CT-Based Characterization of Transverse and Longitudinal Trabeculae and Its Applications

Nov 05, 2020

Xiaoliu Zhang1, Elena M Letuchy2, Steven M Levy3, James C Torner4, Punam K Saha1

1Department of Electrical and Computer Engineering, University of Iowa, USA
2College of Public Health, University of Iowa, USA
3Department of Preventive and Community Dentistry, University of Iowa, USA
4Department of Epidemiology, University of Iowa, USA
Transverse / Longitudinal Trabeculae

- Trabeculae consist of transverse and longitudinal structures
- Transverse trabeculae are critical in arresting buckling and compressive fracture of longitudinal trabeculae
- This research requires
 - Segmentation of individual trabeculae
 - Orientation computation of individual trabeculae
- Challenges
 - Trabecular bone is a complex 3-D network
 - Wide variability for digital junctions
 - Long and curved trabecular segments
Workflow

CT Images → Bone Volume Fraction (BVF) Computation and Cavity Filling → Curve Skeletonization and Pruning

Splitting Curves into Relatively Linear Segments → Ungluing Curve Segments at Junctions → Junction Detection

Trabecular Orientation Computation → Characterization of Transverse and Longitudinal Trabeculae
Curve segments

• Detect curve junctions
• Unglue at curve junctions
 – Long and curved trabecular segments are often present
• Splitting such trabeculae is needed for accurate computation of orientation
 – Fit a B-Spline and find the farthest point

3D volume Individual trabecular curves Individual trabecular segmentation
Trabecular Orientation Computation

- Fit a B-spline to individual trabecular curve segments
- Generate uniform sample points on the B-spline representation of each trabecular curve
- Apply principle component analysis on sample points and determine the principle orientation
- Propagate orientation from curve skeleton voxels to trabecular volume using a nearest skeletal voxel method
Experiments and Data Description

• Experimental Goals
 – To examine repeat CT scan reproducibility
 – To study relationships between trabecular transverse / longitudinal measures with sex and body size in a human study

• Cadaveric ankle specimens
 – 12 fresh-frozen cadaveric ankle specimens
 – Repeat CT scans were performed on these specimens with repositioning the specimens on the scanner table before each repeat scan

• Human subjects
 – Healthy young adults from the Iowa Bone Development Study (N = 99; 49 females; age: 19.4± 0.4 years)
 – High-resolution angle CT scan on a Siemens SOMATOM Definition Flash scanner
 – Height: Female (167.2±6.7 cm), Male (179.4±8.2 cm)
 – Weight: Female (69.3±18.6 kg), Male (85.4±16.6 kg)
Reproducibility Analysis of Trabecular Measures

- Applied to cadaveric ankle specimens (n = 12)
 - Values of trabecular measures were computed over small spherical ROIs of diameter 7 mm
 - Randomly select 15 ROIs over 30% peel at 4 to 8% of tibia
 - A total of 15 × 12 = 180 ROIs
 - For each measure, the ICC of repeat scan values over matching ROIs were computed

<table>
<thead>
<tr>
<th>Variables</th>
<th>Reproducibility (ICC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tb.vBMD</td>
<td>0.999</td>
</tr>
<tr>
<td>Tb.tBMD</td>
<td>0.983</td>
</tr>
<tr>
<td>Tb.IBMD</td>
<td>0.947</td>
</tr>
</tbody>
</table>
Human Study Data and Analysis

• Summary values for different trabecular measures were derived from inner and outer ROIs at 4-6% tibial section

• Inner region: 60% peeled region

• Outer region: the annular region between 30 and 60% peeling

• Data Analysis
 – Correlation analysis to investigate relationships of trabecular measures with body size – height, weight, and BMI
 – T-test for group comparison for sex differences in Tb measures
Relationships Trabecular Measures with Body Size

<table>
<thead>
<tr>
<th>Variables</th>
<th>Inner ROI</th>
<th>Outer ROI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tb.vBMD</td>
<td>Tb.tBMD</td>
</tr>
<tr>
<td></td>
<td>Tb.vBMD</td>
<td>Tb.tBMD</td>
</tr>
<tr>
<td>Females (N=49)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height (cm)</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>0.48</td>
<td>0.46</td>
</tr>
<tr>
<td>BMI</td>
<td>0.41</td>
<td>0.39</td>
</tr>
<tr>
<td>Males (N=50)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height (cm)</td>
<td>-0.01</td>
<td>-0.01</td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>0.34</td>
<td>0.31</td>
</tr>
<tr>
<td>BMI</td>
<td>0.37</td>
<td>0.33</td>
</tr>
</tbody>
</table>
Gender Distributions of Trabecular Measures

<table>
<thead>
<tr>
<th>Variables</th>
<th>Males (N=50)</th>
<th>Females (N=49)</th>
<th>Mean sex diff (SE) (Male = ref)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean (SD)</td>
<td>Median (Range)</td>
<td>Mean (SD)</td>
</tr>
<tr>
<td>Inner ROI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tb.vBMD</td>
<td>1146 (33)</td>
<td>1148 (1079, 1212)</td>
<td>1132 (31)</td>
</tr>
<tr>
<td>Tb.tBMD</td>
<td>452 (105)</td>
<td>465 (217, 652)</td>
<td>402 (116)</td>
</tr>
<tr>
<td>Tb.lBMD</td>
<td>349 (59)</td>
<td>349 (193, 510)</td>
<td>320 (65)</td>
</tr>
<tr>
<td>Outer ROI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tb.vBMD</td>
<td>1204 (31)</td>
<td>1203 (1148, 1280)</td>
<td>1176 (32)</td>
</tr>
<tr>
<td>Tb.tBMD</td>
<td>496 (111)</td>
<td>497 (217, 767)</td>
<td>385 (121)</td>
</tr>
<tr>
<td>Tb.lBMD</td>
<td>373 (68)</td>
<td>375 (190, 558)</td>
<td>303 (73)</td>
</tr>
</tbody>
</table>

*p-values < 0.05, **-p-values < 0.01
Conclusions

• A new *in vivo* CT-based method has been presented for characterizing transverse and longitudinal trabeculae
 – Novel characterization of digital junctions
 – New methods for individual trabecular segmentation

• Trabecular transverse / longitudinal measures are reproducible

• Trabecular transverse / longitudinal measures have higher correlation with weight than height

• Trabecular measures in females show stronger correlation with body size than males

• Female sex is associated with fewer transverse / longitudinal trabeculae
Acknowledgement

• This work was supported by the NIH grant R01 HL142042