stresses are easily found:
o Major principal stress: o; =C+R

o Minor principal stress: o, =C—-R
In plane maximum shear stress: 7, =R

2. Triaxial States of Stress:
First find all three principal stresses:

e o, = major principal stress
e 0, =intermediate principal stress
e o, = minor principal stress

. . O, —O
e Then the absolute maximum shear stress is: 7, =— 5 3
e The normal stress that corresponds with the absolute max shear stress:
(o] + O,
O-ave =
2

15
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C'rmin

/ (T 2"/ max

Absolute maximum
shear stress

(b)

16

O-max

(Tx'y ’)max

Maximum in-plane
shear stress



