Active Learning with FilterNet for Calf Muscle Compartment Segmentation

Zhang, Lichun; Zhihui, Guo; Honghai, Zhang; Eric Axelsson; Daniel Thedens; Ellen van der Plas; Peg Nopoulos; Sonka, Milan
Background

- **Calf Muscle**: tibialis anterior (TA), tibialis posterior (TP), peroneus longus (PL), soleus (SOL), gastrocnemius (GAS)

- **Importance**: volumetric and structural changes are important for myotonic muscle diseases, e.g., Myotonic Dystrophy Type 1 (DM1), Juvenile Onset Myotonic Dystrophy Type 1 (JDM)

- **MRI imaging**: sensitivity to dystrophic changes

- **Challenging**: large variations in muscle shape and MR appearance; limited cost for annotation.
Data & Goal

Data: 93 patients of 47 healthy, 46 disease, with 175 T1-weighted MR image and corresponding expert-traced ground truth segmentation images.

Goal:

• Design a fully automated approach for **3D segmentation of five calf muscle compartments simultaneously**
• Develop **Deep LOGISMOS** [1], combining two well-established algorithmic strategies – deep learning and LOGISMOS graph search and demonstrate Deep LOGISMOS improves segmentation performance in comparison with state-of-the-art segmentation techniques
• Present a **deep active framework** that combines **deep learning** and **active learning** to reduce annotation effort. Significantly reduce annotation effort while attain the best performance.

Method/Framework

- Annotated patients’ samples
- Unannotated patients’ samples

Deep LOGISMOS

FilterNet → Trained Model

Active Learning

Select Samples

Apply

Annotate

Add into annotated samples

Request new annotation
Method/FilterNet [2]

1. **Block Difference**

 \[A(c_{in}, c_{out}) = c_{out} + \text{element-wise addition} \]

 \[B(c_{in}, c_{out}) = B(c_{in}, c_{out}) \]

2. **Cost Function Difference**

 \[\text{Edge Gate } F_{\text{edge}}(I|σ = 1) = k_G \ast k_L \ast I \]

 \[L = (1 - \lambda)L_r + \lambda L_e \]

3. **LOGISMOS for Post-processing**

Method/Active Learning

- **Key Issue:** How to determine the ‘worthiness’ of a candidate for annotation

- **Major approaches:**
 - Uncertainty-based approach: degree of information
 - Diversity-based approach: prediction consistency
 - Expected model change: change to current model parameters or outputs if we knew their labels

- **Preliminary Design (uncertainty + diversity)**
 - Uncertainty: Monte Carlo Dropout [3] $\rightarrow e$
 - Diversity: Consistency among annotated candidate patches (original + augmented patches) $\rightarrow d$

$$C_i = \lambda_1 e_i + \lambda_2 d_i$$

- C_i: ith candidate
- e_i: uncertainty of C_i
- d_i: diversity of C_i
- λ_1, λ_2: trade off's between e_i and d_i
Experimental Settings

- 4-Fold cross-validation
- **GPU**: NVIDIA Tesla V100 with 32G of memory
- **Training Parameters**:
 - SGD optimization
 - Initial learning rate=0.0005, divided by 5 every 10 epochs.
 - Batch size=16.
 - Initial $\lambda = 0.001$, multiply by 10 every 10 epochs.
 - $W_n = [0, 0.2, 0.2, 0.15, 0.15, 0.3]$, $\alpha_{nt}=[0.05, 0.2, 0.2, 0.15, 0.1, 0.3]$ for background, TA, TP, Sol, Gas, PL, respectively.
 - Total epochs=30
- **Evaluation**: DICE Similarity Coefficient (DSC); Jaccard; Absolute Surface-to-Surface Distance; Relative Surface-to-Surface Distance; D2 Score $\left(\frac{5}{e_{ASSD} + 4e_{abs(RSSD)}}\right)$.
Results/FilterNet

Original

Ground Truth

UNet 3D

FilterNet

IOWA
Results/Active Learning (to be continued…)

Still working on to get the final best results….

Predicted preliminary results:
state-of-the-art segmentation performance can be achieved by using 50% training data
Next Steps

- Innovations of the network architecture and the cost function for better segmentation performance.

- Innovations of selection criterion for active learning.

- More effective way of updating the learner/classifier when getting new annotated samples.

- Further: Selecting most influential slices of one patient’s 3D image.
Thank You