Sprayable Hydrogels for Antibiotic Delivery to Burn Wounds

Riannon Smith, Nicole Brogden, Jennifer Fiegel
Work supported by Center for Biocatalysis and Bioprocessing at the University of Iowa Research Park
Current burn wound care can be improved

→ 40,000 hospitalizations in US
 • 50% of deaths are infection-related
 • $18 billion spent on specialized burn care in US annually
 • Greater scar tissue formation

→ Current cream and ointment application can be painful

Poloxamers form thermoreversible hydrogels due to micellization at critical temperatures

Poly(EO)$_{100}$–poly(PO)$_{66}$–poly(EO)$_{100}$ ← Poloxamer 407 (Pluronic F127)
Hyaluronic acid and drugs can provide additional functionality to the hydrogels

→ Hyaluronic acid ●
 • Anti-inflammatory
 • Active healing agent
Hyaluronic acid and drugs can provide additional functionality to the hydrogels

→ Hyaluronic acid
 • Anti-inflammatory
 • Active healing agent

→ Drugs
 • Antimicrobial agents
 • Analgesics
Aim to achieve gelation temperature near skin temperature
Ciprofloxacin loaded hydrogels exhibit antimicrobial activity

→ 1: Control (Silvadene cream)
→ 2: 17% F127 + 0.3% ciprofloxacin
→ 3: 20% F127 + 0.3% ciprofloxacin
→ *E. coli* challenge
Spray pattern changes with nozzle

-/- Nozzle

+/- Nozzle

+/- Nozzle

+/- Nozzle

15% 17% 20%
Different spray plumes can be achieved using different nozzle types

+/+ Nozzle spraying water

-/- Nozzle spraying water

*yellow bar = 6 inches
Conclusion

Future studies include testing against more bacterial strains and testing the transport out of the gel and through the skin.