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Review Material 

Overview: 
A. Key Ideas of Stress 

B. Key Ideas of Strain 

C. Hooke’s Law for Linear Isotropic Elastic Solids 

D. Axial Loads and Deformation 

E. Torsion and Twist 

F. Bending Behaviors 

1. V, M diagrams 

2. Flexure Formulae 

3. Composite Sections 

4. Shear Stress & Shear Flow 

5. Deflections 

G. Euler Buckling 

H. Energy Methods 

I. Stress Transformations 

A.  Key Ideas of Stress 
 

Stress is defined as force per unit area.  When working with stresses, we need to be very specific 

about the directionality of the forces and the directionality of the area on which the forces are 

acting.  This is done by representing stress as a rank-2 tensor as follows: 
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The diagonal entries in the stress tensor are said to be normal stresses because the associated force 

component acts normal to the plane. 

 

The off-diagonal entries in the stress tensor are called 

shear stresses, because the associated force 

components act parallel to the plane. 

 

 

 

 

 

It is very straightforward to demonstrate that the stress 

tensor is symmetric, or specifically that: 
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B.  Key Ideas of Strain 
1. Normal strains 
 
Normal strain measures the change in length of an infinitesimal “fiber” of material relative to the 

original length of that fiber. 
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2. Shear Strains 
 

Shear strain represents the negative change in angle (radians) during deformation between two 

infinitesimal fibers that were initially perpendicular.  

 

  
To describe the change in length of fibers aligned with Cartesian reference axes, and to quantify 

change in angles between these fibers, a second rank strain tensor is used: 

 

     



















zzzyzx

yzyyyx

xzxyxx







ε  

 

 

 

 

 

 

2
0


 

n 

t 


n’

’ 

t’ 


 
2

   :strainshear nt

undeformed deformed 

ds0 

ds 

undeformed fiber 

deformed fiber 

length of increase 0

length of change no 0

length ofreduction  0













;

;

 ;

;    ;     ;

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1









































































y

u

z

u

x

u

z

u

x

u

y

u

z

u

y

u

x

u

zy

zyyzzyyz

zx
zxxzzxxz

yx
yxxyyxxy

z
zz

y

yy
x

xx











57:019 Review for Mechanics of Deformable Bodies Spring 2014 

3 

 

 
 

C.  Hooke’s Law for Isotropic, Elastic Material 
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Example: 
The principal stresses at a point are shown in the figure.  If 
the material is aluminum for which Eal=1*104 ksi and 

al=0.33, determine the principal strains. 
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D.  Axial Strains and Deformations 
 

 

 

Indeterminate Axially Loaded Members 
 

 

 

Example:  The bronze 86100 pipe 

has an inner radius of 0.5 in. and a 

wall thickness of 0.2 in.  If the gas 

flowing through it changes the 

temperature of the pipe uniformly 

from TA=200°F at A to TB=60°F at 

B, determine the axial force it exerts 

on the walls.  The pipe was fitted 

between the walls when T=60°F.  

E=15,000ksi and 69.6 10 / F    
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In this illustrative example, there is 

only one relevant equation of 

equilibrium  0 xF  but there are 

two support reactions at A and C to 

solve for.  Thus the system is statically 

indeterminate. 

 

To solve for both support reactions, we 

need an additional condition.  Here, 

since the supports at both A and C are 

taken to be rigid, we can say that 

C/A=0 or that overall the axial member 

does not change its length. 
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Solution: 

From a free-body diagram, there are two equal and compressive wall forces FA=FB acting on the 

pipe that tend to compress it.  Alternatively, the temperature increase in the pipe generates 

thermal strains that causes expansion.  The resulting axial strain is as follows: 
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E.  Torsion and Twist 
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Integrating the moment of shear stresses over a circular cross-section about the longitudinal axial of the 

member we obtain the relation between shear stresses and torque:  
 

 

                            

 

 

 

 
                      
 

 

 

 

 

 

 

 

 

 

 

 

 

Sign Convention: 
 

 Internal torques and their associated angle change are positive when the resultant 
vector points away from the cut face on which it acts. 
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Indeterminate Torsion Example: 

 

 

F.  Bending Behaviors 

Shear and Bending Moment Diagrams 

Bending occurs in members that experience loads 
perpendicular to the longitudinal axis. 
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The flexure formula:  
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Composite sections: 
Beams are often made of different materials in order to efficiently carry a load.  
 
 
 
 
 
 
 
 
 
 

 What is the elastic bending stress distribution on the composite cross-section? 
 
The cross section of the beam must be transformed into a single material if the flexure formula 
(which is based on homogenous materials) is to be used to compute the bending stress. A 
transformation factor “n=E1/E2” is used for this purpose.  Once the section is transformed, I* is 
computed. 

 
To calculate stresses on the cross-section: 

 In the original material:   
*

M y

I
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The transverse shear formula:   

 

Shear Flow: 
 

 Shear Flow is denoted by “q” and denotes the shear force per unit length transmitted 

along a specified longitudinal section.   

 Usually, we are interested in the shear flow along sections where different members 

are joined. 

 Here, Q is the moment about the NA of the cross-sectional area connected to the 

remainder of the section along the longitudinal section of interest. 
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Example:  The cantilever beam is subjected to the 

loading shown, where P=7kN.  Determine the average 

shear stress developed in the nails within region AB of 

the beam.  The nails are located on each side of the beam 

and are spaced 100mm apart.  Each nail has a diameter of 

5mm. 

Solution: 
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Half of this shear flow comes along each edge of the board 

Shear flow along one edge of board is 31.25kN/m 

Shear force Vnail in a nail is shear flow along edge * spacing: 

  

 

 

 

 

Computing Deflections in Beams:   
 

1. Determinate Beams:   

a. Starting with M(x), integrate to find (x). 

b. Integrate (x) to obtain v(x). 

 

2. Indeterminate Beams:  (Use kinematic constraints from 

excess support reactions to solve for the coefficients of 

integration.) 

 

a. Starting with w(x), integrate to obtain V(x) 

b. Integrate V(x) to obtain M(x) 

c. Integrate M(x) to obtain (x) 

d. Integrate (x) to obtain v(x) 
 

 

 

 

4

4

3

3

2

2

( )

( )

( )
( )

( )

dV d v
w x EI

dx dx

dM d v
V x EI

dx dx

d M x d v
x

dx EI dx

dv
x

dx






 

 

  



  

 
2

4

31.25 / 0.1 3.125

3.125
159

.005

nail

nail
ave

nail

V kN m m kN

V kN
MPa

A m


 

  



57:019 Review for Mechanics of Deformable Bodies Spring 2014 

10 

 

Example:  Compute the slope of the elastic curve at A and B, and the deflection at C.  EI is 

constant.  Solution: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Principle of Superposition 
 Statically 

indeterminate 
beams are those 
that have more 
supports than 
there are relevant 
equilibrium 
equations.  For 
such beams, one 
cannot just use 
the equations of 
static equilibrium 
to solve for the 
support reactions.   

 Solving for the 
displacements, 
slopes, shears, and 
moments in 
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indeterminate beams is actually very straightforward, because whenever a support 
condition exists for the beam, there is a corresponding kinematic constraint on the 
beam. 

 Usage of superposition is one way to solve statically indeterminate beam problems. 
 

G.  Euler Buckling Loads with different types of supports 
 

Buckling is primarily a concern or issue in long slender members subjected to axial compression. 
 
The critical axial compression load that will cause buckling is computed as 
 
where:  E is the Young’s modulus, I is the minimum moment of inertia of the cross-section, and 
L is the length of the member. 
 
Depending upon the manner in which the compression member is restrained at its ends, the 
effective length factor K will change as shown in the diagrams below. 
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H.  Energy Methods 

 
1.  Elastic Strain Energies 
 

a. Axial Loading 
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c. Torsional Deformation 
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2.  Conservation of Energy (quasi-static systems) 
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Using Conservation of Energy, displacement can only be computed at the same point 
and in the same direction as the applied load. 

3. Principle of Virtual Work (More General) 

 

 A mechanical system will be subjected to a real set of loads F, and this will result in real 

strains   in the material that comprises the system. 

 Imagine that before the system is subjected to the real loads F it is first subjected to an 

infinitesimally small virtual load fv at the point in the system where we desire to know the 
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U

0

2

2

22
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displacement, in the direction we wish to quantify the displacement.  This virtual load 

will give rise to equilibrium virtual stresses v and virtual strains v in the system. 

 Next, the real loads F are applied to the system resulting in real displacements  

throughout the system as well as real equilibrium stresses  and strains  in the system. 

 Externally, the work done by the virtual force as the structure undergoes real 

displacements is:  δf  vvW  

 Internally, the virtual strain energy associated with the real strains and the virtual stresses 

is  
V

vv dVU εσ :  

 Equating the external virtual work with the internal virtual strain energy we get:  

  v

V

vvv UdVW   εσδf :  

 The real displacement magnitude at the location of the virtual force and parallel to the 

direction of the virtual force is: 

    


V

v

vv

v dVεσ
ff

δf
:

1
 

 
 

Example:  

  

 Consider the cantilever 
beam shown.  If we 
wanted to compute the 
vertical displacement at A, 
we could use conservation 
of energy. 

 

 But if we wanted to compute the slope at B, the principle of virtual work might be more 
direct. 
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 First, we apply a virtual moment 
at B as shown below. 

. 

 The resulting virtual moment 
distribution mv(x) in the beam 
from the virtual moment at B would be as follows: 

 

                          

1      0 x L/2
( )

0     x L 2        
vm x

  
  

   
 

 The virtual bending stresses in the beam would be as follows: 

 

                  

     0 x L/2
( , )

0     x L 2        

v
v

y
m y

x y I
I



 
   

   
    

 
 

 When the real load P is applied to the tip of the beam, the real moment distribution in 
the beam is: 

                              











L

x
PLxM 1)(

 

 The resulting real bending strains in the beam are        
( )

( , )
M x y

x y
EI




 :     

 

 The virtual strain energy in the beam would be as follows: 
 

 
 

 
 
 
 
 

 The external virtual work is: 1v BW         

 Equating the external virtual work and virtual strain energy gives: 
23

8
B

PL

EI



   

 
 
 

2
2

2 2

0 0

/2 /2

0 0

2

( ) ( ) ( ) ( ) ( ) ( )

1 ( )
       1

2 8

3
       

8

L L

v v v
v

V A

L L

m x M x y m x M x m x M x
U dV y dA dx dx

EI EI EI

M x PL x PL L L
dx dx

EI EI L EI

PL

EI

  

     
       

   




   

 
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I.  STRESS TRANSFORMATIONS 
 

1.  Plane Stress 
 

 A state of plane stress at a point is 

defined by specifying the normal and 

shear stress components on two 

perpendicular planes:  For example:x, 

y, xy  

 All combinations of normal and shear 

on other planes passing through the 

same point plot on a circle (Mohr’s 

circle) in - space.   

 The radius R of the circle and the 

center C on the -axis are given by the 

following relations: 

 

                        
2

2

2
xy

yx
R 












 
  ;           

2

yx

avgC





   

 

 Once the Mohrs Circle is known, the in-plane principal stresses are easily found: 

o Major principal stress:  1 C R    

o Minor principal stress: 3 C R    

 In plane maximum shear stress:  max R   

 

 

2.  Triaxial States of Stress: 
 

First find all three principal stresses: 

 

 1  = major principal stress 

 2  = intermediate principal stress 

 3  = minor principal stress 

 Then the absolute maximum shear stress is:  
2

31

max





  

 The normal stress that corresponds with the absolute max shear stress:  

2

31 



ave  
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